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1. Introduction and Issues

The purpose of this document is to provide some framework for discussion of the future path
that functional neuroimaging software development should take. My own experience in this
area started about 6 years ago, with the creation of the FMRI analysis package AFNI. T am
not trying to write a master plan, but rather am laying out my opinions on the structures
that need to be defined and developed.

One underlying assumption for my thoughts is the belief that most neuroimage analysis
software will be created in non-commercial environments. Reasons for this include the rela-
tively poor* market for the software, the rapidly changing needs of the users, and the need for
openness in scientific work. These programs are intended for scientific data analysis, not for
potential clinical applications of FMRI or other methodologies. Scientists will always want
to know precisely how the processing methods work, will want to try different methods,
and will need to analyze larger, more complex data sets to answer larger, more complex
questions.

The major themes of this document are a collection of -ilities that a collection of software

tools for neuroimaging should possess:

[1] Flexibility = can be used in ways not clearly foreseen by the designers.

[ii] Extensibility = is ‘easy’ to add new features that fit into the toolset.

[iii] Interoperability = can combine different tools without major pain.

[iv] Survivability = has long term utility.

[v] Portability = design/implementation is not bound to ephemeral platforms.

[vi] Usability = basic operations of each tool are ‘easy’ to access.

Vil Scalability = has a path to deal with large and intricate data collections.

These themes are not all independent, and no doubt a few more could be tacked onto the
list.

The major issues facing us are the obstacles to achieving these goals:

[a] Data Interchange = data elements, domains, formats, input mechanisms.

[b] Ezecution Interchange = how to get different program units to work together?

[c] Monolithic Systems = many tools in one package, not cleanly separated.

[d] Hidden Information = poor documentation on usage, algorithms, implementation.

[e] Poor Organization = lack of generality and modularity in design.

[f] Clumsy Implementation ~ many tools are written by graduate students.
To my mind, the most urgent issues are [a] (§2 [p.@] and §3 [p.A]) and [b] (§4 [p.[F] and
§5 [p.L3]). I will spend much of the rest of this rumination on these points; in §6 [p.[f] I will
summarize my personal judgments. The other issues listed above must be addressed in the
design of the data and execution models.

Web addresses of various things that I mention along the way can be found at the end of this

document in §7 [p.[[G]. Examples from AFNT are displayed in smaller type, as in this paragraph.
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2. The Content of Our Data

There are more subtleties to FMRI data than are apparent from the outside. Not all of the
structures I will describe are used by major neuroimaging software tools at present, but the
potential for applying them must not be foreclosed. Issues that I will address in this section
include:

[a] Atomic data types—what kind of data can be stored inside an object?

[b] Data conformation—over what kinds of regions can data be defined?

[ c] Data assembly—how can multi-object collections be specified and assembled?
§3 [p.H] will address the issue of how these data structures are to be stored. §4 [p.[[2] will
discuss how data can be passed between program units.
2.a. Atomic Data Types
This refers to the kinds of information that can be stored at each node in a dataset. At
present, most tools deal with simple numbers as the atomic data types (e.g., 16 bit shorts,

32 bit floats). Allowing for more complex data elements will necessary, both to hold new
types of imaging information and to hold the results from complex processing techniques.

One type of data that must be supported is categorical data, which means each value
is from a discrete set, usually with no concept of arithmetic or ordering on the elements.
Another way to think of this is as attaching a qualitative label to each node. Applications:
[i] Brain parcellation and region-of-interest (ROI) selection, in which each node is categorized
in some way (automatically or manually). [ii] Acquisition of subject responses, which often
have a categorical component (e.g., the left response button was pressed). (Not only brain
image data needs to be stored, but also many forms of auxiliary data; a unified data hierarchy
should be used for everything.) Each value would be represented by an integer, which would
also point to a descriptive string. In this way, one could have a string-valued 3D volume.

Another important extension is the support of vector- and matrix-valued datasets, where a
vector or a matrix is stored at each point. Applications: [i] Storing data from multi-image
acquisition methods—the GREASE sequence at MCW can gather up to 4 64 x 64 images
in a single shot (about 150 ms); each image has a different mix of 75 and Ty weighting.
[ii] Storing color datasets as RGB-valued vectors—these will be useful for including atlas
data. [iii] Storing the results of time series modeling in each voxel: the parameter estimates
form a natural vector value, and their covariances form a natural matrix value. [iv] Storing
the results of diffusion-tensor imaging, which has shown promise in the mapping of cerebral
white matter tracts.

Since vectors and matrices are realized by collections of numbers, it would seem that the
multiple 3D volume (sub-brick) structure already present in AFNI datasets can support these
data types. This is true; however, at present, there is no infrastructure for manipulating
vector- and matrix-valued datasets, so it would have to be done on an ad hoc basis for
each new analysis tool. I am proposing that this infrastructure be defined, so that creating,
manipulating, and visualizing a vector-valued dataset is a well-documented and routine set
of operations. This is the importance of supporting structured atomic data types.

Another application of structured atomic data types would allow more complicated sta-
tistical estimates to be stored at each point, including confidence intervals, and allowing ba-
sic distributional statistics to have voxel-specific distributional parameters. Applications:
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[i] The bootstrap method is a computationally intensive resampling technique for estimating
the goodness-of-fit of a model, making fewer assumptions than are usually needed in statisti-
cal analyses. The results can’t be expressed as being drawn from some classical distribution,
and are usually reported using confidence intervals. [ii] ¢-statistics computed with unpooled
variance estimates have the number of degrees of freedom estimated in each voxel, so a brick-
wide value is not applicable. The same remark applies to correlation coefficient estimates
(B distributed) when the voxel data are correlated in time.

AFNI now supports the statistical interpretation of the values stored in a dataset; for example,
the values in a sub-brick can be t-statistics, with a brick-wide number of degrees of freedom;
AFNI can then convert the ¢-statistic into the equivalent p-value. (Nine families of distributions

are supported—those contained in the CDF library from U Texas.)

2.b. Data Conformation

An important capability is to generalize the types of regions over which a dataset can be
defined. This is needed to store and display results from selected sub-regions, some examples
of which are given below. Abstractly, a dataset is a mapping from some domain (region)
into some set of possible values. The basic domain types should include

[ 1] Rectangular ‘volumes’ defined in 1-3 dimensions; Applications: Time series, planar
and volume images.

[ii] Non-rectangular ‘volumes’; Application: To store extracted subsets of volume data,
such as used-defined regions-of-interests, clusters of active voxels, and atlas-defined
brain structures.

[iii] 1D curves and 2D curved surfaces, as subsets of 3D space; Applications: (1D) To
mark and store data from specific curves in the brain, such as the crown of a gyrus;
(2D) To represent the cortical surface, manually or automatically extracted from vol-
umetric data.

[iv] Discrete point sets within 3D space; Applications: To store data gathered at arbi-
trary points, such as EEG time series, or data subsets gathered by some criteria.

[v] Non-continuous categorical ‘dimensions’ (see below for applications).

In addition, domains could be defined as tensor products of any basic domain type with
a rectangular volume (type [i]) or a categorical dimension (type [v]). (A point in a tensor
product of two basic domains is uniquely specified by picking out a point in the first basic
domain, and then picking out a point in the second basic domain. For example, the domain
of a 3D+time dataset is the tensor product of a 3D volume with a 1D time interval; each
point is given by its 3D coordinates (x,y, z) and its 1D coordinate (t).) At each sample point
in the product domain the system should be able to store any of the data types described
in §2.a. Applications: [i] The tensor product of a 2D surface with a 1D interval will allow
the creation of time-dependent datasets defined over the cortical surface. [ii] The tensor
product of a 3D volume with a 2D volume will allow the creation of datasets from time-
dependent 3D imaging spectroscopy—the first 3 dimensions will be the image coordinates,
the second 2 dimensions will be spectroscopic frequency (Hz or ppm) and time. [iii] Categor-
ical dimensions are intended to allow the stacking up of multiple basic values at each dataset
point; for example, the result of a time series fit could be a vector of estimated parameters
stacked up with their estimated covariance matrix.
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It is an open question as to whether topologically more complex data domains (e.g., tori,
spheres) are required. The circular domain may be useful for some purposes.

Domain objects will be a key component of any future data format. In many functional
imaging applications, the principal desired result is a map of active regions, or a segmentation
of the anatomy. Such results will be directly representable as domain objects. The applica-
tions listed above show the importance of being able to operate on and produce geometrical
structures as data, or as components of data.

The first 3 domain types are conceptually continuous, but must be realized discretely on
the computer.

In AFNI (which only supports domain type [i]), a 3D dataset can be interpolated on demand to
a new resolution; in this respect, AFNI datasets are considered to be defined over a continuous
rectilinear domain rather than just being an array of voxel values at forever fixed locations.
This capability originally came about because it was necessary to overlay functional images
onto anatomical images that were gathered on incommensurate grids, and to transform both

types of data to the Talairach coordinate system for intersubject comparisons.

The philosophy that the data is defined over an underlying continuum should be continued.
This will allow mapping from 3D volumes onto 2D surfaces (restriction), and vice-versa
(prolongation).

For linear dimensions, AFNI currently supports only regularly spaced grids (with a possible
spatially dependent offset for the time-axis in 3D+time datasets, to allow for the uneven times

at which slices might be gathered).

Nonuniform grids should be allowed in future processing systems, at least for one dimensional
domains. Applications: [i] An uneven image acquisition interval, gated to the cardiac cycle,
has been used to suppress much of the physiological ‘noise’ in FMRI of the brain stem.
[ii] Many event-related FMRI experiments use event timing that is not commensurable
with TR.

Irregular volume domains (type [ii]) can be implemented in several ways. One straightfor-
ward approach will be to ‘shrink-wrap’ a rectangular volume about the desired domain, and
then mark as unused the points outside the desired non-rectangular region. In this way, the
codes for implementing irregular domains will be the same as for rectangular domains, with
a little postprocessing to allow for the unused points.

The [iv]th and [V]th domain types are discontinuous—there is no unambiguous concept
of changing resolution and interpolating between sample points in these cases. Type (iv)
is intended to support applications such as EEG, where time series data is gathered at an
irregular set of points in 3D. In this example, it makes sense to propagate the data into
other parts of 3D space; however, the methods required are application-specific.

A systematic hierarchy of data classes should be created to package up data values and
data domains in a unified way. This will make further development and extension of the data
objects needed for functional brain imaging much simpler and much more powerful than it
is now.
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2.c. Data Assembly—Collections of Imaging Datasets
As larger collections of subjects and tasks are gathered and analyzed together, the need for
a systematic way to collect image datasets for analysis is growing.

We are facing this difficulty in AFNI, which has the ability to do 2- and 3-way ANOVA (voxel-

by-voxel inference). The number of 3D datasets in any given analysis often exceeds 100, which

must all be specified individually on the command line or in the script file. At present, each
investigator deals with this by coding information about the data in the filename, and then
uses the filenames to select which datasets go into a particular analysis. This ad hoc solution

is only weakly tenable, and things will only get worse.

My first thought was to allow the user to include descriptor strings in a dataset that could
then be used for selection; effectively, allow something like “all 3D activation datasets with
subject fields HANDEDNESS=RIGHT and SEX=MALE” to specify which datasets are used for a
specific purpose. After reflection, I realized that this is nothing more than distributing a
database of information about datasets into the dataset headers.

As a site progresses from small FMRI studies to large ones, the scientists generally discover
the necessity of keeping track of their experiments and subjects with a database. The effect
of requiring header fields that describe the experiment would be to duplicate partially the
experiments database.

One alternative is to develop the ability to assemble collections of datasets by interrogating
an external database. The database should return pointers to datasets that meet user-
specified criteria. The database will not actually contain the volumetric (etc.) data.

In any case, after the datasets are collected, they must be packaged up. I see no reason
why this packaging should be different from the other packaging I'm talking about in this
document. That is, a collection of datasets would be described as a dataset itself, whose
‘atomic’ values are datasets. For most purposes, the domain of the collective dataset would
be described with categorical dimensions, although it is possible to conceive of uses for the
continuous domain types (e.g., results from experiments where some task parameter is varied
continuously).

3. Data Interoperability—Defining a ‘File’ Format

Some people have argued that it is impossible to get the neuroimaging community to agree
on a data file format. I disagree; I believe that if the top 3—4 sites and 2—-3 platforms agree on
a format, if it is well documented, if it is not too difficult to use, and if basic tools are created
to manipulate this format, then most other sites will fall into place. Furthermore, I believe
that this is a prerequisite for any scheme to unite software tools from multiple institutions.

My main point is that data transfer between tools will almost inevitably require the
development of a master data format, and this will be both the biggest problem and the
biggest achievement (if it is achieved). Standardizing methods for invocation of tools (at
least of certain classes), while not trivial, will be a less difficult task, although it will provide
the final sizzle that makes cooking the bacon so pleasant.

Consider the example of Mosaic, the first widely distributed point-and-click graphical
Web browser, and the direct ancestor of Netscape and Internet Explorer. This was actually
a minor achievement built on top of the standards for image formats (GIF and JPEG),
text formatting (HTML, a subset of SGML), data transfer (HT'TP, built atop TCP/IP), and
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method invocation (CGI)—all of which existed before. Mosaic glued it all together and made
it fun, but neuroimaging software developers aren’t yet at the final gluing stage—we need to
assemble a few more standard pieces before we can apply the glue to get the sizzle* Without
standards, even Internet applications don’t talk to each other; as an example, consider the
current state of streaming video, with 3 incompatible proprietary formats.

Issues that I will address in this section include:

[a] Prescribing content—is it reasonable to ‘make’ people use a data format?
[b] ‘Must have’ tools—what capabilities will make this format the winner?
[c] Format design—how to be easy to use and extensible?

[d] Basic operations—what is needed to get off the ground?

The word File is in quotes in the header for this section since data collections do not need
to be accessed from disk files. One useful alternative input source is an Internet connection
(a stream of data bytes), perhaps using the HT'TP mechanism.

3.a. Prescribing Content?

The objection to developing a format for data exchange is the potential perception that we
would be prescribing the allowed content of data sets. But this problem will arise with any
conversion tools that are applied to allow data to flow from one analysis package to another.
Not all formats and types of data described in §2 [p.Pf] will be supported—especially at
first—so anyone whose great new method would benefit from an unsupported feature will
essentially be having his content edited from the start. A specific example:

AFNI contains a plugin to estimate the time delay of the hemodynamic response in each voxel.
The result takes into account the different time origin of each slice. AFNI allows each slice
to have a separate temporal offset, and these can be arbitrary (e.g., uniformly spaced in time
interleaved slices are not mandatory). This extra auxiliary information is stored with each
time-dependent dataset, and is used in the time delay estimation module.

Suppose that someone wants to use AIR to register the volume time series, and then use
this AFNI module to do the time delay estimation. AIR will not get or deal with or preserve
the slice time offset information—why should it? This means that the data conversion tool
must preserve this auxiliary data across the invocation of AIR, then reattach it to the volumes
returned by AIR before sending the image time series to AFNI . This would be a complex
undertaking. On the other hand, if the time offset for each slice is not handed to AFNI, then

the time delay estimates will be wrong.

The only practical way I can see for an interoperability conversion toolset to deal with such
issues is to define its own format for storing neuroimaging data—a format that can encompass
the range of data domains, data types, and auxiliary information discussed in §2 [p.p], and
a format that is extensible to include new types of information and operations. Then the
conversion toolset can take what is needed out of its own file to create files that a particular
tool can read, then take the files that this tool produces and fit them back into its own
format.

However, if such a format is developed, why shouldn’t toolkits use it directly? If the
format doesn’t allow certain kinds of content, then it will not be able to deal with toolkits
that need that type of information. This is an argument for creating an extensible format,
not an argument for eschewing the idea for a standard format.
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3.b. What Tools Will Win the Hearts and Minds of the Neuroimagers?
Before I describe the requirements of a neuroimaging data format, I will digress into a vision
of some tools that will help the adoption of a standard format:

[i] The ability to easily assemble and disassemble structured data files into simpler
components (e.g., volumetric time series < individual image slices).

[ii] Easy to use tools for visualizing complex datasets and making publishable figures.

[iii] A Web browser interface that will allow researchers to ‘publish’ their results to the
Web in the form of viewer-controlled images, renderings, and animations.

3.c. Format Design

Datasets are defined by the atomic values stored at each node, and by the domains into
which the nodes are gathered. Atomic data types must be equipped with basic operations on
individual values, and domains must be equipped with operations that allow basic collections
of atomic values to be extracted.

At the same time, neuroimaging datasets come with lots of auxiliary information:

AFNI dataset headers contain a log of the processing commands that created them, can contain
arbitrary text notes added by the user, can contain a set of matrices/vectors describing their
geometric relationship to ‘parent’ datasets (i.e., the transformation to Talairach coordinates),
etc. In AFNI, all such information is stored in the form of attributes, which are named arrays
of ints, floats, or strings. Each attribute is stored in the header file with its name, its element
count, and an ASCII representation of its elements. When a dataset is read, the attributes
are all read in. Those that are needed for dataset construction are probed to set up the data
arrays, etc. Those that are not needed are ignored. In this way, a new processing module can
add a new attribute to dataset headers to store some new type of auxiliary information; the

presence of this new attribute will not interfere with the usual dataset operations in any way.

The AFNI dataset format is not flexible enough for the many needs outlined in §2 [p.B].
Instead, I propose the development of a format based on XML, possibly building on the
Caltech XSIL project. XML is a language for describing and storing hierarchical data files.
The files can be constrained in structure using a DTD file, or can be free to contain any set

DD, of nested elements. XML does not provide processing itself, but there are a number of codes
Document  gvailable for parsing XML documents. (XSIL is an XML DTD and a set of Java routines

Type

Definition  for processing XML files.)

XML:
eXtensible
Markup
Language

XSIL:

XML elements need to be designed to contain each of the data types described in §2 [p.p].

oXiensible Housekeeping auxiliary elements (e.g., like AFNTs processing log) need to be defined as well.
e age  The actual voxel data need not be stored in an XML file. Instead, the file can contain URLs
indicating where the data can be found. (Binary data cannot directly be stored in the XML

urL:  format, but can be encoded into text using the base64 scheme, which takes up about 35%

Uniform

Resource  qore space and approximately doubles the time to read a large file and store it in memory.)

Locator
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An example of what a simple XML header file for a 3D volume might look like is

<?xml version="1.0" encoding="UTF-8"7>
<RECT3D n1="256" n2="256" n3="124" datum="short"
byteorder="MSBfirst" src="elvis.spgr">
<!- The HISTORY and NOTE elements below are optional ->
<HISTORY>
<NOTE date="04 Jan 2001" user="scan@signa">
Acquired at Froedtert Memorial Lutheran Hospital</NOTE>
<NOTE date="07 Jan 2001" user="rwcox@manwe.biophysics.mcw.edu">
3dBlur -input=buddy -output=elvis -fwhm=5.25</NOTE>
</HISTORY>
</RECT3D>

Note the nested structure of elements, each of which starts and ends with a labeled tag. This
structure is what makes XML relatively easy to parse and validate for syntactic correctness.

To the extent possible, we should build on relevant pre-existing standards. As an example,
the VRML standard can be used as a way of describing 1D and 2D curved domains embedded
in 3D space.

Development of such a format for storing data is not enough. There is also the issue
of getting the data into a program. This subject will be addressed in §4 [p.[d]; at this
point, I will say that a parallel development of data structures for the major programming
languages (C/C++, Java?, ...) should be carried out. There will be no requirement that
developers use these data definitions to store the data read from a dataset file, but these
definitions will be available to make programming life a little easier.

3.d. Basic Operations on Data ‘Files’
Besides providing a definition for how data should be stored external to a program, some
basic utilities for manipulating such files need to be provided. These include

[i] Data display—tools for looking at a neuroimage data file.

[ii] Data integrity—tools for checking a neuroimage data file.

[iii] Data operations—manipulations on atomic data types.

[iv] Data extraction—what types of ‘chunks’ of data can be extracted from an object?

[v] Data insertion—what types of chunks of data can an object accept?

[vi] Data conversion—to what other types of objects can a given object be converted?

fvi] Data selection—how can subsets of an object be specified for extraction?
I envision these as standalone programs which are basically wrappers for executable modules
that can be incorporated into other programs. These utilities will be useful in themselves,
providing a way of producing standard-formatted output files from standard-formatted in-
puts. In addition, they could be incorporated into scripts or other execution paradigms
(84 [p.[F]) to assemble more complex capabilities.
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3.d.i. Data Display

Viewers differ from other processing tools only in that they do not usually produce output
that goes back into the dataset file format, but simply consume data and produce images
formatted for viewing on the screen. Each dataset domain type and atomic data type should
have a basic image generation utility. Each utility will take as input a set of visualization
parameters (dependent on the domain type), data extraction parameters, and produce as
output an image file in some standard format (e.g., PPM, PNG, JPEG). Display of the
image will be a separate system-dependent issue.

3.d.ii. Data Integrity Checking

A utility is needed to check a dataset file for integrity. These checks would include consistency
of the XML document, and existence of external files and the presence of valid data in them.
Since datasets might contain references to other datasets (§2.c), it will also be necessary to
check collections of files for consistency.

3.d.iii. Data Operations

Each atomic data type will generally come with an underlying set of operations: numerical
scalars support arithmetic; vectors support addition, scalar multiplication, dot products, and
projection; matrices support more operations than can be listed here; and statistical types
support various inferential and conversion (e.g., t-into-z scores) operations. Utilities should
be written to carry out these operations on datasets; for example, a routine to compute
the product of a matrix-valued and a vector-valued dataset, producing a new vector-valued
dataset. I see these utilities written as wrappers for functions that take as input collections
of atomic objects and produce as output new collections of objects. The ability to operate
on many atomic objects at once is important for the sake of efficiency—in principal, every-
thing could be written in terms of operations on single objects (e.g., a single matrix-vector
multiply), but in practice, this would be very inefficient when millions of the same operation
need to be executed.

A new atomic data type may require a special interpolation algorithm to preserve its
structure when it is resampled from one data domain to another. For example, standard
interpolation methods applied to each component of a unit vector will not usually result in a
unit vector. This data type might be used to store the results of principal direction analysis
of a diffusion tensor image series.

3.d.iv. Data Eztraction

A powerful set of functions for extracting data from datasets is necessary for two reasons.
First, the user needs to be able to visualize pieces of his data in several different ways; for
example, as 2D slices along an arbitrary cut plane, and as 1D or 2D graphs along arbitrary
cut lines or planes. Second, a programmer needs to be able to get the pieces of a dataset
that are most convenient for his new tools; for example, a routine to display a projection of
the data would most naturally operate on 1D subsets of the data.

There are two different meanings to extracting values from a dataset: collecting atomic
values from subsets of the dataset’s domain, and getting individual numbers (or other values)
out of atomic values when these are themselves structured types.

At the most basic level of subset extraction, it must be possible to extract a single value
from a dataset, given a description of where it is to come from (i.e., its coordinates, or its array
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index). In principle, this is enough: it would be possible to build all data processing on the
basis of extracting one voxel value at a time. Such procedures would be very inefficient, and
since large-scale data processing is one of our major themes, more efficient data processing
models must be implemented.

In AFNI, there are routines for extracting 3D volumes and 2D slices at any orientation (at a
fixed time), and 1D time series (at a fixed location) from 3D+time dataset. Which routine is
used depends on the processing ‘quantum’—the basic chunk of data that the algorithm requires,
or that the programmer finds convenient to deal with. For example, the AFNI plugin that
computes the Fourier time-to-frequency transform of a 3D+time dataset uses the ‘extract one
1D time series’ model, since no intervoxel computations are needed. AFNI supports only a

limited number of different dataset quanta for its basic rectangular datasets.

Data subsets need to be able to be extracted on geometric criteria. From a volumetric
dataset (types [i] and [ii]), it should be possible to extract nD subsets along any cut direction,
forn =1,2,3. From a curved dataset (type [iii]), it should be possible to extract subsets that
pass through certain types of 3D regions (e.g., the intersection of the surface with a plane or
volume). It should also be possible to extract data from one dataset based on geometrical
criteria from another dataset. (The data selection methods described in §3.d.vi could be
implemented by producing domains that map out the desired data; the application of these
intermediate domains to a given dataset is an example of extracting data from one dataset
based on criteria from another.) These abilities will make it possible for the programmer to
deal with the quantum of data that he needs, and make it possible for the user to display
the data that he believes is relevant.

Extraction of data subsets will usually be done by making copies (perhaps interpolated
on-the-fly to a new resolution). Wrapper utility programs will write new datasets with the
extracted data values and the appropriate domain description.

In AFNI, the user/programmer can choose between 4 different 3D interpolation schemes
when data is resampled to a new resolution. For some types of data (e.g., categorical data
such as tissue type labels) nothing but nearest neighbor resampling makes any sense. For
data types that support addition and scalar multiplication, more sophisticated interpolants
such as linear, cubic, and sinc will be provided. Some types of data may require special
purpose interpolation; for example, if the value is a vector given tissue-type fractions in
a voxel (gray-matter, white-matter, and CSF), then cubic and sinc interpolation applied
component-by-component can produce unrealistic negative values. For this reason, atomic
data type extensions may need to implement their own interpolation methods, or to restrict
the use of the default methods supplied by the system.

Getting individual numbers from structured types is the other level of data extraction.
For example, if a dataset’s atomic type is a vector, the user may wish to make an image of
the first component, or of the magnitude; if the atomic type is ‘diffusion tensor’, an image
formed from the ratio of largest to smallest eigenvalues would be useful for visualizing the
microscopic tissue anisotropy. The extraction operations allowed on each dataset atomic
type must be implemented efficiently, which means that the routines doing the work must
be prepared to operate on arrays of data values, not just a single value at a time. In this
way, a large number of structured data values can be extracted from a dataset at once using
the methods described above, and then sub-values can be extracted from them en masse.
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3.d.v. Data Insertion

Converse to data extraction is the issue of data insertion. This arises when constructing a new
dataset (e.g., the average of some input datasets), or extending an existing one (e.g., adding
a new point in time).

A useful feature in the AFNI plugin utility library is a routine that applies a user-supplied
function to each individual voxel time series in a 3D+time dataset. The input to the user
function is the time series; the output is a single number that gets stored at the corresponding
voxel in a new 3D dataset. It is thus very easy to create a new plugin that processes datasets
in these 1D (time) quanta, since the AFNI utility takes care of all the work of creating the

dataset and filling it with the results, one voxel at a time.

Data insertion utilities will extend this idea by allowing a new dataset to be ‘grown’ in
various ways: not just one voxel at a time, but in 1D, 2D, and 3D chunks as well. Combined
with the extraction routines described above, this will make it easy to add new tools to the
system with a minimum of overhead—the system will deal with the overhead of memory
management and dataset creation in pieces.

3.d.vi. Data Conversion

Like extraction, conversion can be between dataset domain types, and between dataset
atomic value types. Applications: [i] If the cortical surface is extracted from a high-
resolution anatomical dataset, then a dataset defined over a 2D curved domain can be
created. A geometrical mapping between the volume domain and the 2D surface domain
must be implemented to allow functional values created from 3D datasets to be visualized and
processed on the surface. [ii] Converting a 3D+time dataset to a 3D dataset by computing
the mean over time of every voxel is an example of collapsing a domain along a dimension.
Computing the power spectral density (PSD) is an example of converting a 3D+time dataset
into a 3D-+frequency dataset, which has the same dimensionality but a different domain.
[iii] Taking a 3D+frequency dataset from MR imaging spectroscopy and converting it into
a 3D dataset with a vector of estimated chemical concentrations is an example of collapsing
a dataset along 1 dimension and also converting the data values into a new atomic type.

3.d.vii. Data Selection
Data selection refers to | Spatially | Temporally

the methods that spec- Selective | Selective | Description

ify which data is to be No Yes Stimulus condition; this may be quantitative or
extracted, based on the ?uali';'\ative (e.g., all times when the stimulus was
values in the dataset. No Yes Igglgtio%ship of stimulus condition now to other
A key ability will be a stimulus conditions (e.g., stimulus A after stim-
set of tools for the user ulus B)

or programmer to select Yes No Dhataset va(l)u;(;n some range (e.g., percent signal
data subsets for visualiza- No Yes gu?)?egft fesp;onosls and/or physiological measure-
tion or further processing. ments in some range (e.g., response to a forced
The table to the right choice was incorrect)

shows the basic types of Yes No Spatial contiguity to other selected voxels
(i.e., clustering)

selection. Combina.tion No Yes Motion or other artifact detected above some
of selected data regions threshold
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using Boolean operations (i.e., OR, AND) should also be allowed. I don’t see any utility in
combining spatially and temporally selective operations (but I could be convinced otherwise).

4. Execution Model

The issue is how different processing modules, utilities, programs, etc., are invoked, with
their inputs delivered appropriately and their outputs collected for further analysis, display,
or storage. Possible techniques include:

[a] Command line programs—read and write standard-formatted files.
[b] Remotely invocable objects/methods—essentially a collection of subroutines and a
protocol for invoking them (possibly across a network).

[c] API—development of a library of subroutines and a standard interface for invoking
them.

These solutions can be made to work together. In particular, any useful solution will require
development of an API to interface to dataset file I/O (including network transport) and at
least some of the basic dataset operations listed in §3.d.

The problem is getting a large set of different components to work together in ways that are
not foreseen. Some solutions are very dictatorial, which can make everything plug together
nicely at the cost of making all developers adhere to a rigid and complex coding scheme.
Solutions that are easier for the developer (e.g., [a]) may be hard to combine efficiently, or
at all.

4.a. Command Line Programs

Many people will limit themselves to developing this kind of utility. The reason is that it
can be straightforward, provided there is support in the development language for reading,
writing, and accessing standard-formatted dataset structures. One advantage from the point
of view of system integration is that catastrophic failure of a separate program is unlikely
to bring down the processing system. This is definitely not the case for routines that are
linked into a master program. Considering that many programs are and will be written by
inexperienced programmers, being insulated from the worst effects of bad code is a strong
positive.

Command line programs can be invoked by other programs. To aid in this, the inputs
they expect and the outputs they produce must be well-documented. Preferably, this would
be done in a formalized way, so that other software can read how to use the programs from
a specification file. More on this problem of defining interfaces in the next section .. ..

4.b. Remotely Invocable Objects/Methods
There is a number of schemes/standards for invoking functions, possibly executing them on
remote systems:

[i] COM-—a Microsoft-specific solution.
[ii] CORBA—a platform-neutral solution promulgated by an industry consortium.

[iii] XML-RPC and SOAP—more recent and less intricate proposals along the same lines.

The first two are fairly complex, and are used primarily for software executing on homoge-
neous server farms. COM has not been adopted by Unix vendors| and thus is of little interest
to many} CORBA requires implementation of an Object Request Broker (ORB) program
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on the server computers. Fitting a processing module into the CORBA framework requires
a writing an interface description in the CORBA IDL, and writing a wrapper routine to
identify the module to the ORB. ORBs from different vendors don’t talk to each other with
complete fluency.

XML-RPC and SOAP are protocols that implement scaled-down versions of the concepts
in COM and CORBA. They rely on using XML as the data transport mechanism and using
HTTP as the inter-system communication protocol. Their advantages are that running
a Web server is easier than running an ORB, encoding data using XML is machine- and
language-independent, and that the software infrastructure is much smaller and simpler.
Their disadvantages are that both protocols are new, not really complete, and untried. In
addition, there is little room for sophisticated optimization using XML-RPC or SOAP, unlike
with COM or CORBA (which might package up numerous requests to reduce communication
overhead, and would be able to use more efficient intra-CPU execution techniques when a
method is known to reside on the same computer as the program making the call).

For reasons of simplicity, I believe that XML-RPC or SOAP should be considered for
use in neuroimaging software inter-operation. COM is too vendor-specific, and CORBA is
too heavyweight to get working at many sites—most academic neuroimaging sites won’t be
able to get CORBA ORBs working well, in my opinion. For the sake of efficiency, a local
transport mechanism might be added to the TCP/IP mechanism (e.g., using files or shared
mMemory).

One thing that is good about CORBA is the IDL. This provides a language-neutral way to
specify the data that a method expects to receive and that which it will return. Something
like this must be adopted to enable interoperability of many different software tools. Perhaps
each program/module would ‘publish’ a template dataset that would specify what kind of
file (or other parameter) is acceptable for each input.

Note that a command line program could be invoked by another program (even remotely)
using any of the above protocols, if the proper wrapper is created.

4.c. API—Application Programming Interface

Providing an API will be necessary, since just having a specification for how datasets are
stored in files isn’t enough. COM and CORBA provide APIs—AKA language-bindings—as
well as communication services (XML-RPC and SOAP do not yet have APIs). It is possible
to go farther than this, and to provide a rich and well-documented library of functions. Of
course, such an project is a major effort. One major difficulty is that using an API requires
the programmer to adhere to standards for internal structuring of his data. This will be very
hard to coordinate across academic sites—harder than a dataset file storage standard, since
that is really a peripheral issue, whereas data structures are at the heart of the programming
effort.

5. User Interface
The interface that the user sees is important since it affects how he thinks about his data and
tasks, and affects how easily the system is to learn. Alternative interface designs include

[a] A custom GUI for each program/module.
[b] Plugins—a way to add subroutines and user interface elements to a master program.
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[ c] Plugouts—development of a protocol for programs to talk to each other through
some I/O channel (e.g., TCP/IP).

[d] A processing language, in which datasets and processing tools are given named, and
actions are ordered by typing command strings (or composing them from menus).

In addition to dataset information (as outlined in §2 [p.g]]), a user interface typically stores
extra information about the user interaction. For example:

AFNI maintains the idea of a ‘focus point’—all the various image windows can be locked to

this point, so that the user is looking at the same location in all views.

A complex program will have many such user state variables. An interactive system must
have a way of communicating this type of information among modules, as well as sending
dataset information around. When the user changes some variable, modules whose func-
tioning depends on this variable need to be informed. The paradigm that has developed for
dealing with this kind of situation is event-driven programming. Modules register the events
(usually consequences of user actions) that they need to be informed about with a master
function. The master function—the ‘event-loop’—invokes each module when the appropriate
conditions arise.

To add truly interactive capabilities to a program, the new modules must fit into the
event-loop interface/protocol of the parent code. For this to be possible, the internal user
state variables of the parent program need to be documented and augmentable. For multiple
independent developers to agree on this type of cooperation between program units usually
requires some external impetus. This can be provided by a vendor or vendor consortium, or
possibly by a large customer or an independent standards body.

Batch and Interactive Modes

Some calculations will always be too lengthy to be implemented interactively. Other cal-
culations may be rapid individually, but will have to be executed repeatedly (e.g., blurring
a collection of datasets, each of which takes 5 seconds). For these purposes, as well as for
documenting the processing trail, the ability to run groups of operations in batch mode is
needed. On the other hand, interaction is very useful when learning a system, and when
exploring the effects of changing processing parameters or methods.

It is thus desirable to have all processing tools be available in both interactive and batch
modes.

This is currently not the case in AFNI. There is a large collection of batch mode programs,
which are run from the command line (or script files). Then there is the collection of tools
within AFNTI itself, which are controlled by mouse clicks. For example, to write a transformed
functional dataset to disk after the Talairach transformation has been defined on its anatomical
‘master’ requires selecting it from a menu and then pressing the button. This takes 5-50
seconds per 3D sub-brick (depending on the CPU speed). Because it was tedious to do a large
collection of datasets this way, AFNI was extended to allow the selection of multiple datasets
for transformation. In essence, this is a hybrid interactive-batch computation, in which the
choice of processing is done with a graphical interface, and then the lengthy computations are
done without further user input. (Recently, a batch program to do the same thing was finally

added, so now it is possible to carry out this calculation purely from the command line.)
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5.a. Custom GUIs

Some functionality will require development of a custom GUI. Portability and interoperabil-
ity in such a situation is very hard to ensure. Two possible solutions are

[i] Mandating a standard for GUIs (e.g., in Java).
[ii] Developing an abstract model for GUIs, with only the actual graphical implementa-
tion varying with platform.
Both of these are fraught with potential conflicts between developer groups.

Wrapper GUIs can be developed for command line programs. These are mostly conve-
niences, since the programs will not interact with the user state variables of a truly user-
friendly program.

5.b. Plugins—Tight Integration into a Master Program

As T think of it, a plugin is a module that is added to a master program that can directly
access the master’s internal data structures and subroutines. This makes it possible for the
master and plugins to share information that is user interface oriented; for example:

An AFNI user can draw a 3D ROI on 2D sections in one plugin. As each drawing stroke is
completed, the 3D rendering plugin can be notified and update the 3D display of the brain
volume with the ROI superimposed. The two plugins have access to the same datasets, and

communicate through AFNI plugin library routines and data structures.

Such close-knit cooperation requires that the programmer adhere to a strict set of rules so
that the master program is not corrupted. If the full advantage of the plugin integration is
to be used, the programmer must be fairly advanced and the master program must provide
a large number of services to the plugins.

5.c. Plugouts*—Intermodule Communication Protocol

This is a way to provide some of the same user interface integration as plugins, but with a
more arms-length approach. A plugout is simply another program running independently,
which communicates with the master GUI using some agreed-upon protocol. The data
sent down the plugout channel can include user state information as well as datasets. The
programs communicating do not have to share the same actual GUI, but must share some
common abstractions (e.g., the focus point). Agreeing on these abstractions and on the com-
munications protocol are the points to overcome before this approach can become widespread.

One advantage of this approach is that it is relatively language-neutral. As long as a pro-
gramming language supports the communication method underlying the plugout protocol,
modules written in the language can be integrated into the user interface.

AFNI contains a rudimentary plugout protocol that allows it to exchange the coordinates of
the focus point with other applications. The underlying channel is a TCP/IP socket. One
plugout application developed at MCW was written in Matlab.

5.d. A Processing Language
This concept is really aimed more at the batch mode of operation. The main objection is

to the creation of yet another language. It isn’t clear that a strong advantage is gained over
simpler use of scripting languages (shells, Perl, ...) with command line programs.
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6. Judgments
If it’s not clear by now, I think that the most important issue is data interoperability. This
should be addressed by the crafting of an extensible format as discussed in §3 [p.f]. Design
and implementation of some support software should go along with this effort. Not all the
structures described in §2 [p.P] need to be developed at once, but the format should be built
with them in mind.

To a large extent, a standard neuroimaging dataset format will also solve the issue of
executable interoperability for command line programs, especially if a simple XML-RPC or
SOAP server program is written to facilitate remote execution.

For closer interoperability, development of a plugout protocol seems like the best solution
to me. This will require a detailed planning meeting (or several) between the principal
developers, the drafting of clear documentation, and development of support code. Passing
data through XML seems like a good idea here, as well. Deciding on the user interface
abstraction elements to be passed around will be the hard part.

7. Surfing Targets
Some Web sites to play with:

XML: http://www.xml.org/
http://www.xml.com/pub
XSIL: http://www.cacr.caltech.edu/SDA/xsil/
XML-RPC: http://www.xmlrpc.com/
SOAP: http://www.xml.com/pub/2000/02/09/feature/index.html

http://www.omg.org/xml/hpcwire.html
http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp

CORBA: http://www.omg.org/

COM: http://www.microsoft.com/com/

Base64: http://community.roxen.com/developers/idocs/rfc/rfc1341.html
VRML: http://www.web3d.org/vrml/vrml.htm

AFNI: http://varda.biophysics.mcw.edu/ cox/index.html
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