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ABBREVIATIONS:

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox
FMRI: functional magnetic resonance imaging
DTI: diffusion tensor imaging
LFF: low frequency fluctuations
ALFF: amplitude of low frequency fluctuations
fALFF: fractional amplitude of low frequency fluctuations
RSFA: resting state functional activity
FA: fractional anisotropy
MD: mean diffusivity
RD: radial diffusivity
DT: diffusion tensor
ReHo: regional homogeneity
WM: white matter
GM: gray matter
FC: functional connectivity
ROI: region of interest
DWI: diffusion-weighted imaging
ICA: independent component analysis
RSFC: resting state functional connectivity
RSN: resting state network
BOLD: blood oxygen-level dependent
FACT: fiber assessment by continuous tracking
FACTID: FACT including diagonals
TB-: task based-
RS-: resting state-
FCP: Functional Connectome Project
SEM: structural equation modeling 
VAR: vector autoregressive 
SVAR: structural vector auto-regressive
DCM: dynamic causal modelling
sLDSf: switching linear dynamic system for fMRI
HARDI: high angular resolution diffusion imaging 
DSI: diffusion spectrum imaging 
ODF: orientation distribution functions
SNR: signal-to-noise ratio
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ABSTRACT:

We present a suite of software tools for facilitating the combination of FMRI and diffusion-based 
tractography from a network-focused point of view. The programs have been designed for 
investigating functionally-derived GM networks and related structural WM networks. The 
software comprises the Functional And Tractographic Connectivity Analysis Toolbox (FATCAT), 
now freely distributed with AFNI. This toolbox supports common file formats and has been 
designed to integrate as easily as possible with existing standard FMRI pipelines and diffusion 
software, such as AFNI, FSL and TrackVis. The programs are efficient, run by commandline for 
facilitating group processing and produce several visualizable outputs.  Here, we present the 
programs and their underlying methods, and we also provide a test example of resting state 
FMRI analysis combined with tractography.  Tractography results are compared with existing 
methods, showing significantly reduced runtime and generally similar connectivity, but with 
important differences such as more circumscribed tract regions and a more physiologically 
identifiable paths produced between several ROI pairs. Currently, FATCAT uses only DT-based 
tractography (one direction per voxel), but higher order models will soon be included. 
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1.  INTRODUCTION

Over the past decade, brain connectivity has been studied in several contexts across 
neuroimaging modalities, using a wide array of tools for both qualitative and quantitative 
investigation. Functional MRI (FMRI) [Ogawa et al., 1990; Kwong et al., 1992] has been used 
successfully to determine the location and extent of distinct brain regions that are organized into 
networks for performing cognitive functions.  In functional connectivity, both task-based (TB-) 
and resting state (RS-) FMRI have been used to identify and model interactions within regions 
forming several gray matter (GM) networks in the brain. RS-FMRI in particular permits the 
examination of several networks from a single scan session [Biswal et al., 1995; Lowe et al., 
1998; Xiong et al., 1999].  In contrast, diffusion-weighted (DW) imaging methods have allowed 
for the characterization of local white matter (WM) properties based on how anatomical 
structures affect the random motion of molecules [Basser et al., 1994; Basser, 1995; Le Bihan 
1995].  Using this information, tractographic techniques have reproduced several major 
pathways of WM architecture such as the corpus callosum, cingulate fibers, corona radiata, etc.  
[Mori et al., 1999; Conturo et al., 1999; Basser et al., 2000; Catani et al., 2002; Hagmann et al., 
2003].

While both modalities have been used to elucidate neural differences between healthy controls 
and various cases of pathology, anatomical and functional data are often examined in separation, 
even though functional organization is linked to the anatomical one and vice versa [Simoyan and 
Ludlow, 2011]. More recently the emphasis on combining these complementary notions of 
connectivity has grown [Staempfli et al. 2008; Jbadbi & Johansen-Berg, 2011; Le Bihan & 
Johansen-Berg 2012], with the goal of providing a better insight into the organization and 
function of the brain. 

Here, we present a suite of software tools for facilitating the combination of FMRI and diffusion-
based tractography, called the Functional And Tractographic Connectivity Analysis Toolbox 
(FATCAT).  The point of these tools is to assist in studying both functional networks and their 
associated WM pathways with the regions of interest (ROIs) forming each network delineated, to 
the greatest degree possible, by each individual's own data. Succinctly, the tools allow for the 
delineation of GM ROIs from common FMRI parameters, such as correlation, general linear 
modeling or independent component analysis. An efficient probabilistic tractography algorithm 
then identifies likely WM regions connecting these GM ROIs, and produces summary properties 
of these WM regions.derived from the diffusion weighted images.

We discuss the methodology of the tools, highlighting technical and novel aspects.  Human data 
sets are used to demonstrate how the various components of FATCAT can be used for associating 
functional with structural connectivity measures. This toolbox was designed to integrate as easily 
as possible with existing standard FMRI and diffusion imaging software such as AFNI, FSL and 
TrackVis [Cox, 1996; Smith et al., 2004; Wang et al., 2007]. FATCAT is now freely available in 
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the AFNI distribution along with demo data.  

The organization of this paper is as follows. In Sec. 2, typical FMRI and DTI processing 
procedures and parameters are briefly reviewed.  In Sec. 3, the major components of the toolbox 
are described, emphasizing both the general purpose of each as well as technical details of 
calculation.  In Sec. 4, examples of FATCAT usage and implementation are given for human data 
sets; tractographic methods in particular are emphasized. Finally, in Sec. 5, the general uses of 
FATCAT are discussed, along with potential developments for future versions, including higher-
order diffusion models for tractography.  

2.  BACKGROUND

We first present a brief background of standard FMRI and DTI methodologies, focusing on the 
quantities often calculated in each for analysis and comparison. Much more expansive reviews 
can be found, e.g., [Huettel et al. 2009; Kingsley 2006; Le Bihan & Johansen-Berg 2012].  Then, 
we show how the features of FATCAT may be used to efficiently combine the complementary 
measures of FMRI and tractography. In keeping with AFNI’s design, FATCAT provides 
mechanisms of processing, with a wide range of application and no single, prescribed pipeline. 
Users will need to determine how to best combine the tools for the purposes of testing their 
hypotheses, depending on experimental design, acquired data, overall study goals, etc. While we 
present FATCAT for approaches that were considered to be most common, its design allows for a 
great deal of flexibility and generality in use.  

FMRI and associated quantities

As one goal of FMRI studies is to examine functional activation and/ or connectivity (FC) across 
the brain, with the underlying neuronal firing of interest mediated via the blood oxygenation 
level dependent (BOLD) response that is actually measured. Traditional TB-FMRI studies 
identify regions that exhibit a significant BOLD response to a specific stimulus and model their 
interactions.  Alternatively, patterns of BOLD temporal fluctuations across the brain can be 
studied in the absence of a designated task during RS-FMRI studies. RS-FMRI allows for the 
concurrent study of several networks based on inter-regional covariance in low frequency 
fluctuation (LFF) around the range of 0.01-0.1 Hz.  Commonly studied resting state networks 
(RSNs) include the sensorimotor, visual, default mode and executive control networks 
[Beckmann et al., 2005; Damoiseaux et al., 2006; Raichle et al., 2001; Seeley et al., 2007].  

From TB-FMRI a variety of inter-regional functional connectivity measures can be derived such 
as with structural equation modeling (SEM) [McIntosh and Gonzalez-Lima, 1994], vector 
autoregressive (VAR) modeling [Goebel et al., 2003], structural vector auto-regressive (SVAR) 
analysis [Chen et al, 2011], psychophysiological interactions (PPI) [Friston et al., 1997], 
dynamic causal modelling (DCM) [Friston et al., 2003], switching linear dynamic system for 
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fMRI (sLDSf) [Smith et al., 2011]. While the models underlying these varied approaches differ 
considerably, the result is a measure of connectedness between regions. In RS-FMRI studies, a 
common approach is to use the standard (Pearson) correlation coefficient as a proxy for 
connectivity between regions after accounting for a variety of nuisance sources.  Another 
approach uses independent component analysis (ICA), which estimates (spatially or temporally) 
independent maps [McKeown et al., 1998; Calhoun et al., 2002; Kiviniemi et al., 2003]. Spatial 
ICA (SICA) produces several independent component (IC) spatial maps of Z-scores of 
correspondence to a representative time series for each component. As might be expected, each 
of the aforementioned methods offers advantages and certain disadvantages in analysis, and even 
a minor exposition is beyond the scope of this paper. Insofar as the toolbox is concerned, these 
functional measures represent features of a set of GM ROIs that are to be associated with 
candidate WM regions that can reasonably be connecting them anatomically, and the choice of 
FMRI analysis is essentially independent of the tractography.

In addition to the tractography tools, several FMRI regional parameters can be estimated with 
programs within FATCAT, predominantly for resting state studies.  While not connectivity 
measures per se, these measures have been found useful in describing resting state functional 
connectivity (RSFC). For example, ReHo (regional homogeneity, another term for the previously 
known Kendall's coefficient of concordance, KCC [Kendall & Babington Smith, 1939]) can be 
calculated from the processed time series [Zang et al., 2004].  This parameter quantifies the 
similarity of a time series in groups of neighboring voxels or ROIs. Other descriptors of resting 
state networks (RSNs) in studies of healthy controls and pathological cases include: ALFF (the 
amplitude of LFFs) [Zang et al., 2007], which is sum of LFF spectral amplitudes of the Fourier-
transformed time series; fALFF (the fractional ALFF), in which the ALFF is scaled by the sum 
of the time series' amplitudes across the full spectrum [Zou et al., 2008]; and RSFA (resting state 
functional activity), the standard deviation of the LFF-filtered time series [Kannurpatti & Biswal, 
2008].  

DTI, associated quantities and tractography

As with FMRI, several categories of DW scanning exist, encompassing different levels of 
structural information, model assumptions, reliability and power. In all cases the relative 
magnitude of diffusion along a given orientation is used to gauge the amount of local structure 
hindering the journey of hydrogen in water.   

DTI utilizes the simplest framework, in which the local diffusion properties are represented by a 
diffusion tensor (DT), D, having six independent elements.  Due to the model assumptions of a 
positive, semi-definite tensor, D corresponds to the surface of an ellipsoid aligned along the 
greatest orientation of diffusion in a voxel.  At the cost of more DW scans and greater DW-
magnitude,  higher order models such as high angular resolution diffusion imaging (HARDI), Q-
ball imaging, diffusion spectrum imaging (DSI), orientation distribution functions (ODFs), and 
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others, have the advantage of being able to characterize several dominant directions of diffusion 
[Tuch et al., 2002; Tuch, 2004; Wedeen et al., 2005; Anderson, 2005; Ozarslan et al., 2006]. In 
the current version of FATCAT, only DTI-based tractography (i.e., one main diffusion direction 
per voxel) is supported, although multi-directional transport is planned for the next release.  

In DTI, the number of DW measures along distinct gradients is typically in a range of M=20-30 
with a few repetitions of the reference, non-DW measure, and sometimes 2-3 repetitions of a 
gradient sequence are performed to increase the signal to noise ratio (SNR). From these several 
standard parameters of interest may be calculated to characterize important features of the 
diffusion ellipsoid. The orientation and magnitude of the ellipsoid's semiaxes are respectively 
characterized by the DT's three, mutually orthogonal eigenvectors and the three eigenvalues. 
Thus, the first eigenvector, e1, provides the spatial orientation of the major diffusion direction, 
whose magnitude is characterized by the first eigenvalue, L1 (by convention, eigenvalues appear 
in descending order).  The average diffusivity in the plane perpendicular to e1 is given by the 
radial diffusivity, RD=(L2+L3)/2, the average of the second and third eigenvalues. The relative 
shape of the ellipsoid is generally quantified by the fractional anisotropy (FA), a normalized 
standard deviation of the eigenvalues ranging between between 0 for isotropy (spherical 
diffusion) and 1 for maximal anisotropy (elongated diffusion). The mean diffusivity, 
MD=(L1+L2+L3)/3, relates to the size of the ellipsoid.  

In the simplest interpretation, ellipsoids of high FA characterize voxels with major, underlying 
tract bundles, along which e1 is aligned. RD may then characterize the relative amounts of cross-
structure. Tractography algorithms make use of such associations to estimate the locations of 
extended structures across many voxels. For deterministic tractography, seed points start in 
voxels above a threshold FA value and then propagate (using, for example, the local first 
eigenvector, Euler integration of vector fields or trajectory deflecting schemes [Basser et al., 
2000; Conturo et al., 1999; Mori et al. 1999; Lazar et al., 2003; Weinstein et al., 1999; Westin et 
al., 1999]) until a stop criterion is reached.  Tracts passing through selected ROIs of interest are 
stored, along with their voxel locations.  With probabilistic tractography, the variances of FA and 
e1 estimates are taken into account, and many iterations of whole brain tractography are run with 
voxel parameters perturbed at each instance according to estimated parameter uncertainties.  The 
resulting maps show likely locations of WM connecting the target ROIs. In FATCAT, both 
deterministic and probabilistic tractography utilize the FACTID algorithm, an efficient form of 
streamline tractography validated in a series of tests on both human data and a standard phantom 
[Taylor et al., 2012].  

3.  DESIGN AND METHODS OF FATCAT

A schematic diagram showing stages for combining FMRI (dark gray boxes) and DW-
tractographic (lighter gray boxes) analyses is shown in Fig. 1. The functional data may be either 
TB or RS, with steps specifically for processing the latter shown with dashed lines. Dot-dashed 
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lines show alternate side-analyses for the DW data. The roles for the main tools in FATCAT are 
highlighted (bold, blue text), and general steps to be performed with existing software are given, 
as well (italic text).  For example, the first set of steps after acquiring either FMRI or DW data 
typically involves some pipeline of "preprocessing."  This may include motion correction and 
registration of volumes, spatial smoothing and despiking (or censoring) of "bad" data points, 
among other steps.  

Functional processing

Standard goals for functional processing include, but are not limited to, localizing regions of 
activity, quantifying local properties and measuring connective properties among networks of 
these ROIs.  All of these objectives are realizable for both TB- and RS-FMRI using tools in 
FATCAT, though we note that several of the calculable ROI-based quantities have typically been 
used more commonly for the latter studies.  In terms of localizing functional ROIs and defining 
targets for tractography, however, both TB- and RS-FMRI data sets are commensurately useful.

3dRSFC is a program for estimating a variety of common RSFC parameters: ALFF, fALFF, 
RSFA and fRSFA (a quantity introduced here, the RSFA scaled by the standard deviation of the 
pre-LFF filtered time series). Since parameters such as fALFF and fRSFA are drawn from both 
the LFF and unfiltered series, one must be sure that the spectral features of both are calculated 
after identical processing. 3dRSFC also combines preprocessing features of AFNI's 3dBandpass 
(e.g., detrending, regressing, despiking, filtering and spatial smoothing) with parameter 
estimation to ensure that both LFF and unfiltered time series have analogous processing for 
comparisons of spectral amplitude.  The outputs of this program are a data set of fully processed 
LFF time series and associated wholebrain maps of RSFC parameters.  

3dMatch takes two sets of volumes and pairs them in a manner that maximizes the match 
between volume singletons. This may be used to associate and order ICA results from an 
individual with those of a standard reference set, since ICA results are unordered, in general.  For 
two sets A and B, similarity is weighted towards higher intensity voxels with match being 
estimated as the correlation of volumes A'=sign(A)*A2 with B'=sign(B)*B2. There are options to 
set ceiling and floor values for the volumes, and one may output Dice coefficients of comparison 
[Dice, 1945] between masks of thresholded volumes, as well. 

3dReHo computes regional homogeneity (Kendall's coefficient of concordance) on a voxelwise 
or on a regionwise basis. In the voxelwise case, neighborhoods may be selected around each 
individual voxel (i.e., neighborhoods of 6, 19 or 27), or may be formed from extended spheroidal 
and ellipsoidal shapes; the latter may be useful in particular in the case of anisotropic voxel 
dimensions. The ReHo parameter has been used in both TB- and RS-FMRI studies [Zang et al., 
2004; He et al., 2007]. Additionally, the Friedman chi-square of the coefficient is estimated.  
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3dROIMaker is used to parcellate wholebrain FC maps of statistical measures into distinct GM 
networks by thresholding and spatial clustering.  Individual ROIs are labeled with distinct 
integers, which can be made uniform across a group by supplying an approximate reference map. 
ROIs can be thresholded by volume to suppress clusters formed by chance (for example, using 
3dClustSim in AFNI).  Additionally, a reference WM image (such as calculated by anatomical 
image segmentation or by FA map estimated in the DW processing pipeline, to be discussed 
below) can be used as a reference to trim away voxels which may have large partial voluming. 
Thus, the first result of using 3dROIMaker is a labeled map (or set of maps, if sets of volumes 
are provided) of GM ROIs considered to form a FC network.  

The second main output of 3dROIMaker is relevant for complementing the FC study with that of 
tractography.  One would like to be able to find regions of WM which are related to each GM 
ROI and which provide physical connections between ROI pairs. The (probabilistic) 
tractography to be used to estimate these pathways is described below, but one basic requirement 
will be that the "target" ROIs input into the algorithm have some junction with WM voxels in 
order to search for intersecting fibers. Without such an interface it is difficult to commence or 
terminate tracts in regions of GM because the FA there is quite low (i.e., typically below tract 
propagation thresholds). Previous studies for producing targets have included inserting sizable 
spheres or uniformly inflating the ROI with the aim of reaching WM, both of which may 
severely overexpand into WM not associated with the GM. In 3dROIMaker ROI inflation is also 
employed; however, the expansion of an ROI is halted wherever it reaches WM labeled voxels in 
the reference image, reducing one likely category of errors. 

Finally, standard Pearson correlation of mean time series between all pairs of the GM ROIs can 
be calculated using 3dNetCorr.  For each network, a correlation matrix is returned, with the 
option to also return a matrix of associated Z-scores, as well.  Such matrices are standard 
quantities of functional connectivity in networks.

DW processing

The goal for this line of processing is to resolve primary diffusion paths through WM, with an 
eye towards identifying the likely location of WM associated with the functionally-defined GM 
ROIs using DW data. The main mechanism for doing so is probabilistic tractography, which 
utilizes the uncertainty in the estimated DT ellipsoids and Monte Carlo simulations of 
wholebrain tractography to find likely WM voxels associated with individual and pairs of 
assigned targets [Parker et al., 2003; Behrens et al., 2003]. Again, the stages of processing are 
shown in Fig. 1.  

Typically, the primary feature of preprocessing for DW images is volume registration, the 
attempted correction for eddy currents and sequence-induced distortions and the elimination of 
drop-out or error-dominated slices. Examples of existing software and pipelines for these aspects 
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include TORTOISE, RESTORE, FSL Diffusion Toolbox [Pierpaoli et al., 2010; Chang et al., 
2005; Smith et al., 2004]. Realtime motion correction, performed during the acquisition of data, 
may also be used and  offers advantages over post-processing corrections as seen in measured 
changes in ellipsoid parameter distributions, for example [Benner et al., 2011; Kober et al., 2012; 
Alhamud et al., 2012].  After preprocessing, the diffusion ellipsoids and parameters (particularly 
FA and e1 for tractography and MD, RD and L1 for statistical purposes) are easily calculated, 
with nonlinear fitting methods providing greater accuracy.  These are available in most standard 
analysis packages (e.g., FSL-dtifit and AFNI's 3dDWItoDT were used here).  

With tensors estimated, a useful first step in tractographic analysis is utilizing the deterministic 
method to visualize the data.  3dTrackID estimates tracts across the whole brain and between 
pairs of ROIs (using AND or OR logic).  Tracts are generated using the FACTID (fiber 
assessment by continuous tracking including diagonals) algorithm, an improvement of the earlier 
FACT [Mori et al., 1999].  FACTID is a streamline algorithm that propagates tracts through each 
voxel along the local e1 orientation, but includes a test at edges and corners for continuing along 
a diagonal trajectory.  The inclusion of this simple diagonal test has been shown to reduce 
sensitivity to noise and coordinate axes biases, without the need for data smoothing and while 
maintaining efficient propagation [Taylor et al., 2012]. Standard options for tract continuation 
can be selected: FA remaining above a certain threshold (e.g., >0.2), and angle between e1 in 
successive voxels being below a certain value (e.g., <60deg).  Additionally, instead of an FA 
criterion, one may use a separately generated WM mask, such from segmentation of an 
anatomical image, to constrain tract propagation. 

Basic statistics of the region though which numerical tracts pass are automatically calculated: 
mean and standard deviation of FA, MD, RD and L1, as well as mean length and numbers of 
tracts.  The output tracts can be mapped to other coordinate spaces using map_TrackID, a 
procedure which can be useful for multisubject comparisons in standard space.  Results are 
visualizable in 2D form, highlighting voxels through which tracts have passed, as well as in 3D 
projections using TrackVis [] or SUMA [Saad et al., 2004; Saad et al. 2012].

Due to the nature of MRI scanning, all parameter estimates have noise and errors incorporated 
into their final values. It is useful therefore to quantify confidence intervals of uncertainty, 
particularly for performing probabilistic tractography. The next subsections describe in detail the 
technical aspects of these procedures in FATCAT.

Uncertainty estimates with jackknife resampling

In the FACTID algorithm the main DT parameters of interest are FA and the first eigenvector, 
since these respectively determine the proxy location of WM and the orientation of propagating 
tracks. In particular, the vector e1 has two degrees of freedom for varying, so that two confidence 
intervals are required;  its possible motion is accounted for by estimating how far it could move 
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along the mutually orthogonal e2 and e3 axes. In 3dDWUncert, the uncertainty estimates for FA 
and e1 are calculated using jackknife resampling [Efron, 1982], which is efficient both in terms 
of scan time and computation.  Jackknife resampling works by analyzing subsets of a data set, 
from which it builds a theoretical pseudo-population (see below for more details).  This method 
is broadly applicable to existing scan protocols and, importantly, does not require repeated 
acquisitions as, for example, the related bootstrap methods.

In order to obtain confidence estimates, Monte Carlo simulations have been used in conjunction 
with nonparametric resampling techniques (e.g., see [Pajevic & Basser, 2003]), such as the 
bootstrap [Davison & Hinkley, 1999; Jones, 2003] and direct variants [Chung et al., 2006; 
Whitcher et al., 2008].  In general, statistical resampling is used to investigate a given parameter 
of interest θ, by generating a distribution of estimates, θ*

i, from which it is possible to calculate 
an estimator θ', as well as confidence intervals, standard errors, etc.  In the case of the jackknife 
technique, this is done using randomly selected (without replacement) subsets of measures to 
calculate each θ*

i. Therefore, from a single original data set, Y={y1,…, yM}, a (unordered) 
jackknife sample is created, Y’={y’1,…, y’MJ}, by omitting d values such that MJ=M-d, where d is 
typically much smaller than M.  There are NY’=binom(M, MJ) distinct subsets of variables, and 
the process is repeated a large number of times with the MJ values randomly selected at each 
iteration.  

This process is illustrated schematically for  diffusion data in Fig. 2. In the figure (1), M=12 is 
the number of initial DW measures, shown as gradient directions through an ellipsoid. From 
these, (1b) the non-resampled DT estimator, D', can be calculated, as well as estimators of 
associated parameters such as FA', e'1, etc. To perform jackknifing (2), NJ subsets of MJ =8 
measures at a time are randomly selected (bold gradients). Then the DT of each jackknifed 
measure is estimated (3), from which  distributions of parameter values of interest are calculated 
(4).  In this case, the parameters are the FA and the difference between the jackknifed tensor's 
first eigenvector that that of the un-jackknifed samples, projected along both the latter's e2 and e3: 
mathematically, Δe*1,2=(e'1- e*1) · e'2 and similarly for Δe*1,3.  Finally, the bias and confidence 
interval of the non-resampled DT estimators are obtained from the jackknifed parameter 
distributions (5). 

The confidence intervals are strictly delimited by percentile locations of the distributions or, in 
the common case of Gaussian distributions, equivalently by known combinations of mean and 
standard deviation. In FATCAT, the latter, faster approach is used in the uncertainty estimates, as, 
at SNRs and M values of practical interest, jackknife distributions are well suited to Gaussian 
approximation. From Monte Carlo simulations of DW data including Rician noise, a ratio of 
subsample to sample size of MJ/M≈0.7 generally yielded reasonable estimates of 95% confidence 
intervals for a large range of SNR and so is used in 3dDWUncert.  It should be noted that 
3dProbTrackID assumes a minimum amount of uncertainty in the tensor parameters: for e1, 
approx. 3deg toward either e2 or e3, and for FA, approx. 0.015.
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Probabilistic tractography

With the combination of estimated DTI parameters, the uncertainty measures of 3dDWUncert 
and the tractography-ready maps of target ROIs from 3dROIMaker, probabilistic tractography 
can be performed.  This is done using a large number of Monte Carlo iterations of wholebrain 
(deterministic) tractography estimations using FACTID. With each iteration, FA and e1 direction 
are perturbed at each voxel per the uncertainty estimates and whole brain tractography carried 
out. Locations of tracts which intersect any pairs of ROIs are recorded. For NMC iterations with 
Nseed track seeds per voxel,  locations are recorded where more than  ftrNMCNseed tracks passed, 
where ftr is a user-defined fractional threshold (tracks passing through individual ROIs are 
recorded separately, as well.).  The set of all voxels connecting a pair of target (expanded GM) 
ROIs forms a WM ROI. 

In several existing algorithms, probabilistic tractography is used to estimate the likelihood that a 
given target voxel is physically connected to each voxel in the brain, generally as a scaled value 
of the number of tracts connecting two locations.  In FATCAT, however, the tractography results 
are structured for finding voxels which are likely in the WM connecting given target ROIs; the 
number of tracts through a voxel is used as an approximate gauge of the likelihood of including 
the voxel in the WM ROI.  This latter interpretation avoids the difficulties of the former in trying 
to interpret the relative number of numerically reconstructed tracts as a proxy for some 
physiological “strength of structural connectivity,” as well as question of how to compare 
relative strengths between ROIs of different sizes or subjects.  Moreover, the WM ROIs 
themselves are useful outputs, whose structural properties may be probed using DTI quantities 
therein or mapping the ROIs to anatomical space for studying T1 or proton density values, for 
example. (It should be noted, though, that the number of tracks between ROIs is still recorded 
and output as informational value for the user.)

Statistics of DTI parameters per connective WM ROI are automatically calculated, similar to the 
3dTrackID case above (i.e., mean and standard deviation of FA, track number, etc.).  For a 
network of NROI GM ROIs, this results in a symmetric NROI x NROI matrix of values, whose i,jth 
values are the WM properties connecting ROIs i and j and whose diagonal values are for any 
tracks through each individual ROI.  This matrix is the same size as a functional connectivity 
matrix derived for the same network of GM ROIs.

4.  EXAMPLE SUBJECT ANALYSIS AND RESULTS

In this section, we provide an example case of combining RS-FMRI and DTI-tractography 
analyses using FATCAT.  For comparison of tractography results, equivalent parts of the FSL-
package Diffusion Toolbox software, dtifit, bedpostX and probtrackX (described below), were 
also run.  We first describe the preprocessing steps for the data sets, the use of ICA with RS-
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FMRI data to generate networks of ROIs for tractography, and conclude with the tractography 
results and comparisons.

Preprocessing

The data for this example was collected from a control subject as part of a larger study, with 
participants from the university campuses in Taipei. Participants were enrolled after providing 
written, informed consent. The study was approved by the local Ethics Committee and conducted 
in accordance with the Declaration of Helsinki.

Data is shown from one healthy subject (healthy control male, 24 years old). All MR images 
were carried out on a 3T Trio MR scanner (Siemens, Germany) equipped with a 32-channel 
phased-array head coil. A twice refocused spin-echo echo planar imaging (EPI) sequence was 
used for DWI acquisition. Three b=0 and 30 DW images with b = 1000 s/mm2 were acquired for 
each DWI set, with imaging parameters: TR=8800 ms, TE=101 ms, FOV= 24x24 cm, BW=1325 
Hz/pixel and parallel acquisition (GRAPPA) with 2-fold acceleration. A T1-weighted MPRAGE 
scan was acquired with 256x256x192 voxels (1mm isotropic resolution). A resting state scan was 
acquired: 200 volumes (TR/TE=2500/30ms) with FOV=28.4x28.4cm using 3.4x3.4x3mm 
voxels.

Standard preprocessing steps were implemented using AFNI and FSL. Resting state data were 
processed following Biswal et al. (2010): first, motion correction with respect to the mean image 
was performed; time series from WM and cerebrospinal fluid (CSF) were regressed out, as well 
as size motion parameters (maximum motion in any direction was 0.83mm); spatial smoothing 
with a 6mm FWHM (full-width at half maximum) Gaussian blur was applied; the LFF range for 
temporal filtering was 0.01-0.1Hz; mean, linear and quadratic trends were removed; and the first 
five time points were removed to avoid pre-steady state signal.  For the DWIs, we used FSL-
eddy_correct, an affine registration (to the b=0 image) in order to correct for aspects of motion 
and gradient-induced distortions.  

FMRI and DTI Analyses

After preprocessing, spatial ICA was performed in native functional space with FSL-melodic 
(http://fmrib.ox.ac.uk/analysis/research/melodic/), selecting decomposition into 20 ICs, a typical 
dimensionality in RS-FMRI studies.  From the resulting components, four were chosen for 
tractography analysis because of their wide-brain coverage.  The Z-score maps of these 
components were mapped to DW-native space using an affine transformation via the subject's 
T1-anatomical imageand are shown in Fig. 3 (thresholded at Z>0; left column of each panel).  
Network identifications were made by using 3dMatch in comparison with the 20 group ICs from 
the multicenter Functional Connectome Project (FCP) study [Biswal et al., 2010].  The IC-
defined networks are shown in Fig. 3 (left columns of each panel), with the following 
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associations (i.e., all ICs here show significant but not identical overlap with the FCP networks, 
due for example, to different splitting of components): A) FCP 6, default mode network (DMN); 
B) FCP 20, containing the left and right (L-R) inferior and superior parietal lobules, middle 
temporal gyri and the medial and medial frontal gyri; C) FCP 11, the frontoparietal network; and 
D) FCP 17, the cingular gyrus, L-R superior frontal gyri and middle frontal gyri.  

The Z-score maps were each converted to target ROIs for tractography using 3dROIMaker.  
Clusters were made by first thresholding values at Z>3 and volumes at voxels per cluster >130, 
and then inflating each ROI by two voxels but stopping expansion at an FA>0.2 WM skeleton.  
These final target ROIs for tractography are also shown in Fig. 3.  

Fig. 4 shows and example of deterministic tractography results performed in DW-native space 
with 3dTrackID.  The set of tracks running through any of the DMN network ROIs (targets 
shown in Fig. 3, panel A, second column) are shown using TrackVis.  Colors denote local 
orientation along the tracks.  Tracks are shown running along many expected pathways.  
However, since the deterministic tracts take no account of noise and parameter uncertainty, one 
can expect that the full, probabilistic tractography results would show more complete pathways 
among the ROIs. In the top panels of Fig. 5, voxels through which tracts passed (for networks A 
and C in Fig. 3) are shown in red, overlayed on the FA map;  in the lower panels of the same 
figure, WM regions found between GM ROIs using probabilistic tractography (as described 
below) are shown for the respective networks. Significantly greater extents of WM are included 
in the latter set.

Two probabilistic tractographic analyses in DW-native space were run for comparison:  the 
existing FSL software approach and the FATCAT method.  In the former, first bedpostX is 
applied to model distributions of relevant parameter values per voxel using a Bayesian Monte 
Carlo approach [Behrens et al., 2007]; here, only one fiber direction per voxel was modeled (to 
match the current DTI-based approach of FATCAT).  The probabilistic tractography program, 
probtrackX was then run separately on each network map of target ROIs, using standard stopping 
criteria and options: FA>0.2, angular deflection<60deg, 1 propagation direction per voxel, 
keeping tracts >15mm in length, 5000 iterations, integration step size 0.5mm (default).  Using 
FATCAT, 3dDWUncert was first run for NJ=200 iterations, and example plots of the uncertainty 
for relevant parameters, in terms of bias and standard deviation estimated using jackknife 
resampling, are shown in Fig. 6. 3dProbTrackID was then run using criteria identical to what was 
used for probtrackX (except no step size is required) for all four networks simultaneously.

The results for each program are given in Fig. 7. WM ROIs found to connect pairs of target ROIs 
(orange) are shown in blue (3dProbTrackID) and in purple (probtrackX) for each network.  The 
connectivity patterns produced by each program are broadly similar.  Some regions of difference 
are highlighted with arrows: yellow for tracks appearing in only one set of results, and red for 
regions in which tracks may have been measured in both results but had very different 
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characteristics (e.g., a filled in volume vs filamentary structures). Qualitatively, the 
3dProbTrackID WM regions tended to follow more circumscribed paths; for example, in panel 
A, the anterior-posterior running cingulate bundles are clear, while probtrackX included a much 
wider volume in the transcallosal region.  3dProbTrackID generally found connections between 
more ROIs.  For example, a transcallosal tract between the posterior parietal lobules was found 
in B and anterior-posterior subcortical connections (identifiable as the inferior longitudinal 
fasciculus) in A were found with 3dProbTrackID but not using probtrackX.  

An example of a set of matrices from associated functional and tractographic analyses is shown 
in Fig. 8.  In the top row, functional matrices of correlation coefficients and Z-scores (zeroed 
along the diagonal) are shown, calculated between average time series in GM ROIs calculated 
using 3dROIMaker for Network A (the DMN; see Fig. 3).  In the second and third rows, matrices 
of standard DTI parameters are shown, representing mean values in the track regions connecting 
GM ROIs as found by 3dProbTrackID.  In the bottom row, measures of the number of voxels per 
WM region and the track count during the probabilistic tractography iterations are given.  It 
should be noted that since not all target regions were found to be connected (to be expected), the 
structural matrices contain empty cells.

5.  DISCUSSION AND CONCLUSIONS

We have described a basic set of tools for assisting in two types of MRI analysis:  functional 
MRI and diffusion-based tractography.  These methods produce several quantitative measures 
which can be used in describing complementary features of the brain as recently highlighted in a 
recent review [Johansen-Berg, 2011].  Though no single "correct" way for doing so is obvious 
for lack of ground truths, the software in FATCAT has been designed to assist in this process: 
simplifying the process of calculating several features of both functional and structural 
connectivity while remaining flexible to types of processing and analysis.

The capabilities and procedures for implementing FMRI and DTI-based tractographic analysis 
using FATCAT were presented in an example case.  Target ROIs for tractography were generated 
directly from a subject's RS-FMRI data, with 3dROIMaker using anatomical information for 
determining likely intersections of the functional GM ROIs with nearby WM.  Probabilistic 
tractography results of structural connectivity with 3dDWUncert and 3dProbTrackID were 
broadly comparable to those of existing FSL programs, in terms of connected GM ROIs and path 
regions. In the absence of a gold standard, it is difficult to judge which of the two approaches 
produces more valid results. Qualitatively, 3dProbTrackID results were more spatially 
circumscribed within white matter with more physiologically identifiable paths produced 
between several ROI pairs. 

A striking feature of the FATCAT programs is their relative execution speed.  While many 
programs for probabilistic tractography (including those tested here using FSL) can run for more 
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than a day for uncertainty estimations and tracking within a single network, 3dDWUncert and 
3dProbTrackID completed execution in approximately 7min and 25min, respectively, on the 
same hardware1 and for four rather than one network. One of the reasons for this sizable decrease 
in runtime is the efficiency of the algorithms in each: uncertainty estimations use jackknife 
resampling of DTI data and utilizing the Gaussian interval approximation; the tract propagation 
algorithm in FACTID is also efficient. Whole brain tractography using 3dTrackID on a 
128x128x70 voxels (2mm isotropic) dataset took <4secs on the same machine. Even with more 
complex diffusion models per voxel such as Qball, the tracking execution speed is not expected 
to increase significantly. Moreover, testing for connectivity among several networks 
simultaneously adds very little computational time, which is of great use in multi-component 
RSN studies.  

White matter bundles can cross, "kiss" and fan out in complicated structures at spatial scales 
considerably finer than voxel sizes on the order of millimeters. Such complex patterns are better 
(though by no means fully) captured with high order diffusion models which model more than 
one direction per voxel. At this stage, FATCAT only supports DTI modeling and single direction-
per-voxel tractography. Work is currently underway to add multi-direction support using Q-ball 
modeling in an efficient manner. We are also considering improvements to the methods of 
defining target ROIs for tractography from functional data. One improvement may consist of 
using cortical surface models to inform ROI expansion [Greenberg et al., 2012]. 

As with most neuroimaging analysis tools, further tests of validity will be required, particularly 
when including higher order improvements to the methods.  Such verification has traditionally 
been difficult in tractography, given a lack of gold standard tests;  even histological data is 
generally insufficient for examining fine white matter structures in the brain. A well-known test 
phantom model exists for analysis [Poupon et al., 2008; Fillard et al., 2011], and the FACTID 
tracking algorithm used in FATCAT has been tested on this, as well as on both in vivo and 
vivo+simulation data sets [Taylor et al., 2012].  However, while quite useful, the phantom cannot 
match size, scale and complexity of brain architecture. Similarly, many in vivo tests to date can 
only be used to verify algorithm behavior through major fiber bundle pathways but not 
necessarily in finer structures or in crossing/kissing fiber regions.  It is possible that 
neuroanatomical tracing methods [e.g.,  Dyrby et al., 2007; Schmahmann et al., 2007] may be 
improved and expanded to study human data sets for greater validation of in vivo tractography. 
Such evaluations would be useful for continuing to assess tractography algorithms.

In conclusion, FATCAT is a set of publicly available software tools for combining several aspects 
of functional and tractographic MRI analysis towards a better understanding of brain function. 
The tools are integrable with many pre- and post-processing pipelines in standard analysis 
packages. They are also run from terminal command lines, simplifying group processing, and 

1

MacBook Pro, Mac OS X, single processor 2.3 GHz and 4GB RAM.
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produce easily viewable outputs for guiding analysis.  FATCAT programs and demo data are 
freely available and distributed with the AFNI/SUMA suite (http://afni.nimh.nih.gov) and users 
are encouraged to use AFNI’s message board for support and feedback. 
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FIGURES and CAPTIONS

FIGURE 1: Schematic of a set of stages of combined FMRI (dark gray boxes) and DTI-
tractography (light gray boxes) analyses, highlighting the possible use of FATCAT programs 
(bold, blue) and showing additional steps in available software (italics).
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FIGURE 2: Representation (2D with M=12) of estimating DTI parameter confidence intervals 
using the jackknife resampling technique. (1) Initial DW measures are obtained, from which (1b) 
full estimates of the DT and associated parameters are made.  For the jackknife process, (2) a 
random subset of MJ<M measures are selected, from which (3) a sample tensor D* is calculated, 
as well as (4) its associated parameters.  Steps (2-4) are repeated a large number NJ times to 
create a jackknifed pseudopopulation for each parameter, from which (5) percentile ranges can 
be found directly from ordering the data set, or from using a Gaussian approximation of the 
distribution. The latter method is applicable to DTI results and implemented in FATCAT for the 
sake of efficiency.
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FIGURE 3: Four components from ICA of RS-FMRI time series overlaid on a T1-weighted 
anatomical mapped to DWI space.  Z-score maps of each IC are shown (left column of each 
panel) with images thresholded at Z>0.  Also shown are corresponding, inflated ROIs created 
using 3dROIMaker (colors independent per panel).  Initial clusters were thresholded to have 
>130 voxels, and inflation was stopped at a WM skeleton defined to be wherever FA>0.2.
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FIGURE 4:  Deterministic tractography results using 3dTrackID with target ROIs shown in Fig. 
3A.  Tracks are displayed using TrackVis, with a T1 image (mapped to DW-native space) as 
background.  In the top row tracks through any target ROI (OR logic) are shown, and in the 
bottom row only tracks passing through pairs of ROIs (pairwise AND logic) are shown.
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FIGURE 5:  A comparison of WM regions connecting GM ROIs using deterministic (top panels) 
and probabilistic (bottom panels) tractography for networks A and C (shown in Fig. 3).  
Approximate locations of GM ROIs are shown with yellow dashes.  The deterministic results are 
a subset of the probabilistic results (here, unthresholded), which shows significantly greater 
numbers and volumes of WM. Images are in DW-native space.
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FIGURE 6: Examples of uncertainty values across brain slices, as estimated with jackknife 
resampling using 3dDWUncert.  Distinct differences in GM and WM are evident, as well as the 
qualitative difference in first eigenvector uncertainty along the different degrees of freedom.
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FIGURE 7: A comparison of probabilistic tractography results for 3dDWUncert+3dProbTrackID 
(blue) and FSL's bedpostX+probtrackX (purple).  Networks of ROIs (orange) were made using 
ICA of RS-FMRI data, thresholding results at Z=3.0 and then inflating the GM ROIs using 
3dROIMaker (see Fig. 3 and text for details). Similar tracking options were used for both 
programs (FA>0.2, angular deflection<60deg, 1 propagation direction per voxel, 5000 
iterations). Tracking results show broadly similar connectivity, with generally more 
circumscribed WM track regions found by 3dProbTrackID, wich also tended to find connections 
between more ROIs. Tracking was performed in DW-native space, in which images are shown.

(figure on next page)
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FIGURE 8: An example set of matrices of functional and structural analyses for network A (the 
DMN; see Fig. 3), as determined using 3dProbTrackID.  In the top row are correlation matrices 
of average time series of GM ROIs in the network (ROI labels have been ignored in this 
example).  In the middle rows, standard DTI parameters are given, representing the mean values 
in the WM regions connecting the targets.  Finally, the number of voxels in the final WM regions 
and the number of tracts found during the probabilistic tractography are given in the fourth row.
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