MCW AFNI — Plugins «
Robert W. Cox, Ph.D.

rwcox@mcw.edu
© 1996 Medical College of Wisconsin

User Written Extensions to AFNI

A plugin is an external software package that can be read into AFNI at run time, and
be called by the user at any time. An “fill in the form” interface can be created for each
plugin: the user fills in the input options relevant to the desired operation, and then presses
the “Run” button to actually execute the plugin routine. AFNI provides routines for the
plugin to create the interface form, and to read data from it. Functions and macros are also
provided for the plugin to manipulate AFNI datasets.

This version of the plugin package for AFNI is being released partly for the purpose
of testing the development of new plugins. The programmer interface to plugins and AFNI
datasets is not complete, and new features will undoubtedly evolve as needs become apparent.

This document is written for the C-literate AFNI user who wishes to write a plugin.
Sample plugins can be found in the MCW AFNI 2.00 distribution in the files plug_*.c. The
file afni_plugin.c contains the source code for the parts of AFNI which are specific to
dealing with plugins.

There is a lot of information in this manual. It is not necessary to absorb all of it before
beginning to write your first plugin. The fastest way to proceed is to read §1, skim the rest
of this document, and then use an existing plugin as a model.

MCW AFNI Plugins « —1- December 27, 1996

Contents

1 AFNI Datasets: Background Information 3
1.1 Storage of Datasetson Disk 3
1.2 Dataset Types o o e e e 4
1.3 Dataset Bricks and Sub-bricks o 5
1.4 Dataset idcodes L e e 5

2 Accessing Data in a Dataset 6
2.1 Pointer to the Dataset e 6
2.2 Loading and Unloading Data e 7
2.3 Dataset Dimensions and Orientation oo L. 7
2.4 Dataset Sub-brick Arrays e 8
2.5 Miscellaneous Dataset Items and Actions oL 8
2.6 Creatinga New Dataset e 9
2.7 Changing Dataset Internal Items 10
2.8 Header Attributes L 13

3 Plugin Libraries 14

4 Creating a Plugin 15
4.1 Creating a Plugin Interface 16

4.1.1 PLUTOmew_interface o i i it i it ittt 17
4.1.2 PLUTO_add-optiom i it i it et e e 18
4.1.3 PLUTOaddmumber o v vttt it et e e e e e e e 19
4.1.4 PLUTOLadd_string o o i vttt it e e e 20
4.1.5 PLUTO,add dataset o i i i ittt e e e 20
4.1.6 PLUTO0_add dataset listttt einen... 22
4.1.7 PLUTO_add_timeseries o v i v i vt i it ettt e e 22
4.2 Getting Data from a Plugin Interface L 22
4.2.1 PLUTO get_label(plint) o o i it ittt et e e 22
4.2.2 PLUTO.get._description(plint), 23
4.2.3 PLUTO._get_optiontag(plint), 23
4.2.4 PLUTO_getnumber(plint), 23
4.2.5 PLUTO.get_string(plint) 23
4.2.6 PLUTO.get_idcode(plimt) i i i i ittt ettt 24
4.2.7 PLUTO._get_idclist(plint) o i ittt 24
4.2.8 PLUTO._get_timeseries(plint) 24
4.3 Computing Something Useful 25

5 Sending Information to the User and to AFNI 27
5.1 Sending a Dataset Back to AFNI 27
5.2 Displaying Miscellaneous Information L oL Lo, 28
5.3 Sending a Function to AFNI e e 30
5.4 Sending a Time Series to AFNI e e 32

6 Call for Ideas 33

MCW AFNI Plugins &

December 27, 1996

*kk —

1 AFNI Datasets: Background Information

The central type of data structure in AFNI is the dataset. In MCW AFNI 1.99 and later,
a dataset can have many forms. Since virtually all plugins will manipulate datasets, a
thorough understanding of the possible types of datasets is necessary for a plugin author.

1.1 Storage of Datasets on Disk

A dataset .BRIK file contains only image data. However, it is not necessary that a dataset
actually have a .BRIK file. This is due to the warp-on-demand feature of AFNI : images
can be displayed by being transformed from a parent dataset that does have a .BRIK file.

There were two reasons for the development of this capability. The first reason was speed
of interaction: it takes about a minute to transform a typical 3D dataset from original to
Talairach coordinates (for example). It only takes a second to do a single slice. I didn’t want
to make the users wait that minute when the “Transform Data” button is pressed, only to
find that a mistake had been made and the transformation would have to be recomputed.
The second reason was conservation of memory. A typical functional dataset is gathered at
a much coarser resolution than an anatomical reference. For display purposes, the functional
dataset must be transformed to the anatomical dataset’s grid. If this could not be performed
“on demand”, then every functional dataset would have to be interpolated to the 3D grid
of its anatomical reference. This would consume large amounts of memory, large amounts
of disk space, and large amounts of CPU time.

The AFNI “Write Brick” buttons call the warp-on-demand routines once for each slice in
the output dataset, and write the slices to disk to form the new .BRIK file.

This presents a problem for the plugin author. To deal with all possible datasets that
might be presented to it, a plugin would have to be able to call the warp-on-demand routines
and deal with datasets in this slice-at-a-time fashion. This can be quite complex. As an
alternative, I have set up the plugin interface so that the plugin author can specify that only
datasets with actual 3D .BRIKs be passed to the plugin routines. Then the plugin code can
be confident it will only have to deal with collections of 3D arrays.

For the present, plugins must deal only with the datasets that actually have .BRIK
files. 1 have not yet documented the methods required for a plugin to deal with warp-
on-demand datasets.

Plugin authors also need to be aware that dataset bricks may not be stored in memory
at any given moment. To overcome this, the macro DSET_load must be called to read the
dataset .BRIK file into memory, if it is not already present.

Another complication is that dataset brick arrays can be stored in one of two fashions.
The first method is via the usual malloc of workspace. The second method uses the Unix
mmap function, which maps the .BRIK file directly into memory address space. This mapping
15 done in readonly mode; that is, a plugin must not attempt to write into a brick array
of a mmap-ed file. If a plugin wishes to modify an existing dataset, then it must force the

MCW AFNI Plugins « -3 December 27, 1996

dataset brick arrays to be stored in malloc mode, rather than mmap mode. A routine is
provided to do this.

1.2 Dataset Types

All datasets have a type attached. Each type is categorized as being anatomical (which
can be displayed in the background) or as being functional (which can be displayed as
the color overlay).

At present, all anatomical types are treated equally. The different names (spgr, epan, .. .)
are just for the user’s convenience. There are at present five functional dataset types, which
are not all treated equally:

fim Functional Intensity
— one value is stored per voxel

fith Functional Intensity + Threshold
— two values are stored per voxel:
— the first is “intensity” (defined arbitrarily);
— the second is “threshold”, which is a number between —1.0 and
1.0, which can be used to select which voxels are considered
“active”.
fico Functional Intensity + Correlation
— two values are stored per voxel:
— the first is “intensity”;
— the second is a correlation coefficient (between —1.0 and 1.0),
which can be used to select “active” voxels at a given significance
(p) value.

fitt Functional Intensity + t-test
— two values are stored per voxel:
— the first is “intensity”;
— the second is a t statistic, which can be used to select “active”
voxels at a given significance.

fift Functional Intensity + F-test
— two values are stored per voxel:
— the first is “intensity”;
— the second is an F' statistic, which can be used to select “active”
voxels at a given significance.

The plugin interface allows the author to specify which dataset types can be passed. For
example, if one wishes to do some calculation specific to the correlation coefficient values,
then allowing only fico datasets into the plugin would be sensible. The alternative is to
allow arbitrary datasets into the plugin, and then test them for type. For example, this
might necessary if one wishes to write a plugin that could optionally apply a threshold to

MCW AFNI Plugins & —4- December 27, 1996

*kk —>
Customizing
idcodes

a dataset before further operations. If no threshold is desired by the user, then it would
make little sense to exclude fim datasets from entry.

1.3 Dataset Bricks and Sub-bricks

An AFNI dataset contains one or more 3D sub-brick arrays. For example, a 3D+time
dataset is essentially just an array of 3D sub-brick arrays, one at each time index. (Note
that there is no provision at present for more than one sub-brick array at each time index.
This may change in the future!) Each sub-brick is mapped to a single contiguous block of
memory; however, adjacent sub-bricks will not necessarily be adjacent in memory.

Sub-bricks can be arrays of type byte (a typedef for unsigned char), short (16 bit
signed int), float, or complex (a struct containing two floats). In places, I refer to these
basic datum types as “atomic types”. At present, all MCW AFNI programs will create
datasets in which all sub-bricks are of the same atomic type. This is not required by AFNI
itself, and may change in the future.

It is likely that a plugin author will wish to restrict the input to contain only sub-bricks
of a certain atomic type. The interface definition routines allow this. At MCW, we deal
mostly with short bricks. The plugin interface also allows the choice of input to be restricted
to 3D or 3D+time datasets.

Note that byte and short bricks may also have attached a float scaling factor. This is
used to allow compact storage of values that are really floats. For example, the correlation
coefficient sub-brick of a fico dataset (as generated by the 3dfim program) will normally be
stored as shorts in the range [—10000,10000], with a scaling factor of 0.0001 attached
to the brick.

1.4 Dataset idcodes

As of AFNI 1.99, all datasets have a (hopefully) unique identifying string embedded in
them — this is called the idcode. An example is MCW_FCKWJALORIV. The 4 letter prefix
(MCW_ in this example) is given by the C macro IDCODE_PREFIX, which can be defined in the
machdep.h file (changing this will require recompiling the entire MCW AFNI package). If
it is not otherwise defined, then MCW_ will be used for the prefix. The rest of the idcode
string (a total of 16 characters) is generated pseudorandomly (by combining the computer
nodename with the time of day).

Even within a single run of AFNI, one cannot assume that a pointer to a dataset struct
will remain constant. AFNI may deallocate and reallocate dataset pointers during its run
(this will happen when one of the “Rescan” buttons is used, for example). The only way
to uniquely retain a hold on a dataset is to use its idcode. For that reason, the plugin
interface routines return a pointer to an idcode for each dataset that the user inputs. The
plugin must then call a function to get the pointer to the actual dataset struct. If a plugin
wishes to remember which datasets it was called with in previous executions, it should save
the idcodes, not the dataset pointers.

MCW AFNI Plugins « —5— December 27, 1996

The use of idcodes presents a problem when copying datasets. If the PLUTO_copy_dset
routine is used to make a working copy of a dataset, then a new idcode will be generated.
But if a user uses the Unix cp command to copy a dataset’s .HEAD and .BRIK files, this new
dataset will have the same idcode as the original. This will cause confusion, at best, if both
datasets are then loaded into the same AFNI run.

There is no simple solution to this problem, since datasets can refer to each other (e.g., a
dataset transformed to Talairach coordinates contains an idcode that points to its parent
dataset). When a dataset is copied, does the user want its children to point to the copy or
to the original parent? Should a copy of a dataset that points to a parent still point to that
parent? (If so, then two datasets will have the same parent. If not, what is the parent of
the copied dataset to be?) As a partial solution, you can use the auxiliary program 3dnewid
to attach a new idcode to a dataset. This will not change the idcodes it has that point
to other datasets (its ‘parents’), nor will this change the idcodes inside other datasets that
point to the altered dataset (its ‘children’).

2 Accessing Data in a Dataset

There are a number of functions and macros that provide access to the data inside a dataset.
Alternatively, one can directly access the struct data elements; this is necessary in some
cases, since at present the dataset struct type is not fully encapsulated behind a wall
of interface routines.
Many of the routines and data types start with the string THD_ — this stands for “3 dimen-
sional dataset”. The macros are defined in the file 3ddata.h and the functions in 3ddata.c.
Do not modify these files, since they are at the core of the entire MCW AFNI package.
* Kk —> Other routine names described below start with the string PLUTO_ — this stands for
Not a dog “PLugin UTility Operation”. These are routines (or macros) that were developed specifically
for the use of plugins.

2.1 Pointer to the Dataset

The type MCW_idcode is a typedef for a struct that contains the idcode string described
above. When a user calls a plugin and provides a dataset, the plugin retrieves a “MCW_idcode *”
by using the routine PLUTO_get_idcode. To get a pointer to an actual dataset structure,
then the appropriate code fragment is:

MCW_idcode * idc ;
THD_3dim_dataset * dset ;

idc = PLUTO_get_idcode(plint) ;
dset = PLUTO_find_dset(idc) ;

(The plint variable will be explained in §4.) The pointer dset is needed for all further
access to the dataset contents.

MCW AFNI Plugins « —6— December 27, 1996

If two idcodes are obtained, the plugin can test them for equality using the macro
EQUIV_IDCODES(*idc1,*idc2), which will return 1 if the idcodes pointed to by idc1l and
idc2 are equivalent. Note that the macro takes as input actual MCW_idcode structs, not
pointers MCW_idcode *, which is the return type of PLUTO get_idcode().

2.2 Loading and Unloading Data

The macro DSET_load(dset) will call the appropriate routine to read all the sub-bricks of a
dataset into memory, if need be. The macro DSET_unload(dset) will free the memory space
occupied by the input dataset. Note that AFNI may execute DSET_unload() on a dataset
after the plugin returns control to the main program.

2.3 Dataset Dimensions and Orientation

The spatial extent of a dataset is stored in a substructure called a THD dataxes. Some
relevant elements of this structure can be accessed by:

dset->daxes->nxx Number of voxels in the z direction
dset->daxes->xxorg x coordinate of center of voxel 0
dset->daxes->xxdel voxel size in z direction (may be negative)

The z coordinate of the center of the i voxel in the z direction is
dset->daxes->xxorg + dset->daxes->xxdel X ¢ for:=0...dset->daxes->nxx-1.

Similar variables exist for the y and z directions, with the xx’s in the variable names replaced
by yy’s and zz’s, respectively.

For many purposes, a plugin does not need to know the orientation of the dataset arrays.
If such a need is encounted, the orientation is also stored in the dset->daxes structure. If
you are operating on AC-PC or Talairach coordinate data, this will always be —z = Right,
+2x = Left, —y = Anterior, +y = Posterior, —z = Inferior, and +2z = Superior. In original
coordinates, the data will be stored in whatever slice orientation was used to form the dataset
in program to3d. For example, the orientation of the x axis can be found by looking at the
variable dset->daxes->xxorient, which will have one of the values

ORI_R2L_TYPE = Right-to-Left
ORI_L2R_TYPE = Left-to-Right
ORI_P2A_TYPE = Posterior-to-Anterior
ORI_A2P_TYPE = Anterior-to-Posterior
ORI_I2S_TYPE = Inferior-to-Superior
ORI_S2I_TYPE = Superior-to-Inferior

ORI_GEN_TYPE = General orientation (not used at present)

MCW AFNI Plugins & —7— December 27, 1996

The last code is intended for the long-awaited but oft-postponed day when AFNI supports
the creation of datasets with arbitrary axes orientations.

2.4 Dataset Sub-brick Arrays

The data in the p'™™ sub-brick of a dataset is accessed by the macro DSET_ARRAY (dset,p).
This will return a “void *” which must be cast to the appropriate pointer type. If the
pointer returned is NULL, then the dataset is not loaded into memory (if it does not have a
.BRIK file, this will certainly be the case; otherwise, DSET_load(dset) should be executed).

Unless the plugin interface specified that only datasets with one particular brick type
were allowed, a plugin must be able to determine what type of data is stored in a sub-
brick. This is done with the macro DSET_BRICK_TYPE(dset,p). The value returned will
be one of the following integers:

MRI_byte meaning unsigned char
MRI_short meaning short int
MRI float meaning float
MRI complex meaning complex, which is defined by
typedef struct { float r,i ; } complex ;

The (i,7,k) voxel in the dataset is at location
1 + dset->daxes->nxx X j 4+ dset->daxes->nxx X dset->daxes->nyy X k

in the array returned by DSET_ARRAY.

The sample plugin plug 3ddot.c shows an example of manipulating datasets of gen-
eral type. In general, this could get quite complex. One way to deal with this (as in
plug_3ddot.c, 3dmerge.c, and other codes) is to make a float copy of a dataset brick, and
operate on that, only converting the results to the desired output type when done.

2.5 Miscellaneous Dataset Items and Actions

A glance at 3ddata.h and 3ddata.c will show that there are many components to an AFNI
dataset. Only some of them are outlined here.

Usage (Type): Description

DSET_BRICK_TYPE(dset,p) (int): See §2.4

DSET_BRICK_BYTES (dset,p) (int): How many bytes in sub-brick p

DSET PRINCIPAL INDEX(dset) (int): Index (p) of “principal value” in the dataset (cur-

rently is always 0)

DSET_THRESH_INDEX (dset) (int): Index (p) of the “threshold value” if the dataset
has one; will be —1 if the dataset has no such data (cur-
rently is 1 for fith, fico, fitt, and fift)

MCW AFNI Plugins & —8— December 27, 1996

DSET_PREFIX(dset)
DSET_FILECODE(dset)
DSET_IDCODE (dset)
DSET_BRICK_FACTOR (dset,p)

DSET_NUM_TIMES (dset)
DSET_NVALS_PER_TIME(dset)

DSET_NVALS (dset)
DSET_GRAPHABLE (dset)

ISVALID_3DIM_DATASET(dset)

dset->view_type

ISANAT (dset)
ISFUNC(dset)

dset->func_type

DSET write(dset)
PLUTO_output_header(dset)

char *): Pointer to filename prefix string
char #): Pointer to filename prefix+view string

MCW_idcode *): Pointer to dataset idcode

~ T~ —~

float): Scale factor to apply to apply to each element
of the p' sub-brick. If zero, no scaling applies.

(int): Number of time points in dataset (will be 1 except
for 3D+time datasets)

(int): Number of sub-bricks at each time point (currently
is always 1)

(int): Total number of sub-bricks in dataset

(int): Returns 1 if this dataset is 3D+time, and can be
loaded into memory

(int): Returns 1 if dset points to a valid dataset

(int): Determines coordinate system dataset has been

transformed to:
VIEW_ORIGINAL_TYPE = +orig
VIEW_ACPCALIGNED_TYPE = +acpc
VIEW_TALAIRACH_TYPE = +tlrc

(int): Returns 1 if dataset is an anatomical type

(int): Returns 1 if dataset is a functional type

(int): Code indicating what type the dataset is: will
be one of the ANAT *_TYPE or FUNC_*_TYPE codes in
3ddata.h. N.B.: It is necessary to use the ISANAT
macro (say) together with dset->func_type to precisely
determine the dataset type, since the ANAT_*_TYPE and
FUNC_x_TYPE codes overlap; for example FUNC_FIM_TYPE
and ANAT_SPGR_TYPE are both 0.

(none): Writes dataset to disk (.HEAD and .BRIK)

(none): Write dataset .HEAD to disk

2.6 Creating a New Dataset

Creating a completely new dataset is moderately complex.

Under most circumstances,

however, a plugin will usually wish to make an “empty copy” of an existing input dataset —
an empty copy contains no sub-bricks, but contains all the geometric and type information
of a dataset. This is done with the call

THD_3dim_dataset * old_dset , * new_dset ;
new_dset = EDIT_empty_copy(old_dset) ;

MCW AFNI Plugins « —9— December 27, 1996

Function EDIT empty_copy takes as input a pointer to a dataset and returns as output a
pointer to a new dataset where all of the control information about the dataset (except its
idcode) has been copied. The plugin can then use EDIT dset_items (described below) to
change whatever it needs to about the new dataset. The routine EDIT substitute_brick
can then be used to attach new sub-brick arrays to the new dataset:

EDIT_substitute_brick(new_dset , p , MRI_type , ptr) ;

where p is the index of the sub-brick to replace; MRI_type is one of the MRI_ type codes
given earlier (type is byte, short, float, or complex)—see §2.4; and ptr is a pointer to an
array of values of that type, which must have been created using malloc (not XtMalloc).
If ptr is NULL, then appropriate space will be malloc-ed, which can later be accessed using
DSET_ARRAY (new_dset,p).

The function PLUTO_copy.dset (in afni_plugin.c) can also be used to create a “full
copy” of a dataset:

THD_3dim_dataset * old_dset , * new_dset ;
char * new_prefix ;
new_dset = PLUTO_copy_dset(old_dset , new_prefix) ;

The new dataset will have all the sub-bricks copied as well. This routine can be used as
an example of how to create a dataset.

2.7 Changing Dataset Internal Items

If one wishes to change the contents of dataset control items, it might seem simplest to do
this directly by accessing the appropriate fields of the THD_3dim dataset structure. This is
confusing, however, and another method is available. The routine EDIT_dset_items takes as
input a dataset pointer (such as dset above), and a paired list of subitems to modify and their
new values. (The call syntax is similar to XtVaSetValues.) For example, to change a dataset
memory allocation type to malloc (so that the plugin can modify the sub-brick arrays), and
at the same time change the dataset filename prefix, the appropriate call would be

char * new_prefix ;
ierr = EDIT_dset_items(dset,
ADN_malloc_type, DATABLOCK_MEM_MALLOC ,
ADN_prefix , mnew_prefix ,
ADN_none) ;

Here, the return code ierr is the count of the number of errors that happened during
EDIT dset_items (this should be 0). The two items on the second line are the first pair
of inputs, which in this case are a code, ADN_malloc_type, indicating the dataset item to
modify, and the new value of that item, DATABLOCK_MEM MALLOC (a symbolic constant defined
in 3ddata.h). The two items on the third line are the second pair of inputs: in this case,

MCW AFNI Plugins « -10—- December 27, 1996

ADN prefix indicating that the next input is a new prefix for the dataset’s disk files, and
new_prefix, a pointer to the new prefix string. The last line is the special value ADN_none,
indicating that no more inputs to EDIT dset_items are present.

The following table shows all the values that can be altered using EDIT dset_items. It is
not possible to alter items that affect the size of a dataset after the dataset actually has sub-
bricks attached to it. That is, EDIT_empty_copy(dset) can be used to create a dataset with
no sub-bricks, then EDIT_dset_items can be used to alter the dataset control parameters at
will, but once EDIT _substitute_brick is used to actually attach data sub-bricks to the new
dataset, then altering parameters such as ADN_nxyz is illegal. Such parameters are marked
with a superscript * in the table.

Control Code Data Type Meaning

ADN_prefix char * Changes the prefix for the dataset filenames.

ADN directory_name char * Changes the name of the directory where the data-
set will be stored.

ADN_brick_fac float * Changes the scaling factors attached to all sub-

bricks. The input is a float array of length
DSET_NVALS (dset). The p'' entry contains the
scale factor for the p*® sub-brick. If this scale factor
is zero, then the sub-brick values will not be scaled;
otherwise, they will be multiplied by this factor
before being used in AFNI .

ADN_malloc_type int Changes the way in which the sub-brick arrays are
stored in memory. Must be one of the following
codes:

DATABLOCK_MEM_MALLOC = use malloc
DATABLOCK_MEM_MMAP = use mmap
DATABLOCK_MEM_ANY = let AFNI choose
Note that if this parameter is changed, then the
dataset must have DSET_load() executed on it be-
fore the sub-bricks will be available in memory.
*ADN_datum_all int Changes the atomic type stored in all sub-bricks.
Should be one of the following codes—see §2.4:
MRI_byte MRI_short
MRI_float MRI_complex
Note that EDIT_substitute_brick can change the
atomic type of a sub-brick later.
*ADN_datum_array int * Changes the atomic type stored in all sub-bricks.
Unlike ADN_datum_all, the input is an array of
length DSET_NVALS (dset) which contains MRI_type
codes for each sub-brick individually.
*ADN _nvals int Changes the number of 3D sub-bricks stored in the
dataset.

MCW AFNI Plugins « 11— December 27, 1996

*ADN_nxyz
ADN_xyzdel
ADN_xyzorg
ADN_xyzorient

ADN_type

ADN_view_type

ADN_func_type

ADN_stat_aux

ADN_ntt

ADN_ttorg

MCW AFNI Plugins &

THD_ivec3

THD _fvec3

THD _fvec3

THD_ivec3

int

int

int

float *

int

float

Changes the number of points stored along each
axis of the dataset (e.g., nxx).
Changes the spacing (mm) between points along
each axis of the dataset (e.g., xxdel).
Changes the offset (mm) to the center of the 0"
voxel along each axis of the dataset (e.g., xxorg).
Changes the orientation codes for each axis of the
dataset (e.g., xxorient).
One of the following codes:
HEAD_ANAT_TYPE HEAD _FUNC_TYPE
GEN_ANAT_TYPE GEN_FUNC_TYPE
This values is used with ADN_func_type to deter-
mine how the dataset is processed. ANAT types are
displayed as the background grayscale images in
AFNI. FUNC types are displayed as the color overlay
images.
Determines the coordinate system that this dataset
has been transformed to:
VIEW_ORIGINAL_TYPE = +orig
VIEW_ACPCALIGNED_TYPE = +acpc
VIEW_TALAIRACH_TYPE = +tlrc.
If ADN_view_type is an ANAT type, then this should
be one of:
ANAT_SPGR_TYPE ANAT_FSE_TYPE ANAT_EPI_TYPE
ANAT MRAN_TYPE ANAT CT_TYPE ANAT_SPECT_TYPE
ANAT PET_TYPE ANAT _MRA_TYPE ANAT _BMAP_TYPE
ANAT DIFF_TYPE ANAT_OMRI_TYPE
If ADN_view_type is an FUNC type, then this should
be one of:
FUNC_FIM_TYPE FUNC_THR_TYPE FUNC_COR_TYPE
FUNC_TT_TYPE FUNC_FT_TYPE
Note that if ADN_func_type is changed, the num-
ber of sub-bricks appropriate for this dataset may
change also. You must do this explicitly using

ADN nvals at the same time.
The float * argument must point an array of

length MAX_STAT_AUX, which will contain the aux-
iliary statistical parameters needed for the fico,
fitt, or fift dataset.

Changes the number of time points in the dataset.
N.B.: You must also change ADN_nvals when you
change this!

Changes the origin of time for 3D+time datasets.

-12—- December 27, 1996

ADN _ttdel float Changes the time step for 3D+time datasets.

ADN_ttdur float Changes the duration of data acquisition for each
time point. This parameter is currently unused by
any AFNI program.

ADN_tunits int Changes the units that are used for time in a
3D+time dataset. Legal values are:

UNITS_MSEC_TYPE
UNITS_SEC_TYPE
UNITS_HZ_TYPE.

Note that the THD_ivec3 and THD_fvec3 types are defined in vecmat.h (which will be
included when you #include "afni.h"). They are used to encapsulate 3-vectors of integers
and floats, respectively. (By the way, ADN stands for Afni Dataset Name.)

2.8 Header Attributes

As you should know by now, AFNI datasets are stored in two files, with names ending in
.HEAD and .BRIK. The .HEAD file is plain ASCII and contains attributes, which are named
arrays. When AFNI reads in a .HEAD file, it firsts reads all the attributes in, then searches
them for the ones needed to define a dataset. Other attributes will be ignored by AFNI,
but still will be in memory, and will still be written to disk when the dataset output routine
is called. This means that a plugin can attach new attributes to a dataset, and that these
will be preserved when the dataset is written out and read back in.

There are three types of attributes: string, float, and int. They are stored in structs
defined below:

typedef struct { typedef struct { typedef struct {
int type ; int type ; int type ;
char * name ; char * name ; char * name ;
int nch ; int nfl ; int nin ;
char * ch ; float * f1 ; int * in ;

} ATR_string ; } ATR_float ; } ATR_int ;

A string attribute can be added to a dataset with the routine
THD_set_string atr(dset->dblk , name , str) ;

where name is a char * that points to a NUL-terminated string which will be used to identify
the attribute, and str is a char * that points to the NUL-terminated string to store as the
attribute’s value. A float attribute can be added to a dataset with the routine

THD_set_float_atr(dset->dblk , name , nfl , f1) ;

where nfl is the number of floats to be stored in the attribute, and f1 is a float * that

MCW AFNI Plugins & -13— December 27, 1996

*k*k —>
System
specifics

points to the values to be stored. Similarly,
THD_set_int_atr(dset->dblk , name , nin , in) ;

is used to add an int attribute to a dataset, where nin is the number of integers to store
and in is an int * pointing to the values to be stored.

Attributes will be saved to the dataset’s .HEAD file the next time the dataset is written
to disk. To force the .HEAD file only to be written out, call

PLUTO output_header(dset) ;

The function call THD find string atr(dset->dblk,name) will return a pointer of type
“ATR_string *” if an attribute is found that has the same name. If NULL is returned, then
no match was found. Otherwise, the nch and ch entries of the ATR_string struct contain
the count of characters and the character array, respectively. Similar routines and remarks
apply to finding and using float and int attributes.

3 Plugin Libraries

Plugins are C routines compiled and linked into the shared (or dynamic) library format.
On most Unix systems, the suffix for such files is .so, but on HP-UX systems, the file
suffix is .s1. (HP-UX also uses a different API to access such shared libraries, but AFNI
will take care of that for you.)

Plugins can be compiled into shared library format using the Makefile distributed with
MCW AFNI 2.00. For example, make fred.so will compile fred.c into fred.o, and then
appropriately run 1d on fred.o to produce fred.so. At this time, I have only verified
that my compilation procedure and shared library interface code works on Linux 1.2.13,
SGI IRIX 5.3 and 6.2, HP-UX 9.05 and 10.0, and Sun Solaris 2.5. Making plugins work on
other systems will require appropriate editing of the platform-specific Makefiles and also
of the machdep.h file.

AFNI will search for plugin libraries when it starts. It will look in the directories specified
in the shell environment variable AFNI_PLUGINPATH (this is a colon-separated list of direc-
tories — for an example, type echo $PATH to see what your current executable path is). If
this variable does not exist, then AFNI will use the PATH variable instead. This makes it
possible to put the plugin libraries in the same location as the AFNI binaries.

AFNI will attempt to load all shared library files it finds. System libraries will not work
properly, since they will not have the required routine PLUGIN init (see the next section).
Such libraries will then be unloaded. If more than one copy of a correct plugin is found,
AFNI will load them all. This will probably confuse the user. (It confuses me.)

MCW AFNI Plugins « ~14- December 27, 1996

4 Creating a Plugin

There are three issues to address in creating a plugin:

e (Creating a user interface.
e Getting data out of the the user interface when the plugin is called.

e Doing something useful and communicating it back to AFNI.

Each plugin must have one routine named PLUGIN_init. AFNI will call this routine to get
the specification of how the plugin interface should look. This routine should be prototyped

PLUGIN_interface * PLUGIN_init(int ncall)

The output type “PLUGIN_interface *” is a pointer to a type defined in afni_plugin.h.
This file will be among the header files loaded with the statement #include "afni.h",
which must be at the top of every plugin source file. The return value must be constructed
using the routines described later. A variable of type PLUGIN interface encapsulates the
way a plugin will be called from AFNI.

Each plugin library can define more than one interface. That is the purpose of the
ncall input to PLUGIN_init. On the first call to PLUGIN init, ncall will be 0. On each
subsequent call, ncall will be one larger. This will continue until PLUGIN_init returns
NULL. After that, PLUGIN init will never be called.

Plugin interfaces are called up by the user from the Plugins menu button in AFNI,
located at the bottom of the Datamode control panel. If this menu button is not present,
this means that AFNI did not find any plugins when it started up.

In principal, a plugin need not define any interfaces. It could simply use the call to
PLUGIN init to start itself, and then it could get all the information it needs directly from
AFNI, or from the user by popping up its own windows. For this reason, the PLUGIN init
functions are called only after AFNI has read in all its inputs, has initialized X11, and is
just about to pop up the first controller window.

At present, such a “standalone” plugin would have to use something like Xt AppAddTimeQOut
or X11 events to get control after PLUGIN_init returns. It would be possible for a plugin to
spawn threads to process data while AFNI runs in the “foreground”, but anyone contem-
plating this approach should be aware that AFNI and Motif are not thread-safe — a thread
cannot directly call a routine in AFNI or Motif to get some information or perform some
task. (I have thought about adding a “heartbeat” to AFNI | so that a plugin could register
to be called from the AFNI main thread every cycle (say 100 ms). This would allow the
plugin main thread to service requests from other threads through the use of mutexes and
condition variables. Any comments on this idea?)

A plugin interface can simply specify that the plugin be called immediately when its menu
item is picked. In this case, it the the plugin code’s responsibility to get whatever inputs
it needs from the user — perhaps by popping up its own control window. This might be

MCW AFNI Plugins « —15— December 27, 1996

appropriate for a plugin that provided some new graphical capability; for example, a volume
rendering tool (anyone want to write this one for me?). None of the sample plugins use
this method of plugin activation.

All the sample plugins use the facility that AFNI provides to create a popup control box,
which lets the user enter control parameters and then press a “Run” button to actually call
the plugin code. The routines described below let the plugin author specify what kind of
parameters (e.g., strings, numbers, or datasets) are required by the plugin. When the user
chooses the plugin from the AFNI menu, this control box will be popped up to the display.
If a plugin’s needs fit into this paradigm, a plugin need have no direct interaction with the
user — the routines in afni_plugin.c will do these chores.

4.1 Creating a Plugin Interface

A quick summary of the procedure, which is to be used from within the PLUGIN_init () func-
tion:

Step 1: Use function PLUTO_new_interface to create the initial PLUGIN_interface data
structure.

Step 2: Use function PLUTO_add option to create an option line in the AFNI interface
menu. There is no built-in limit to the number of option lines that may be added to an
AFNI interface menu. (An “option line” is a line of “chooser” widgets in the interface
window. It may or may not be optional, depending on how you call this routine.)

Steps 2(abcdef): Use functions

PLUTO_add_number, PLUTO_add_string, PLUTO_add_dataset,
PLUTO_add_dataset_list, and PLUTO_add_timeseries

to add plugin parameter choosers to the most recently created option line. Up to 6
choosers may be added to an option line. When one option line is finished, return to
Step 2 to create the next.

Step 3: When done, return the new PLUGIN_interface * to AFNI.

For each PLUT0_add_* routine, there is a corresponding PLUTO_get_* routine to retrieve the
user’s inputs from the popup window.

These interface creation routines are documented below. Examples of their usage found
in the sample plugins. Note that there is currently no facility for passing other kinds of
information to a plugin.

MCW AFNI Plugins « —16— December 27, 1996

The figure below shows a popup control box created by application of the above proce-
dures. At the top are four control buttons:

Quit To close the popup without running the plugin;

Run+Keep To run the plugin and keep the popup open;

Run+Close To run the plugin and close the popup window;

Help To popup a window with the help string provided by the plugin author

when PLUTO_new_interface was called.

Below, there are four option lines, labeled Dataset, Params, Threshold, and Output. The
first option line has a dataset chooser, the next two have number choosers, and the fourth
(which has been toggled off by the user) has a string chooser.

3D Cluster

AFNI Plugin: Dataset Clustering

|
I Quit I Runt+kKeep I Run+Close I Help
|

|| Function verbalf\"‘l :time@ltori

n Radius(am) [0 (1.6 | MinvolCul) [¥ [[1000
Bl Threshold |cutoff I;Ia‘_ [0.5 |
[T Output —I

Sample plugin interface window (from plug_clust).

4.1.1 PLUTO_new_interface

This routine is used to initialize a new interface to a plugin. Its prototype is

typedef char * cptr_func() ; /* generic function returning "char x*" x/

PLUGIN_interface * new_PLUGIN_interface(char * label ,
char * description ,
char * help ,
int call_type ,
cptr_func * call_func) ;

MCW AFNI Plugins & -17- December 27, 1996

*kk —
plint

The arguments are

label C string to go on the menu button that activates this interface (will be
truncated to 15 characters).

description C string to go on the interface control panel popped-up when
the button above is pressed—this has no meaning if call_type
= PLUGIN_CALL_IMMEDIATELY. In the figure above, this string was
"Dataset Clustering".

help C string to be popped up if the user presses Help on the
interface control panel—this has no meaning for call_type =
PLUGIN_CALL_IMMEDIATELY. If this is NULL, then there will be no help

available.
call_type C int that describes how the plugin is to be called from AFNI :

PLUGIN_CALL_IMMEDIATELY means to call call func as soon as the
activating button is pressed;

PLUGIN_CALL_VIA_MENU means to have AFNI popup a menu to con-
trol the input parameters passed to call_func.

call_func Function that AFNI should call when the user activates this plugin.

The routine will be passed the pointer “PLUGIN_interface *” created
herein, which can be interrogated with the PLUTO_get_* routines. The
call_func should return a “char *”, which is NULL if everything is OK,
and points to an error message that A FNI will display if something bad
happened. See the sample plugins for examples of how this works.

The value returned by PLUTO_new_interface is the pointer to the new interface struct.
This value should also be the return value of the PLUGIN_init routine. This pointer will be
called plint in the sample code fragments below. Note that the three input strings (1abel,
description, and help) are copied by AFNI.

4.1.2 PLUTO_add_-option

This routine is called to add an “option line” to a plugin interface control box. An option
line may or may not be optional, depending on the value of mandatory. The prototype
for this function is

void PLUTO_add_option(PLUGIN_interface * plint ,
char * label , char * tag , int mandatory) ;

The arguments are

plint The value returned by PLUTO_new_interface.

label C string to go at the start of the option line. In the figure above, the
first option line label is "Dataset".

MCW AFNI Plugins & —18- December 27, 1996

tag C string that will be passed to the plugin’s call_func to identify this
option line. Under most circumstances, tag can be the same as label.
Only if you create multiple option lines with the same label and wish
to be able to distinguish them inside the plugin will the use of tag be
necessary.

mandatory C int saying whether or not this option line has required inputs.
If mandatory=1, then this option line will always be passed to the
call func. If mandatory=0, then the user can toggle this line off, in
which case the values on that line will not be passed to the call_func.

After this function is called, then up to 6 choosers can be added to the option line by
calling the following routines.
4.1.3 PLUTO_add number

This routine is called to add a number chooser to the most recently created option line.
Numbers are always returned to the plugin call_func in floating point format. Numbers
can be restricted to a finite set, or be editable by the user. The prototype for this function is

void PLUTO_add_number(PLUGIN_interface * plint , char * label ,
int bot , int top , int decim ,

int defval , int editable)
The arguments are
plint The value returned by PLUTO_new_interface.
label C string to go at the left of the chooser.

bot, top, decim C ints specifying the range of allowable numbers. decim is used
to specify the decimal shift leftwards; for example, decim=2 means
that the legal range of this chooser is 0.01*bot...0.01*top.

defval C int specifying the default value for the chooser when it is first
popped up. If decim is nonzero, then the actual default value is
defval/10**decim.

editable C int specifying if the user can edit (type in) the value. If

editable=1, then the number can be selected either with the ar-
row controls or by typing. If editable=0, then a fixed menu of
numbers is all that is available to the user (from bot/10**decim
to top/10**decim, inclusive).

In the figure above, the number choosers on the second and third option lines are all
editable.

MCW AFNI Plugins « -19- December 27, 1996

4.1.4 PLUTO_add_string

This routine is used to add a string chooser to the most recently created option line. The
string to be entered can either be selected from a fixed list or can be free-form (typed in).
The prototype for this function is

void PLUTO_add_string(PLUGIN_interface * plint , char * label ,
int num_str , char ** strlist , int defval) ;

The arguments are

plint The value returned by PLUTO_new_interface.
label C string to go at the left of the chooser.
num_str C int providing the count of how many strings are given in strlist. If

this is 0, then instead of being presented with a list of fixed strings, the
user will have to type in a string. At present, the maximum allowed value
for num_str is 34 (PLUGIN_MAX_STRING_RANGE in afni_plugin.h).

strlist strlist[i] is a pointer to the i*! string value that the user is to choose
from, for s = 0...num_str-1.
defval If num str > 0, then this is an integer from 0 to num_str-1 indicating

which string in strlist is the default value.
If num_str == 0, this gives the width of the field that the user has to type
in the string. (I usually use 19 for this case.)

In the figure above, the string chooser on the fourth option line was created with num_str=0,
and so is a “type in” field (in this case, used to specify the prefix of the output dataset).
4.1.5 PLUTO add dataset

This routine is used to add a dataset chooser to the most recently created option line. The
dataset to be chosen can be restricted in various ways, so that the plugin need not deal with
the full range of possibilities described in §1. The prototype for this function is

void PLUTO_add_dataset(PLUGIN_interface * plint , char * label ,
int anat_mask , int func_mask , int ctrl_mask) ;

The mask inputs are bitwise ORs (|) of dataset type masks. These are used to specify the
types of datasets that can be passed to the plugin. The first two _mask inputs below cannot
both be zero (for then no dataset would be allowed into the plugin!).

plint The value returned by PLUTO new_interface.
label C string to go at the left of the chooser.

MCW AFNI Plugins & —20— December 27, 1996

anat_mask C int controlling which kind of anatomical datasets are allowable. Chosen
from the list in 3ddata.h, which is currently
ANAT_SPGR_MASK ANAT_FSE_MASK ANAT_EPI MASK ANAT _MRAN_MASK
ANAT_CT_MASK ANAT_SPECT_MASK ANAT_PET_MASK ANAT _MRA_MASK
ANAT BMAP MASK ANAT DIFF_MASK ANAT_OMRI_MASK
and ANAT_ALL MASK, which will allow any anatomical dataset. Entering 0

for anat_mask will mean that no anatomical datasets will be choosable.
func_mask C int controlling which kind of functional datasets are allowable. Chosen

from the list in 3ddata.h, which is currently
FUNC_FIM_MASK FUNC_THR_MASK FUNC_COR_MASK
FUNC_TT_MASK FUNC_FT_MASK
and FUNC_ALL_MASK, which will allow any functional dataset. Entering 0

for func_mask will mean that no functional datasets will be choosable.
ctrl_mask An additional mask to specify further exactly which datasets should be

choosable:

SESSION_ALL_MASK If this is set, then the choice of datasets will be
drawn from all sessions now loaded into AFNI.
By default, only the “current” session will be in-

cluded.
DIMEN 3D MASK Masks that define whether 3D and/or 3D+time
DIMEN_4D_MASK (4D) datasets are allowable.

DIMEN_ALL_MASK

WARP_ON_DEMAND_MASK If this is set, then datasets that may not have a
.BRIK file will be included in the list of datasets
to choose from. In this case, the plugin must be
ready to deal with the warp-on-demand routines
that return one slice at a time. By default, only
datasets with actual BRIKs will be included.

BRICK_BYTE_MASK Masks that define what type of data should be
BRICK_SHORT_MASK stored in the sub-bricks of the allowable datasets.
BRICK_FLOAT_MASK

BRICK_COMPLEX_MASK

BRICK_ALLTYPE_MASK

BRICK_ALLREAL_MASK

Note that entering 0 for ctrl mask means that no datasets will be choos-
able. At the least, one of the DIMEN_ masks must be chosen, and one of
the BRICK_ masks must be chosen.

The dataset chooser is shown on the first line of the figure above. It comprises a label to
the left and a pushbutton to the right. Clicking on the pushbutton causes a list of eligible
datasets to pop up. When the user makes a selection, the name of the selected dataset
will be shown on the pushbutton.

MCW AFNI Plugins « 21— December 27, 1996

4.1.6 PLUTO_add_dataset_list

This routine is used to create a dataset list chooser in the most recently created option line.
Such a chooser allows the user to select multiple datasets. At this writing, no serious sample
plugin uses this—the “Testing” plugin in plug_power.c has a trivial example, which was
used to debug this facility. The prototype for this function is

void PLUTO_add_dataset_list(PLUGIN_interface * plint , char * label ,
int anat_mask , int func_mask , int ctrl_mask) ;

The arguments are exactly the same as in PLUTO_add _dataset.

4.1.7 PLUTO_add_timeseries

This routine is used to add a timeseries chooser to the most recently created option line. This
allows the user to choose from the list of *.1D files that were read in at program startup, or
were stored into the timeseries list later (via PLUTO_register_timeseries, or from a graph
window). The prototype for this function is

void PLUTO_add_timeseries(PLUGIN_interface * plint , char * label) ;

By now, the arguments should be self explanatory. A logical extension of this routine would
be PLUTO_add_timeseries_list. Perhaps someday. Then again, perhaps not.

4.2 Getting Data from a Plugin Interface

When the routine (call_func) associated with a “PLUGIN_interface *” is called, then the
first thing the plugin must do is extract the information that the user put into the interface
window (in the “chooser widgets”). This is done with various routines that start with
PLUTO_get_. They all take as input a variable of type “PLUGIN_interface *”, referred
to as plint below.

The sample plugins show how to use these functions. Note that they are designed assuming
that the plugin action function knows the layout of the option lines and choosers as set
up by the PLUGIN_init function. In all the sample plugins, the first part of the plugin
action routine is essentially a list of calls to PLUTO_get_something, with each “something”
being a copy of the PLUT0_add_something that was used to create a chooser widget in the
PLUGIN_init function. After all the user input parameters have been acquired and tested,
then the actual computations begin.

4.2.1 PLUTO_get_label(plint)

Returns the “char *” label supplied by PLUTO_new_interface. This could be used to
decide which plugin interface was calling the action function, if the same call_func were
used for more than one call to PLUTO new_interface. None of the sample plugins use
this function (or the next one).

MCW AFNI Plugins & —22— December 27, 1996

4.2.2 PLUTO get description(plint)

Returns the “char *” description supplied by PLUTO new_interface.

4.2.3 PLUTO_get_optiontag(plint)

Returns the “char *” tag specified for the next option line selected by the user. An
option line that is not selected (is toggled off) will be skipped by this function. NULL is
returned when the chosen options are exhausted. It is necessary to call this routine to be
able to get values from chooser widgets in the next option line. If the tag value is not
desired, then the macro PLUTO_next option(plint) can be used. This is the usual way
to advance to the next option line when it is known in advance what it will be (when the
option line is mandatory). Note that is necessary to use PLUTO next option(plint) or
PLUTO_get_optiontag(plint) to advance to the first option line, before trying to extract
user inputs via PLUTO_get_number(plint), etc.

In this routine, as in all the “PLUT0_get_” functions, the return value is a pointer (here,
char *). The memory targeted by this pointer should not be altered by the plugin code.
After the plugin returns control to AFNI, this memory will be XtFree-d.

4.2.4 PLUTO get number (plint)

Returns the next number from an option line number chooser. This will always be a float.
(If the next item on the current option line is not a number chooser, or there is no next
item, then the special value BAD_NUMBER will be returned.)

4.2.5 PLUTO_get_string(plint)

Returns a “char *” pointing to the next string from an option line string chooser. (If
NULL is returned, then the next item on the option line is not a string chooser, or there
is no next item.)

If the string returned is to be used as a dataset prefix, the routine PLUT0O_prefix ok (str)
can be used to check if the string str is acceptable. If zero is returned by this function, then
str is not acceptable as a dataset prefix (e.g., it contains an illegal character).

If the string returned was chosen from a fixed set, then the function call

int ii ;
ii = PLUTO_string_index(str , num_str , strlist) ;

will return ii such that strcmp(str,strlist[ii])==0). If ii==-1, then str was not
found in strlist.

MCW AFNI Plugins o —23- December 27, 1996

4.2.6 PLUTO_get_idcode(plint)

Returns an “MCW_idcode *” from an option line dataset chooser. If the value returned is
NULL, then the user did not make a choice. (If the next item on the option line is not a
dataset chooser, or there is no next item, NULL will also be returned.) Normally, the first
thing that one does with this is to pass it to PLUTO_find dset, which will return a pointer
to the actual dataset (or NULL if the idcode is illegal).

MCW_idcode * idc ;
THD_3dim_dataset * dset ;

idc = PLUTO_get_idcode(plint) ;
dset = PLUTO_find_dset(idc) ;

If dset is NULL, then the user did not make a choice.

4.2.7 PLUTO_get_idclist(plint)

Returns an “MCW_idclist *” from an option line dataset list chooser. This is a pointer to
a structure which contains a list of MCW_idcodes. The following 3 macros are used to access
the contents of the MCW_idclist struct:

PLUTO_idclist_count (idclist) = number of MCW_idcodes in the list

PLUTO_idclist_next(idclist) = returns an MCW_idcode * that points
to the next dataset idcode on the list
(returns NULL if past end of list)

PLUTO_idclist_reset(idclist) = resets the MCW_idclist so that
PLUTO_idclist_next () will start
again at the first dataset in the list

One way to use the value returned by PLUTO_get_idclist() is thus to repeatedly call
PLUTO_idclist_next (), then PLUTO_find dset (), until the dataset pointer returned is NULL.
This signals that the list of datasets picked by the user has been exhausted.

4.2.8 PLUTO get timeseries(plint)

A timeseries is one or more 1-dimensional arrays of floats. If a timeseries chooser is
placed in an option line, then the user can select from the list of *.1D files read in when
AFNI starts. PLUTO_get_timeseries() returns a pointer of type MRI_IMAGE * from an
option line timeseries chooser. This points to a ubiquitous and general image struct of a
type that is used heavily throughout AFNI. Full documentation of the MRI_IMAGE type is
beyond me at this time. For the purposes of reading a timeseries from a plugin chooser,
the following code fragment will serve:

MCW AFNI Plugins « 24— December 27, 1996

MRI_IMAGE * tsim ;
int ntime , nvec ;
float * vec ;

tsim = PLUTO_get_timeseries(plint) ;

if(tsim == NULL) return "No Timeseries Input" ;

ntime = tsim->nx ; /* number of points in each vector */

nvec = tsim->ny ; /* number of vectors */

vec = MRI_FLOAT_PTR(tsim) ; /* vec[i+j*nx] = i’th point of j’th vector */

/* for i=0..ntime-1 and j=0..nvec-1 */

As the sample above indicates, PLUTO_get_timeseries() may return NULL, which means
that the user did not select a time series.

4.3 Computing Something Useful

Utility is in the eye of the beholder, of course. One of the most common things that a plugin
will do is to create a new dataset. The low-level mechanics of this have been discussed in §2.

AFNI provides a routine to automate the creation of one kind of dataset. This function
will take as input a 3D+time dataset and return a fim dataset, with the intensity in each
voxel computed from that voxel’s time series. All that the plugin must do is provide a
function that takes as input a time series and returns as output the desired intensity value.
The output dataset will have its single sub-brick stored as shorts, with a scaling factor
attached (¢ la DSET_BRICK_FACTOR).

The prototype for this 3D+time to 3D dataset function is

typedef void generic_func() ;

THD_3dim_dataset * PLUTO0_4D_to_fim(THD_3dim_dataset * old_dset ,
char * new_prefix ,
int ignore , int detrend ,
generic_func * user_func ,
void * user_data)

The inputs to this routine are

old dset Pointer to the input 3D+time dataset. This dataset must not be warp-
on-demand.

new prefix C string that will be the new dataset’s filename prefix.

ignore C int specifying the number of points at the beginning of each time series
that will be ignored in all calculations.

detrend C int: if thisis 1, then each voxel time series will have its mean and slope
removed before being passed to user_func.

MCW AFNI Plugins & —25— December 27, 1996

user_func Function provided that computes the output value at each voxel, given
that voxel’s time series. The details of this function are documented below.

user_data A pointer to any data that needs to be passed to user_func. This would
normally be a pointer to a struct that contains parameters for the fim
calculation.

The function user_func should be prototyped as follows:

void user_func(double tzero , double tdelta , int npts , float ts[] ,
double ts_mean , double ts_slope ,
void * ud , float * val) ;

The arguments to user_func are:

tzero time at ts[0]

tdelta time at ts[1] (i.e., ts[k] is at tzero + kxtdelta); tzero and tdelta
will be in seconds if this is truly ‘time’

npts number of points in ts array

ts one voxel time series array, ts[0] ...ts[npts-1]; note that this will
always be a float array, and that ts will start with the ignore'™™ point
of the actual voxel time series.

ts_mean mean value of ts array

ts_slope slope of ts array; this will be inversely proportional to tdelta (units of
1/sec); if detrend is nonzero, then the mean and slope will been removed
from the ts array

ud the user_data pointer passed in here—this can contain whatever control
information the user wants
val pointer to return value for this voxel; note that this must be a float

Before the first time series is passed, user_func will be called once with arguments
(0.0, 0.0, nvox , NULL , 0.0 , 0.0 , user_data , NULL)

where nvox = total number of voxel time series that will be processed. This is to allow
for some setup (e.g., malloc of workspace). No value should be returned in this call; in
fact, the return pointer val will be NULL for this special call, which is how this call can be
distinguished from the nvox calls that follow.

After the last time series is passed, user_func will be called once again with arguments
(0.0, 0.0, 0, NULL, 0.0, 0.0 , user_data , NULL)

This is to allow for cleanup (e.g., free of malloc). Note that the only difference between
the initial and final “notification” calls is the third argument.

MCW AFNI Plugins « —26— December 27, 1996

If an error occurs, PLUTO_4D_to_fim will return a NULL pointer; otherwise it returns a
pointer to the newly created fim dataset. An example of the use of this dataset creating
function can be found in plug stats.c.

5 Sending Information to the User and to AFNI

5.1 Sending a Dataset Back to AFNI

Editing an Existing Dataset in Place

One way to send the results of a computation back to AFNIis to edit an existing dataset in
place. The sample plugin plug clust.c shows how this can be done. If this is done, then
AFNI must be told to redisplay images (otherwise, it won’t know that the plugin altered an
existing dataset). This is done with the routine PLUTO_force_redisplay (), which takes no
arguments, but simply instructs each AFNI image and graph window to redraw itself.

Editing a dataset in place will destroy the data that is stored in its .BRIK file. Careful
consideration should be given as to whether this is a desirable capability to give the user.
As an alternative, the routine PLUTO_copy_dset can be used to create a complete copy of a
dataset, which can then be edited without destroying the original-see §2.6.

Another complication can arise with editing a dataset in the +tlrc view. Suppose that
this dataset .BRIK file was originally transformed from a +orig view dataset. Now suppose
that the +t1lrc dataset .BRIK is altered by a plugin. When the Define Datamode controls
are set to View Data Brick, then the edited data will be seen. When they are set to Warp
on Demand, the data will be transformed directly from the unedited +orig .BRIK, which
will no longer be the same as the +tlrc .BRIK. This can be very confusing.

Creating a New Dataset

Another way to get information back into AFNI is to create a new dataset and send it
back with the routine PLUT0_add_dset. This will put the dataset into the current session
of the AFNI controller window from which the plugin was invoked, and (optionally) make
it the current dataset for viewing.

PLUTO_add_dset(plint , dset , flag) ;

where plint is the “PLUGIN interface *” passed into the plugin call func, dset is the
pointer to the new dataset, and flag takes on one of the values below:

DSET_ACTION MAKE CURRENT Set the dataset to be the current dataset for viewing.
DSET_ACTION_NONE Leave the current dataset for viewing as it is.

Putting a dataset into this specific session may not always be desirable — I'm open to
suggestions on other ways to specify where a new dataset should be placed. PLUTO_add_dset
will write the dataset .HEAD and .BRIK files to disk, so the plugin need not bother to perform

MCW AFNI Plugins & 27— December 27, 1996

this task. In addition, if the new dataset is in the +orig view, PLUTO_add_dset will create
the warp-on-demand children datasets in the +acpc and +tlrc views.

If a plugin changes the name of one or more pre-existing datasets, the titles in the AFNI
windows may be wrong. The routine PLUTO_fixup_names () (which takes no arguments) will
tell AFNI to redraw all those titles. An example of how this is used is in plug_rename.c.

5.2 Displaying Miscellaneous Information

Some plugins may not wish to send data back to AFNI itself, but simply need to open their
own windows to communicate something to the user.

Text Strings

If all that is needed is to popup a string in a window, the functions below can be used:

PLUTO_popup_message(plint , str) ;
PLUTO_popup_transient(plint , str) ;

The first function will leave the message box on the screen until the user clicks the mouse
inside the box. The second function will destroy the message box after 30 seconds if the user
does not click in it before that amount of time has elapsed.

X11 Access

The function PLUTO_beep () (which takes no arguments) will cause the display bell to ring.
If for some reason a plugin needs direct access to the X11 display on which AFNI is running,
this is given by the macro PLUTO_X11_display (which takes no arguments). For example,
this could be used to open up a new window using XtVaAppCreateShell().

Progress Meters

A plugin that performs a lengthy calculation may wish to inform the user of the progress of
the computations. The following routines let a plugin control a progress meter like the one
displayed when one of the AFNI “Write” buttons is used to output a dataset:

PLUTO_popup-meter (plint) Creates the progress meter atop the titlebar of the
plugin’s user interface window.

PLUTO_popdown _meter (plint) Destroys the progress meter. In any case, this will be
executed when the plugin call func returns control
to AFNI.

PLUTO_set_meter (plint,perc) Sets the progress meter to perc% complete, where
perc is an int from 0 to 100 (inclusive). The meter
is initially at perc=0.

An example of the usage of the meter routines is in plug_stats.c.

MCW AFNI Plugins & —28— December 27, 1996

2D Images

3D or 3D+time “images” are handled by creating new datasets and passing them back to
AFNI. A plugin may wish to display a single 2D image. This can be done by creating
an MRI_IMAGE struct (discussed earlier in §4, in the context of timeseries choosers). The
atomic type of an MRI_IMAGE can be any of the AFNI atomic types: byte, short, float,
or complex—see §2.4. The following code fragment shows how to create an image of shorts
and get a pointer to the image data array:

MRI_IMAGE * shim ;

short * shar ;

shim = mri_new(nx , ny , MRI_short) ; /* dimensions are nx X ny */
shar = mri_data_pointer(shim) ;

Pixel (,7) is stored in shar[i+j*nx] for i = 0..nx-1 and j = 0..ny-1. By default, the
image pixels are square. If the pixels are rectangular, then setting the float elements
shim->dx and shim->dy to the z and y dimensions of each pixel is necessary. If you wish to
control the string displayed in the titlebar of the image window, then use a call like

mri_add_name("Titlebar String" , shim) ;

Once the image has been created, then it is the plugin’s responsibility to fill the image array.
When that is done, the image can be popped up with the routine

void * handle ;
handle = PLUTO_popup_image(NULL , shim) ;

The variable handle is a value that identifies the window in which the image has been opened.

PLUTO_popup-image makes a copy of the image, so that there is no need to keep the
original, unless it is going to be reused (perhaps to display another image). When it is no
longer needed by the plugin, the MRI_IMAGE struct should be destroyed with the function
call mri free(shim). This will recover the memory malloc-ed to store the image data
array and control information.

The handle can be used to display another image in place of the first one. For example,
suppose that after the above code has been executed, the plugin alters the shar array (of
course, in this case the shim struct should not have be freed). It can then force the
redisplay of this modified image by

PLUTO_popup_image(handle , shim) ;

That is, if the first argument to PLUTO_popup_image is NULL, a new window is opened and
a new handle is returned. If the first argument is an old handle, then the image in the
old window will be replaced with the new image.

MCW AFNI Plugins « —29—- December 27, 1996

The image window can be closed from within the plugin by the call
PLUTO_popdown_image (handle) ;

In addition, the user might close the image window at any time. A plugin can detect
this by using the call

ii = PLUTO_popup_open(handle) ;

If ii==1, then the window to which handle refers is still open; if ii==0, then that window
has been closed. It is still valid to use handle to display into that window. A FNI will reopen
the window, if necessary. If the plugin wishes to close a window and free up all the memory
associated with handle (just two pointers), then the appropriate macro call is

PLUTO_popkill_image(handle) ;

The only difference between this and PLUTO_popdown_image is that the memory associated
with handle is freed, and that handle itself will be set to NULL.

5.3 Sending a Function to AFNI

AFNI maintains three lists of transformation functions. These are functions that the
user can invoke to modify the display of images or graphs. The three categories of functions
are

0D Functions Functions that perform point transformations of float arrays; that
is, the i output point only depends on the i*" input point.

1D Functions Functions that take as input a 1D float array and overwrite it in
place with new set of values. The outputs may depend on the data
array in an arbitrary fashion (unlike the 0D case).

2D Functions Functions that take as input a 2D float array and overwrite it in
place with new set of values. The outputs may depend on the data
array in an arbitrary fashion (unlike the 0D case).

The 0D and 1D functions can be applied to graphs of 3D+time datasets (from the Opt menu
in the graphing windows). The 0D and 2D functions can be applied to images (from the
Disp menu in the image windows).

One application of a plugin that does not create any user interfaces would be a set of
functions to be registered with AFNI. The PLUGIN init routine would just perform the
necessary registrations, and then return NULL. These functions would then appear on the
appropriate menus, but no Plugin menu item would appear for the user to invoke.

MCW AFNI Plugins « -30— December 27, 1996

0D Functions
A sample 0D function is

void ssqrt_func(int num , float * vec)

{
int ii ;
double val ;
if(num <= 0 || vec == NULL) return ;
for(ii=0 ; ii < num ; ii++){
val = sqrt(fabs(vec[ii])) ; /* will be nonnegative */
vec[ii] = (vec[ii] >= 0.0) ? val : -val ; /* output sign = input sign */
}
}

This function takes the “signed square root” of each input point. The number of input values
is the first argument num. The second argument is the pointer to the array of input values.
Note that this array is modified in place. In a 0D function, the output value of vec[ii]
should only depend on the input vec[ii] and not on any other values in the vec array.
More general transformations of 1D arrays should be registered as 1D functions.

This function already exists in AFNI. If it did not, and it was defined in a plugin, then
the plugin could register it with AFNI with the call

PLUTO_register_OD_function("SSqrt" , ssqrt_func) ;

Here, "SSqrt" is the string that will be used to identify this function on the menus in
which it will appear.

1D Functions
A sample 1D function is

void median3_func(int num , double to,double dt, float * vec)
{

int ii ;

float aa,bb,cc ;

bb = vec[0] ; cc = vec[1] ;
for(ii=1 ; ii < num-1 ; ii++){
aa = bb ; bb = cc ; cc = vec[ii+1] ;
vec[ii] = MEDIAN(aa,bb,cc) ; /* see mrilib.h */

}

This function computes the median-of-3 filter of the input array vec. The input num is the
number of points in the vec array. The input to is the time-value at the first point vec [0];

MCW AFNI Plugins « 31— December 27, 1996

dt is the time spacing between vec points. (These middle two inputs are not used in this
example.) Registration of this function with AFNI would be accomplished via

PLUTO_register_1D_function("Median3" , median3_func) ;

The sample plugin plug_1lsqfit.c has an example of creating and registering a 1D transfor-
mation function. This function is controlled by the user parameters in the interface window.
2D Functions

A sample 2D function is given at the end of imseq.c. Because of its length, only its
prototype is given here:

void median9_box_func(int nx , int ny , double dx, double dy, float * ar) ;
The inputs are

nx Number of pixels in the z-direction.
ny Number of pixels in the y-direction.
dx Spacing between pixels in the z-direction
dy Spacing between pixels in the y-direction
ar Pointer to nx*ny floats; the (i,j) pixel is in ar[i+j*nx] for ¢ = 0..nx-1 and
J=0..ny-1
Registration of this function with AFNI would be accomplished via

PLUTO_register_2D_function("Median9" , median9_box_func) ;

5.4 Sending a Time Series to AFNI

It is also possible for a plugin to create a time series and send it to AFNI. This time series
will then be available from the time series choosers, which can (for example) be used to
select the reference function for the AFNI internal FIM operation.

A time series is just a 2D MRI_IMAGE that was discussed above. The first dimension (nx)
is “time”. The second dimension (ny) is the number of time series vectors stored. For many
purposes, ny=1 makes the most sense.

MCW AFNI Plugins « —-32— December 27, 1996

The code fragment below outlines the process:

MRI_IMAGE * tsim ;
float * tsar ;
tsim = mri_new(nx , ny , MRI_float) ;
tsar = mri_data_pointer(tsim) ;

/*x*% fill up tsar array appropriately *xx*/
PLUTO_register_timeseries("Name" , tsim) ;
mri_free(tsim) ;

Note that the image can be freed after it is registered with AFNI, since AFNI will make a
copy. The sample plugin plug 1sqfit.c has an example of creating and registering a time
series which is defined by user parameters (passed in through the interface control window).

6 Call for Ideas

Although a great deal of work has gone into this version of the plugin software (afni_plugin.c
and afni plugin.h contain nearly 4000 lines of C), it is clearly just a start. Further
development will depend on the needs of plugin developers. This is very much a work-
in-progress, and will remain so into the indefinite future. 1 welcome feedback, especially
from those that have actually tried to develop useful plugins.

A portrait of the
author as a young man.

MCW AFNI Plugins & —33— December 27, 1996

