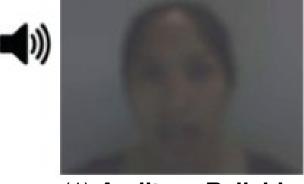

AFNI Start to Finish: FMRI Analysis with AFNI

Goal: run group analysis on single subject response magnitudes


- * how do we get there?
 - create beta (response magnitude) maps for each subject
 - · should be aligned, probably to a well known template
 - run group analysis program (e.g. 3dttest++, 3dMEMA, 3dMVM)
 - can use gen_group_command.py to run simple group tests
- how do we create aligned beta maps?
 - write single subject processing script: pre-processing through regression
 - inputs: anat, EPI, stimulus timing
 - controls: processing decisions like blur size and alignment template
 - outputs: beta weights (and t-stats, contrasts, blur estimates, etc.)
- * how do we write single subject processing scripts?
 - > afni_proc.py can be used to generate processing scripts
 - an afni_proc.py command can be included in publication
 ✓ along with the AFNI version (e.g. AFNI_21.2.09)
 - proc scripts are meant to be clear records of the processing

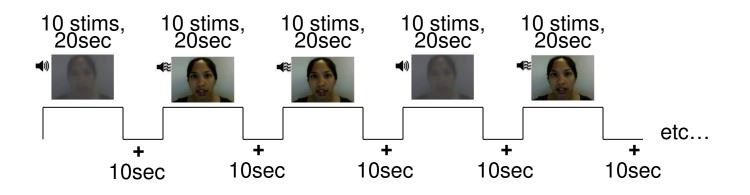
General suggestions

- * picture this experiment as your own (i.e. feel responsibility)
 - decisions on processing were made by you (and your colleagues)
 - hopefully before acquiring any data
 - there is no single "correct" way to analyze data, just reasonable ways
- * focus on understanding the processing steps
 - ➢ in light of your having chosen which steps to perform
- * practice the good habit of reviewing results
 - > do the initial images look good?
 - review each processing step along with data
 - > are the EPI and anat well aligned by the end?
 - review (at least) the afni_proc.py HTML QC for every subject
- create scripts for any processing steps
 - they are records of how data was processed
 - they are easy to apply to any new subjects
 - they are easy to repeat
 - expect to re-analyze everything (mistake, new decision, etc.)
 - keep original data and all processing scripts

Review of stimulus conditions

- Speech Perception Task: Subjects were presented with audiovisual speech that was presented in a predominantly auditory or predominantly visual modality.
- A digital video system was used to capture auditory and visual speech from a female speaker.
- There were 2 types of stimulus conditions:

(1) Auditory-Reliable


Example: Subjects can clearly *hear* the word "cat," but the video of a woman mouthing the word is degraded.

Example: Subjects can clearly *see* the video of a woman mouthing the word "cat," but the audio of the word is degraded.

✤ Experiment Design:

- There were 3 runs in a scanning session.
- Each run consisted of 10 blocked trials:
 - 5 blocks contained Auditory-Reliable (Arel) stimuli, and
 - 5 blocks contained Visual-Reliable (Vrel) stimuli.
- Each block contained 10 trials of *Arel* stimuli OR 10 trials of *Vrel* stimuli.
 - Each block lasted for 20 seconds (1 second for stimulus presentation, followed by a 1-second inter-stimulus interval).
- Each baseline block consisted of a 10-second fixation point.

✤ <u>Data Collected:</u>

- 2 Anatomical datasets for each subject, collected at 3 tesla.
 - 175 sagittal slices
 - voxel dimensions = 0.938 x 0.938 x 1.0 mm
- 3 Time Series (EPI) datasets for each subject.
 - 33 axial slices x 152 volumes = 5016 slices per run
 - TR = 2 sec; voxel dimensions = 2.75 x 2.75 x 3.0 mm
- Sample size, <u>n</u> = 10 (all right-handed subjects)

afni_proc.py

- What is **afni_proc.py**?
 - * a program used to generate processing scripts for single subject analysis
 - > a short command can generate a long processing script to:
 - copy inputs into new 'results' directory
 - process data (e.g. tshift/align/tlrc/volreg/blur/scale/regress)
 - · leave results in place to allow review of processing
 - create HTML report and @ss_review_* scripts, for quality control
 - many options for control over processing steps
 - many examples (in -help output) for getting started
 - senerated scripts are in tcsh syntax
 - * scripts are written to be easily read (good idea) and modified (bad idea)
 - * preferable to run afni_proc.py (generating proc script) per subject
 - rather than running one (modified?) proc script across all subjects
 - graphical user interfaces exist (e.g. uber_subject.py), for those who prefer such things, but they are not recommended

Overview of remaining steps

- * cd AFNI_data6/FT_analysis
 - review directory contents and note subject data under directory FT
 - > review the afni_proc.py command in s05.ap.uber
- * tcsh s05.ap.uber
 - runs afni_proc.py to generate proc script proc.FT
 - > executes proc.FT, saving text output to output.proc.FT
 - > processed results are under results.FT directory
- * review proc script **proc.FT** while viewing processed data
 - > cd FT.results ; afni
- review quality control HTML report
 - > afni_open -b FT.results/QC_FT/index.html
- * run group analysis (3dttest++, 3dMEMA or 3dANOVA2)
 - > from the AFNI_data6/group_results directory:
 - > tcsh s6.ttest.covary

Note what is under **AFNI_data6/FT_analysis**

FT

- s01.ap.simple
- s05.ap.uber
- s09.cleanup
- s11.proc.FT
- s15.proc.FT.uber

under FT

- AV1_vis.txt
- AV2_aud.txt
- FT_anat+orig.BRIK/HEAD
- FT_epi_r1+orig.BRIK/HEAD
- FT_epi_r2+orig.BRIK/HEAD
- FT_epi_r3+orig.BRIK/HEAD SUMA

<u>AV1_vis.txt</u>:

60 90 120 180 240 120 150 180 210 270 0 60 120 150 240

- subject data directory
- basic afni_proc.py script
- more advanced script
- remove analysis results
- result of **s01.ap.simple**
- result of s05.ap.uber
- visual reliable timing
- auditory reliable timing
- anatomical dataset
- EPI run 1
- EPI run 2
- EPI run 3
- FreeSurer output for suma

Single Subject Analysis: FT

- * change to analysis directory and review afni_proc.py command
 - > cd AFNI_data6/FT_analysis
 - > cat s05.ap.uber
- $\boldsymbol{\ast}$ execute that command, which also processes the data
 - > tcsh s05.ap.uber
- * review processing script and results
 - review the proc.FT script while looking at the results under FT.results
 - afni_open -e proc.FT
 - cd FT.results
 - ls
 - afni
- * run automatically generated quality control review script
 - > tcsh @ss_review_driver
 - · considered a minimal data review (run for every subject)
 - for each step in the review:
 - \checkmark read prompt text in each black window and follow instructions
 - \checkmark close any windows newly opened by the script
 - ✓ click "OK" to move on to the next step

Group Analysis: paired t-test (Vrel-Arel)

* cd AFNI_data6/group_results

- * review the 3dttest++ script and possibly the covariates file
 - > cat s6.ttest.covary
 - > cat covary.toe.gap.txt
- * execute the 3dttest++ command script
 - > tcsh s6.ttest.covary
- * view the results, in all their glory
 - ≻ afni
 - set OverLay to stat.6.covary
 - set OLay/Thr volumes to #0/#1, for Vrel-Arel and Tstat
 - threshold at p<0.005 (right-click on T-t above threshold slider)
 - set color range scale to 1.0
 - Clusterize (with defaults) and open Rpt (cluster report) window
 - jump to CMass (center of mass) locations

AFNI Start to Finish (the horror continues...)

• To continue reviewing the data on your own, please see the corresponding tutorial that continues under the data directory:

> AFNI_data6/FT_analysis/tutorial

• Alternatively, this can be viewed from the AFNI web site:

http://afni.nimh.nih.gov/pub/dist/edu/data/CD.expanded/AFNI_data6/FT_analysis/tutorial

• or from the Help menu of uber_subject.py

Help --> Browse --> web: tutorial-single subject analysis