
–1–

New-ish AFNINew-ish AFNI
Features:Features:

a quick once-overa quick once-over
RW Cox, et al.RW Cox, et al.
Autumn 2008Autumn 2008

PDF Available as a News item at http://afni.nimh.nih.gov/afni



–2–

Outline
•  3dREMLfit = analysis allowing for serial correlation
•  3dLME = generalized ANOVA
•  1dGC = Granger Causality analysis
•  align_epi_anat.py = align EPI and structural (T1) datasets
•  Miscellany

★ Manganese MRI= tracing anatomical connectivity
★ DCEMRI = Dynamic Contrast Enhanced MRI
★ Realtime AFNI = feedback to the subject
★ DTI = new plugin from UCSD
★ ExamineXmat.R= analyze X matrix for potential problems
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3dREMLfit3dREMLfit
AFNIʼs New Approach to Dealing
with Serial Correlation in FMRI

Linear Regression (GLM)
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3dREMLfit: Conclusions First
•  Serial correlation does not appreciably impact the activation magnitudes

(β s) estimated using 3dDeconvolve (= Ordinary Least Squares solution)
•  Group activation maps made from combining these β s using 3dANOVA,
3dLME, etc., are essentially the same using 3dDeconvolve or
3dREMLfit (= Generalized Least Squares solution)
 In other words, there is no need to re-run old group analyses to see

if allowing for serial correlation will change the results
•  Thresholded individual subject activation maps are potentially affected,

depending on the task timing and on the scanner
★  The biggest effect of serial (AKA temporal ) correlation—when this

correlation is significant—is on the estimates of the variance of the
individual subjectsʼ β s

★  If the variance is under-estimated using 3dDeconvolve, then the
individual subject t- and F-statistics will be over-estimated

★  Individual subject variances and statistics are not usually carried
forward to the group analysis level

o  Since inter-subject variance is much larger than intra-subject variance
★  Thus, group results are only marginally affected by serial correlation
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3dDeconvolve and Ordinary Least Squares (OLSQ)
•OLSQ = consistent estimator of FMRI time series fit parameter vector β

★  No matter what the temporal (AKA serial) correlation structure of the noise
o “Consistent” means that if you repeated the identical experiment infinitely many times,

and averaged the estimated value (e.g., β ; variance), result would be the true value
• But OLSQ estimate of time series noise variance is not consistent when

serial correlation is present
★OLSQ variance estimator will usually be biased too small with serial correlation

• Variance estimate is in denominators of formulas for t- and F-statistics
★Result: individual subject t- and F-values will be too large and/or their DOF

parameters will be too large
★Upshot: Significance of individual subject activations will be over-estimated (p-

values will be too small)
★Thresholded individual subject FMRI maps might show too much activation
★Obvious impacts on ROIs generated directly from individual subject activation

maps (e.g., for connectivity analysis)
★However, statistics taking into account serial correlation can be too

conservative, and understate the extent of the “true” regions of activation
o  For this reason, and to avoid selection bias, perhaps it is best to define FMRI-derived

ROIs using a spherical “punch out” around each activation map peak
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A Tiny Amount of Mathematics

•  White noise estimate of variance:
★  N = number of time points; i = time index
★  m = number of fit parameters
★  N – m = degrees of freedom (DOF) = how many equal-variance independent

random values are left after the time series is fit with m regressors
o OLSQ assumption is that each of the N noise values in the data time series are

equal-variance and independent (AKA white noise)
•  If noise values arenʼt independent, then N – m is too large an estimate of

DOF, so variance estimate is too small
•  Two possible solutions are:

1) Adjust variance estimate (and so the t- and F-values) to allow for too few DOF
2) Come up with a different variance estimator that has all N – m DOF possible

o Requires estimating the temporal correlation structure of the noise as well
o Once temporal correlation matrix is known, use Generalized Least Squares (GLSQ;

AKA pre-whitening) to estimate β parameter vector
o GLSQ is consistent and should produce β-values with smaller variance than OLSQ

•  Solution #2 is what 3dREMLfit implements
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Mathematical Model for Serial Correlation
•My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1

★  Notation: rk = correlation at time lag #k for k =1, 2, … , N-1
•  parameter a = decay rate of the rk as k increases: for FMRI,     0 ≤ a < 1
•  parameter b = affects correlation at lag 1 (r1):                          −1 < b < 1

★

•  For a > 0 and −a < b < 0, ARMA(1,1) noise can be thought of as a sum of
AR(1) noise and white noise, with variance proportions determined by b
★  Why I prefer 2 parameter ARMA(1,1) over easier 1 parameter AR(1) model (b=0)
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Red:  a = 0.7  b =    0.0  =  pure AR(1) model
Green:   a = 0.7  b = +0.6
Blue:  a = 0.7  b = –0.6
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   for larger lags
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New Program: 3dREMLfit
•  Implements Solution #2: estimate correlation parameters and use GLSQ

★  REML is a (partially nonlinear) method for simultaneously estimating variance +
correlation parameters and estimating regression fit parameters (β s)

★  Each voxel gets a separate estimate of its own correlation parameters (a,b)
o Estimates of a and b can be spatially smoothed before they are used to compute the β s

o Can also input a and b directly and skip their estimation (the slow part), if desired, and
use those values to compute the β s

o Variance estimate uses pre-whitened residuals to keep DOF=N – m
★  Even if correlation decay parameter a was the same for all voxels, relative

amount of white noise (measured by b) mixed in would vary spatially
o  Sample analyses using 1-parameter AR(1) and MA(1) models shown later

•  Inputs to 3dREMLfit
★  Run 3dDeconvolve first to setup .xmat.1D matrix file, GLTs, etc.

o  Donʼt have to let 3dDeconvolve finish analysis: -x1D_stop
o  3dDeconvolve also outputs a command line to run 3dREMLfit with the same

3D+time dataset and the matrix file just created
★  Then, input matrix file and 3D+time dataset to 3dREMLfit

•  Output datasets are structured to be similar to those in 3dDeconvolve
★  It should be easy to adapt scripts that use 3dDeconvolve output files (e.g., for

group analysis) to use the new software
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Rapid Event Related Design (NIH 3 T: JJY)
Individual Maps from 17 Subjects

•  Color map & Threshold: Full F such that p=0.001  (Underlay = TT_N27+tlrc)

REML
F = 3.35
p = 0.001

OLSQ
F = 3.35
p = 0.001

 GIF Animation:
time = subject

Not visible in PDF

Differences
between REML
and OLSQ are
noticeable with
rapid event-
related design
(but activated
regions are very
similar)
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Block Design (15 s blocks: FBIRN-1 SM Task)
1 Individual Map (Subject#106)

 Color=% signal change;  Threshold: p=0.05 (uncorrected)

REML OLSQ
• Very little difference
between OLSQ and
REML, even at so low a
threshold
• Data is markedly less
correlated in time (UNM
Siemens 1.5 T), as shown
by maps of REML-
estimated r1

• Similar data from U Iowa
GE 1.5 T has similarly low
temporal correlation
• BWH & MGH 3 T data has
higher temporal correlation
than FBIRN 1.5 T, but lower
than NIH 3 T —— ??????
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•  Color map & Threshold: Full F such that p=0.001  (Underlay = TT_N27+tlrc)

REML
F = 3.15
p = 0.001

OLSQ
F = 3.15
p = 0.001

 GIF Animation:
time = subject

Block Design (30 s blocks: NIH 3T; JJY)
Individual Maps from 16 Subjects

This is the worst
situation for
OLSQ: stimulus
is at very low
frequencies,
where noise
correlation
affects variance
the most

 GIF Animation:
time = subject

Not visible in PDF
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Results Thus Far
•  Between OLSQ and GLSQ+REML:

★  Individual subject thresholded activation maps may differ very little,
some, or a lot

•  Level of temporal correlation determines how much difference GLSQ
makes to individual subject statistics
★  Amount of temporal correlation seems to depend on magnetic field

strength, other scanner details, pulse sequence, …
★  Effect of temporal correlation also seems to depend on stimulus timing
★  As theory indicates:

o  Temporal correlation means noise variance depends on frequency
o  So amount of noise that interferes with (“looks like”) the signal will

depend on frequencies at which the hemodynamic response is
appreciable

•  Next slides: Group activation maps, GLSQ+REML vs OLSQ
★  2 cases from NIH: Event-related and Block:30s designs
★  Donʼt have enough FBIRN-1 subjects to do a group analysis
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Differences at
group level
are small:
∃∃ Many false
negatives in
individual
maps when
using more
conservative
GLSQ+REML??

Block Design: Group Results (3dANOVA3)

REML OLSQ

F -test for
Affect
condition

F -test for
Category
condition
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Event-Related Design: Group Results (3dANOVA3)

REML OLSQ

Differences
at group
level are
small:
β s donʼt
depend very
much on REML
vs OLSQ
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Tentative Conclusions
•  For individual subject thresholded activation maps:

★  Use GLSQ/REML estimation, especially for slow block design
experiments at 3+ Tesla

★  Be aware that there may be many false negatives
o  i.e., false acceptances of the null hypothesis
o  am looking into an FDR-like procedure for estimating the missed detection

rate, similar to how FDR estimates the false positive rate

•  For group maps using ANOVA (or similar statistics):
★  Differences between OLSQ and GLSQ estimation are small

•  Recommendations:
★  Donʼt need to re-visit group activation conclusions!
★  Use 3dREMLfit as a near drop-in replacment for 3dDeconvolve for

future work

o A little extra CPU time (usually from 1..3 times as long)
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Outline of SPM and FSL Approaches
•  SPM5 and SPM2

★  Estimate fixed ARMA(1,1) (more precisely, AR(1)+white noise) model for all “voxels
of interest” (pass an OLSQ F-test)

o By averaging estimated auto-covariance matrix from OLSQ residuals over
these voxels

o SPM assumes AR parameter a ≈ 0.2, and approximates ARMA(1,1)
correlations via linear Taylor series, to make correlation parameter estimation
easier to program

★  Use GLSQ (same for each voxel) to solve for β s

o SPM99: Use OLSQ and adjusts DOF downwards to allow for serial correlation
•  FSL and FMRIstat (similar, but differ in important details at several points)

★Use OLSQ to get first-pass residuals; use these to estimate each voxelʼs auto-
correlation matrix; smooth these matrices spatially (FSL & FMRIstat vary here)

★Estimate AR(1) parameter for each voxel separately from smoothed matrices
★Use GLSQ (different for each voxel) to solve for β s

•  All these programs use a non-REML method to estimate serial correlation
parameter(s) from the OLSQ residual auto-correlation matrix, and then
adjust these estimates to reduce the bias thus introduced
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Using 3dREMLfit - 1
•  Step 1: run 3dDeconvolve as normal, setting up timing, GLTs
•   3dDeconvolve ... -bucket Adecon -x1D_stop
Screen outputScreen output:
++ Wrote matrix values to file Adecon.xmat.1D
++ ========= Things you can do with the matrix file =========
++ (a) Linear regression with ARMA(1,1) modeling of serial
correlation:

3dREMLfit -matrix Adecon.xmat.1D -input ss17.AllRuns.norm+orig
-mask ss17_mask+orig -Rbeta Adecon_beta_REML -fout -Rbuck
Adecon_REML -Rvar Adecon_REMLvar

++ N.B.: 3dREMLfit command above written to file Adecon.REML_cmd
++ (b) Visualization/analysis of the matrix via ExamineXmat.R
++ (c) Synthesis of sub-model datasets using 3dSynthesize
++ ==========================================================
++ 3dDeconvolve exits: -x1D_stop option was given

filename re-used for 3dREMLfit command
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Using 3dREMLfit - 2
•  Step 2: run 3dREMLfit ; perhaps adding options to the command line:

★ -addbase : add extra baseline columns to the regression matrix
★ -slibase : add extra baseline columns to the regression matrix, on

a per slice basis = intended to aid in removal of physiological noise
★   -gltsym    : add extra GLTs (beyond those from 3dDeconvolve)
★ -usetemp : -slibase can require a lot of memory

o  Generates REML matrices for many (a,b) cases for each slice
o  This option writes & reads temporary matrices to disk to reduce RAM usage

➥  -verb : outputs information about memory usage as program runs
★ -Obuck : output OLSQ bucket dataset (etc.)

o  -Rbuck   : output GLSQ bucket (stimulus βs and statistics)
o  -Rbeta   : output GLSQ (all the βs and only the βs; no statistics)
o  -Rfitts : output GLSQ fitted model
o  -Rvar    : output GLSQ (a,b) parameters and variance estimate (per voxel)

★ -NEGcor : allow negative correlations in the estimation
o Probably not really needed for FMRI, but option is there just in case
o There are more options to control estimation of the (a,b) parameters

•  Of course: read the output of 3dREMLfit -help
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Potential Add-ons to 3dREMLfit
•  Add option to use this program to afni_proc.py super-script
•  Add -iresp and -sresp options
•  Output variances for βs

★e.g., to be carried to the group analysis level?  Need to implement a new
approach for this option to be useful.

•  Matrix error checking when -addbase or -slibase is used
★  In case the bumbling user puts in a collinear column
★  Program cannot handle an all-zero column (unlike 3dDeconvolve)

•  Re-run with extra GLTs to be added to existing bucket
★  Or at least have a GLT-only output option: -Rglt ??

•  Finish work with R Birnʼs physiological noise regressors and integrate
these into time series analysis via -slibase
•  -jobs option to spread load across multiple CPUs

★  Especially loop where parameters (a,b) are estimated: the slowest part
•  … ???

Next: more details on ARMA vs AR vs MA 
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Serial Correlation Model & Notation: ARMA(1,1)
•  Denote noise value at time index i by ξi for i=0..N–1
•  Variance is average (AKA expected) value of noise squared:

★                       where E [•] means “expected value of •”
•  Covariance is similar to variance, measured between different time points:

★                           which depends on time difference between time points i and j
•  Correlation is covariance with variance factored out

★                             (with r0=1)
o N.B.: rk measures predictability of noise value at time j+k given value at time j

•  For entire time series, express variance/correlation as a matrix
★

•  Need to have a simplified model for R (i.e., the rk for k =1, 2, … , N-1)
★  Otherwise, have too many parameters to estimate
★  My choice: ARMA(1,1) = AutoRegressive order 1 + Moving Average order 1
★  parameter a = decay rate of the rk as k increases: for FMRI,     0 ≤ a < 1
★  parameter b = determines correlation at lag 1 (r1):                   −1 < b < 1

o

★  For a > 0 and −a < b < 0, ARMA(1,1) noise can be thought of as a sum of AR(1)
noise and white noise, with variance proportions determined by b

o This feature is one reason I prefer ARMA(1,1) as a noise correlation model over AR(1)
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AR(1): a  vs.  MA(1): b  vs.  ARMA(1,1): a & b
•  Check the effectiveness of GLSQ pre-whitening solution by examining

pre-whitened residuals
★  Pre-whitening: applying a linear transformation to the time series data to de-

correlate the noise
o Symbolically, R−1/2 where R is the correlation matrix

•  After pre-whitening, residuals (difference between data and fitted time series)
should be (mostly) uncorrelated
•  Power spectrum of white noise is flat

★  Power spectrum = expected value of absolute value of Fourier transform,
averaged over an infinity of repeated identical experiments

•  Visually inspect graph of abs[FFT(pre-whitened residuals)]
★  Should be flattish, with random excursions

o This is noise, after all, and we donʼt have an infinity of data over which to average
•  Next 4 slides:

★  Graphs of “spectrum” for OLSQ and GLSQ using ARMA(1,1), AR(1), and
MA(1) correlation models (generated using interactive AFNI, of course)

★  For 3 strongly “active” voxels in one subject (block design: 30 s blocks; NIH 3T)
★  Then the single subject activation maps for 6 types of analysis
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Spectrum (slightly smoothed absFFT) of Residuals
OLSQ

ARMA: a=0.6 b=0.1

AR: a=0.6 b=0

MA: a=0 b=0.5

In this voxel:
• OLSQ:
definitely not
“white”
• GLSQ:
“white-ish” for
all 3
correlation
models

Block:30s
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Spectrum of Residuals
OLSQIn this voxel:

• OLSQ: not
“white” but
not very
“colored”
either
• GLSQ: All
methods
about the
same in fixing
up what little
needs to be
fixed

Block:30s

ARMA: a=0.8 b= –0.7

AR: a=0.4 b=0

MA: a=0 b=0.3
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Spectrum of Residuals
OLSQIn this voxel:

• OLSQ:
definitely not
“white”
• GLSQ:
ARMA
appears a
little “whiter”
than either
AR or MA
alone

Block:30s

ARMA: a=0.4 b=0.7

AR: a=0.8 b=0

MA: a=0 b=0.8
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6 Types of Analysis

OLSQ MA(1)

AR(1)
ARMA(1,1)

Threshold=F
Color=βtask#1

MA(1) fixed b=0.37

AR(1) fixed a=0.42

Block:30s
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Conclusions from Previous Slides
•  It is possible to find voxels where pre-whitening of different types (AR-

only or MA-only or ARMA) is “optimal”
★  And voxels where pre-whitening makes little difference

•  For many (most?) voxels, the pre-whitening details donʼt make a lot of
difference in the statistics
★  As long as something is done that is about right
★  e.g., Using fixed AR(1) or MA(1) single parameter method was still OK-ish for

single subject maps
o A few more extraneous small blobs
o But fewer than pure OLSQ solution statistics

•  Map of r1=correlation at neighboring TRs,
   as output by REML and ARMA(1,1) fit

★  Same slice as previous slides (NIH 3 T data)
★  In general, cortical gray matter shows more
   correlation, but this result is not universal

0.0

0.7
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Mathematics and Implementation
•  Available in PDF (scanned from hand-written pages) for the truly devoted

★  File 3dREMLfit_mathnotes.pdf
•  Outline of REML estimation methodology

★  What is REML and why do we care?
•  Matrix algebra for efficient solution of the many linear systems that must

be solved for each voxel
★  Sparse matrix factorizations, multiplications, and solvers

•  How ARMA(1,1) parameters are estimated in 3dREMLfit
★  Optimizing REML log-likelihood function over a discrete grid of (a,b)

values, using 2D binary search
★  Must solve a GLSQ problem for each (a,b) tested, for each voxel

•  How statistics are implemented as GLTs
★  Testing null hypothesis Gβ=0 for arbitrary matrix G

•  Derivation of ARMA(1,1) formulas
★  For completeness, and because we all love equations
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3dLME3dLME
Group Analysis Beyond the

Capabilities of ANOVA
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Linear Mixed-Effects Modeling: 3dLME
•  Limitations of traditional group analysis with ANOVA:

★Usually requires equal number of subjects across groups
★Doesnʼt allow missing data from individual subjects

o If a subject didnʼt perform a task, have to throw away all the data from the
subject?

★Allows only a limited number of factors and fixed design structures
o 3dANOVAx: Currently only allows up to 4 fixed factors

★Cumbersome when modeling HRFs with multiple basis functions
o Use area under the curve (AUC)?
o Difficult to detect shape difference
o Troubling when undershoots occur

★ Inflexible when handling residual variance-covariance structure
o Strong assumptions: homoscedasticity and sphericity

★Model fine-tuning impossible
o Even if an interaction is insignificant, it has to stay in the model
o Unwieldy with covariates

•  Linear mixed-effects (LME) modeling comes to save the day
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Linear Mixed-Effects Modeling: 3dLME

•  Program 3dLME
★Written in open source language R
★Fills in the gaps in ANOVAʼs repertoire
★Batch mode with all specifications included in text file model.txt
★See http://afni.nimh.nih.gov/sscc/gangc/lme.html for more information
★Downsides

o High computational cost: lots of calculation; R isnʼt so efficient
o Some statistical controversies about DFʼs and F-statistic (sequential vs.

marginal)
•  When HRF is modeled with multiple basis functions

★Reassemble HRFʼs (unnecessary with TENT or CSPLIN)
★Assume amplitudes of an HRF at k equally-spaced time points: γ1, γ2,… γk
★We donʼt care about the differences among γʼs, so wonʼt test H0: γ1=γ2=…=γk
★ Instead we want to focus on H0: γ1=γ2=…=γk=0
★And have to deal with temporal correlations among γʼs
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Linear Mixed-Effects Modeling: 3dLME
•  1st example of model.txt

★ 3 fixed factors: gender, object, and modality; 1 covariate: age
★ Gender: male and female; Object: face and house; Modality: visual and audial

Data:Volume                           <-- either Volume or Surface
Output:FileName                       <-- any string (no suffix needed)
MASK:Mask+tlrc.BRIK                   <-- mask dataset
Model:Gender*Object*Modality+Age      <-- model formula for fixed effects
COV:Age                               <-- covariate list
RanEf:TRUE                            <-- random effects
VarStr:0                              <-- variance structure
CorStr:0                              <-- correlation structure
SS:sequential                         <-- F-statistic: sequential or marginal
MFace-FFace                           <-- contrast label
Male*Face*0*0-Female*Face*0*0         <-- contrast specification
MVisual-Maudial
Male*0*Visual*0-Male*0*Audial*0
......
Subj     Gender           Object          Modality     Age    InputFile
Jim      Male             Face            Visual       25     file1+tlrc.BRIK
Carol    Female           House           Audial       23     file2+tlrc.BRIK
Karl     Male             House           Visual       26     file3+tlrc.BRIK
Casey    Female           Face            Audial       24     file4+tlrc.BRIK
......

★Command: 3dLME.R MyOutput &
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Linear Mixed-Effects Modeling: 3dLME
•  2nd example of model.txt

★HRF modeled with 6 tents; H0: β1=β2=…=β6=0
Data:Volume                           <-- either Volume or Surface
Output:FileName                       <-- any string (no suffix needed)
MASK:Mask+tlrc.BRIK                   <-- mask dataset
Model:Time-1                          <-- model formula for fixed effects
COV:                                  <-- covariate list
RanEf:TRUE                            <-- random effects
VarStr:0                              <-- variance structure
CorStr:1_Order|Subj                   <-- correlation structure
SS:sequential                         <-- F-statistic: sequential or marginal
Subj     Time   TimeOrder  InputFile
Jim      t1       1       JimT1+tlrc.BRIK

Jim      t2       2       JimT2+tlrc.BRIK
......
Jim      t6       6       JimT6+tlrc.BRIK
Carol    t1       1       CarolT1+tlrc.BRIK
Carol    t2       2       CarolT2+tlrc.BRIK
......
Carol    t6       6       CarolT6+tlrc.BRIK
......

★Command: 3dLME.R MyOutput &
★Output: an F  for H0, β and t for each basis function



–33–

1dGC1dGC
Granger Causality Analysis

(and other connectivity tools)
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Granger Causality Analysis: 1dGC
•  Network detection in the brain

★A network in the brain may leave some signature (e.g., latency) in the
fine texture of BOLD signal because of dynamic interactions among
regions

★Reverse engineering: such a signature may reveal the network
structure

★Assumption: causes precede effects, or latencies indicate causal
relationship

★Problem: some latency effects might be due to confounding effects
such as neurovascular differences

•  Necessary requirements for successful network detection in FMRI
★Fine time resolution: usually TR = 1 second or less?
★Accurate ROI selection: any missing region may result in spurious

connectivity
★Appropriate experiment design
★Removing confounding effects
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Granger Causality Analysis: 1dGC

•  1dGC: network detection via vector auto-regressive (VAR) modeling
★Multivariate (e.g., multiapproach instead of bivariate in BrainVoyager
★Not purely data-driven as in BrainVoyager

o ROIs are pre-selected by user: model-based analysis
o Path connectivity is statistically determined: data-driven analysis

★Written in open source language R
★Sequential mode: specifying parameters via answering questions
★Allows for time breaks in the data (e.g., inter-run intervals)
★Handles all confounding effects as covariates instead of via prior

filtering
★Providing network evolution through lags
★Diagnoses model with various tests
★ Individual analysis first, then group analysis on path coefficients per lag
★More details here: http://afni.nimh.nih.gov/sscc/gangc/VAR.html
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Granger Causality Analysis: 1dGC

• A network identified by 1dGC
★Resting state data
★TR=1.2 seconds
★250 time points
★6 ROIs
★Red: positive
  connectivity
★Blue: negative
  connectivity
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Granger Causality Analysis: 1dGC
•  1dGC: applicability to experiment designs

★Resting state
o Ideal situation: time series in entirety as input with no cut and stitch involved
o Physiological data are likely essential for reliable results

★Block experiments
o Block duration ≥ 5 seconds
o Cut and stitch blocks together: important when handling confounding effects

such as tasks/conditions of no interest, but tricky – where to cut?
★Event-related design

o Rapid event-related experiment: no need to cut and stitch (not practicable),
but need to regress out tasks/conditions of no interest as covariates

o Slow event-related experiment: applicability of GC questionable
•Caveats: no magic wand - everything is statistical (correlations)

★Canʼt prove true causal structures, but a necessary condition for a network
★No transitive relationship: If A Granger causes B, and B Granger causes C, it

does not necessarily follow that A Granger causes C
★Missing ROIs in the model or coarse time resolution may give spurious paths
★Absence of connectivity from the analysis doesnʼt necessarily mean no causal

relationship because model is as good as its assumptions (e.g., linearity)
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Path Analysis: 1dSEM
•  Path analysis (a.k.a. structural equation modeling)

★Start with a few pre-selected regions
★Assess the network based on pair-wise correlation among ROIʼs at group level
★Minimize discrepancy between covariances based on data and predicted from

model

•  1dSEM: 2 modes
★  Model validation: “confirm” a network based on data

o Input: network connectivity, covariance matrix, residual variance, DF
o H0:  we have a good model. Decision: accept, reject, or modify the model?
o Output: path coefficients, various fit indices, and decision on H0

★Model search: look for a “best” network the data could support
o Start with a minimum model (flag desired paths with 1): can be empty
o Some paths can be excluded (0), and some optional (2)
o Model grows (like grass or tree branches) by adding one extra path a time
o “Best” in terms of various fit criteria
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Correlation Analysis
•  Correlation analysis (a.k.a. functional connectivity)

★Purely data-driven
★Look for response similarity between a seed region and the rest of the brain
★No indication about directionality/causality
★Correlation between two regions doesnʼt necessarily mean

connectivity/causality
★Confounding effects should be included as covariates

• Two kinds of correlation analysis
★Simple correlation

o Typically used for resting state experiments
o Details: http://afni.nimh.nih.gov/sscc/gangc/SimCorrAna.html

★Context-dependent correlation (a.k.a. PPI)
o Look for correlation under the context of a task/condition
o Effect of the seed region on a target depends on the specific task/condition

or the interaction between the task/condition (psycho-) and the neuronal
response (physiological) of the seed

o Steps: http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html
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align_epi_anatalign_epi_anat
Aligning EPI and T1-weighted

structural volumes
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• New LPC method gives consistently better alignment—based on
visual inspection—over other cost functionals, including MI and CR

Alignment of EPI and Anatomical Datasets
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align_epi_anat.py
• aligns EPI and structural datasets using LPC method in 3dAllineate
• align_epi_anat.py script prepares data, then does the work:

- deobliquing
- skull stripping
- slice timing correction
- motion correction
- weighting, resampling
- Talaraich transformation

• Applies concatenated matrices (oblique, volume registration, tlrc)
• Aligns EPI→Anat  or  Anat→EPI

Basic Example:
# align anatomical dataset to epi dataset at sub-brick 5
align_epi_anat.py -anat anat+orig -epi epi+orig \

      -epi_base 5
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align_epi_anat.py
More advanced example:
# Transform EPI dataset to match Anat
# Register “child EPI” datasets to “parent” EPI and align with Anat
# Warp EPI and child EPI datasets to +tlrc space based on existing
#   Anatomical +tlrc datase
# Also, create composite edge images
@auto_tlrc -base ~/abin/TT_N27+tlrc \
   -input sb23_mpra+orig
align_epi_anat.py -anat sb23_mpra+orig            \
        -epi epi_r03+orig                         \
       -epi_base 6 -child_epi epi_r??+orig.HEAD \
       -epi2anat -suffix _al2anat               \
       -tlrc_apar sb23_mpra_at+tlrc -AddEdge

Flexibility in options for cost functionals and processing steps allow
alternate uses. Already used also for T1-to-T1 (SPGR, FLAIR, 3T, 7T), EPI-
to-EPI, rat and monkey data, and partial coverage data.
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Assessment of Alignment

• AFNI provides multiple
viewers, overlay/underlay
switching, opacity control
• Edge-enhanced display now

available with dual edge
composite or single edge
options with @AddEdge and
–AddEdge option to
align_epi_anat.py
•  @AddEdge script drives

AFNI GUI to display pre-
aligned and post-aligned
datasets

A new method for improving functional-to-
structural MRI alignment using local
Pearson correlation, NeuroImage, in
press (now online)
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align_epi_anat.py  example output

Pre-alignment

Post-alignment

@AddEdge -single-edge display shows before and after
with edges from transformed  EPI dataset as overlay
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align_epi_anat.py  example output

Pre-alignment Post-alignment
Example data from message board posting.
@AddEdge -single-edge display shows before and
after with transformed  EPI dataset in the underlay and
the anatomical edge in the overlay
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ManganeseManganese
Enhanced MRIEnhanced MRI
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Manganese Enhanced MRI
•We have a pipeline for voxelwise detection of Manganese induced signal

enhancement
★Robust skull removal and intra-subject longitudinal alignment
★Parametric and non-parametric signal detection approaches with multiple

comparison correction
★Output of summary results from each stage for quality checking
★Morals from our experiences thus far:

o Get as many scans as possible (10+) in pre-injection phase
o Get several post-injection scans at each time point of interest (2+)
o Examine your images immediately for bad artifacts and correct!!

First generation results: Fig. 7, Simmons et al. J. Neuroscience 08
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Day 0
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Day 2
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Day 4
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Day 7
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DCEMRIDCEMRI
Dynamic Contrast Enhanced MRI:

Analysis with 3dNLfim
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DEMRI: Dynamic (contrast) Enhanced MRI

• Collaboration with John Butman, Hemant Sarin in Clinical Center, on Dynamic
Contrast Enhanced MRI (DCEMRI or DEMRI)
• Gd-DTPA injection – large, relatively inert molecule that doesnʼt pass intact blood-

brain barrier injected after short baseline, but brightens T1-weighted images
• Non-linear model in 3dNLfim framework to compute kinetic parameters (Ktrans,

kep, Ve, fpv) of brain tissue in a two compartment model to model breakdown of
blood-brain barrier
• This implementation in AFNI is the only freely available DEMRI software for

volumetric analysis (at this time)

Ve (extracellular,
extravascular volume)
estimate overlayed on

MRI time series

tumor location

black:  scaled MRI signal
blue:    fit time series



–55–

Realtime AFNIRealtime AFNI
at NIHat NIH
ScannersScanners
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Realtime FMRI-Feedback at NIH Scanners
• Enhanced version of the NIH realtime MRI scanner software

★ installed on all GE MRI scanners (written by Jerzy Bodurka)
★can be used with AFNI to conduct realtime FMRI with feedback to the subject
★a sample real-time plotting tool is installed on all FMRIF MRI scanners

o based on serial_helper, with updates written by Javier and Jerzy
o uses Grace: a 2D plotting tool for the X Window System

•MRI data is captured each TR and used to drive the realtime subject
feedback display
★motion parameters: to show the subject when they move “too much”
★ROI averages: to show real-time “activation” at one or more ROIs
★ raw (registered) voxel data: for other nefarious purposes

• AFNIʼs realtime updates:
★Dimon → afni is more responsive, to improve subject feedback
★has enhanced stability and environmental controls
★afni can send ROI averages or raw voxel data to serial_helper, each TR



–57–

DiffusionDiffusion
Tensor ImagingTensor Imaging

New Plugin from UCSD
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Diffusion Plug-in
• From UCSD group led by Larry Frank with Greg Balls, Ning Kang
• seed-based “diffusion model” tractography allows for fiber crossing
• Pretty 3D primary eigenvector and FA-encoded tractography display
•Coming real-soon-now …
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ExamineXmatExamineXmat
Putting your time series

regression matrix up on the rack
and checking it for problems

• A tool to examine design matrices
• Visualize matrix and selected subsets of it
• Condition numbers for various subsets of matrix and
selected regressors
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ExamineXmat.R
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ExamineXmat.R
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