Basics of Functional Magnetic Resonance Imaging

How MRI Works

- Put a person inside a big magnetic field
- Transmit radio waves into the person
 - These "energize" the magnetic field of the Hydrogen nucleus in water (H₂O)
- H₂O magnetic energy comes back out as very weak radio waves, which are measured by a radio receiver (RF coil)
- Frequency of these radio waves is tuned by changing the magnetic field while they are being received (gradient coil)
- Frequency changes let images be created

Basic MRI Concepts - 1

 TR = time between reading data out from same location in the brain

– Smaller TR is faster imaging

- Slices = images are usually made in thin slices, which must be put together to make up a 3 dimensional volume
 - It usually takes about 50-100 ms to get the data for one slice image
 - To cover the whole brain = about 30 slices that are 3 mm thick ⇒ TR is 1.5 to 3.0 seconds

- Slower than the heartbeat; Faster than breathing

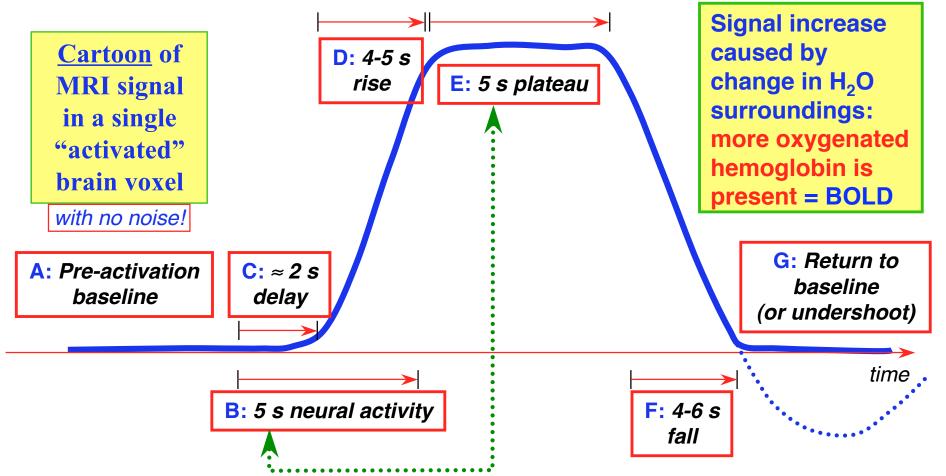
• **Voxel** = smallest 3 dimensional unit of imaging

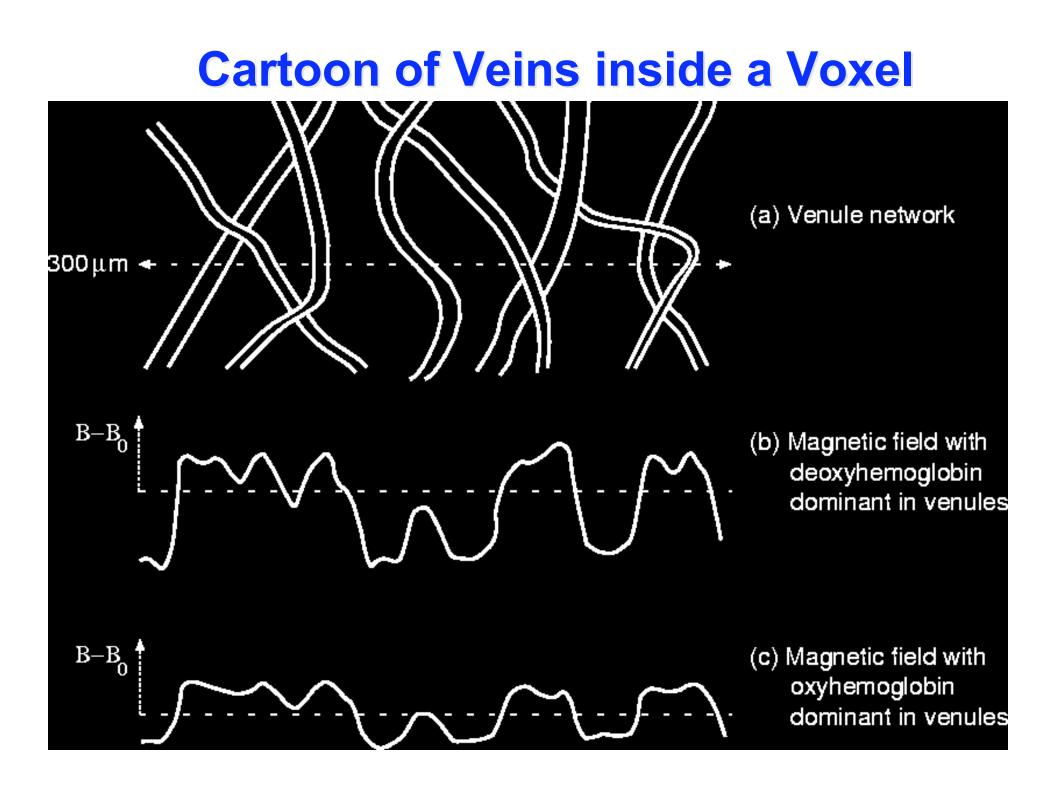
Basic MRI Concepts - 2

- TE = how much time it takes between the radio wave transmit that starts the image, to the center of the image data acquisition
- For functional MRI at 3 Tesla, one big problem is image "dropout" (dark regions) in brain regions near air
 - Nasal sinuses \Rightarrow dropout in medial frontal lobe
 - Ear canals \Rightarrow dropout in temporal lobes
- Possible solutions (or palliatives):
 - Thinner slices
 - Make TE as short as possible

Basic MRI Concepts - 3

- Functional MRI runs MRI scanners very hard
- Small problems with the scanner hardware can cause problems with the high speed images that are used for FMRI


– Echo Planar Images = EPI


- These small problems might not show up in slower images that are used for medical purposes
- It is important to check the EPI image quality of your scanner very often by scanning a "phantom" object and looking at the amount of noise
- If the noise increases some day, you need help!

What is Functional MRI?

Α

 <u>1991</u>: Discovery that MRI-measurable signal increases a few % *locally* in the brain after increases in neuronal activity (Kwong, *et al.*)

FMRI = It Takes a Team

- FMRI is complicated
 - MRI physics and engineering and operation
 - Stimulus equipment design and operation
 - Design of experiment
 - Analysis of data: AFNI, SPM, FSL, BrainVoyager
 - Understanding the results of the analysis
- FMRI research center needs
 - MRI physicists or engineers
 - Statistical experts for data analysis
 - Computer experts
 - Plus psychologists and brain scientists!

What Kinds of Questions Can Be Answered with Functional MRI?

Task Based FMRI

- To find out information about brain processing of short (1-30 second) stimuli or tasks
- Locations in brain that are more or less active in different tasks
 - and correlations between activation fluctuations
- Dependence of neural activation strength (BOLD effect) on task parameters (pain level; face type; ...)
- Dependence of neural activation on subject parameters (age; disease; ...)

Type of Stimuli or Tasks

- Short visual or auditory (sound) inputs
 Faces / Houses ; Musical tones ; Words
- Decision tasks
 - -Same face? Tones up or down? Animal?
- You may not care about actual task
 - You might care about the CONTEXT in which the task appears
 - -Faces: task is MALE or FEMALE but context is **angry** or **fearful** face

Groups of Subjects

- Can look for differences in activation parameters between group of subjects
 - -Patients and "normals"
 - -Genotypes
- Differences in
 - -Activation magnitude
 - -Inter-regional activation correlations
 - Correlation of activation with covariates

Hard Tasks for FMRI

- Anything that requires subject to speak
 - One word or sound can be OK
 - Requires censoring out MRI volumes during subject speech — jaw motion is bad for images
- Anything that uses subtle sounds (music)
 - Scanner is very loud
 - One solution: silent period between scans
- Very long duration tasks (learning; drugs)
 - Hard to tell long activation changes from MRI signal drifting up or down
 - Not impossible, but requires special analysis

My Advice: Start Small

- Do some simple experiment that you KNOW will give results with FMRI
- Then increase complexity to get closer to what you really want to do
- Do NOT start with your first FMRI experiment being something very complicated and subtle!

FMRI Connectivity

- Looking for MRI signal fluctuations that are correlated (vary up and down at same times) in different spatial locations
- Can be based on task FMRI or based on "resting" FMRI
- Hot new word: Connectome
- We have a couple of talks about connectivity analyses in AFNI
- Data analysis methods are more variable than for task-based FMRI

Brain "Reading"

- Trying to find out what the brain is doing from the FMRI data
 - Is the subject looking at a face or at an elephant?
- Multi-Voxel Pattern Analysis = MVPA
- Training data:
 - To build up different patterns of brain data for different types of brain functions
 - Support Vector Machines = SVM
- Then apply patterns to new brain data to estimate what subject is doing
- The limits of MVPA are still being researched