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Surface-based brain imaging analysis offers the advantages of preserving the topology of cortical activation,
increasing statistical power of group-level statistics, estimating cortical thickness, and visualizing with ease
the pattern of activation across the whole cortex. SUMA is an open-source suite of programs for performing
surface-based analysis and visualization. It was designed since its inception to allow for a fine control over the
mapping between volume and surface domains, and for very fast and simultaneous display of multiple sur-
face models and corresponding multitudes of datasets, all while maintaining a direct two-way link to volu-
metric data from which surface models and data originated. SUMA provides tools for performing spatial
operations such as controlled smoothing, clustering, and interactive ROI drawing on folded surfaces in 3D,
in addition to the various level-1 and level-2 FMRI statistics including FDR and FWE correction for multiple
comparisons. In our contribution to this commemorative issue of Neuroimage we touch on the importance
of surface-based analysis and provide a historic backdrop that motivated the creation of SUMA. We also high-
light features that are particular to SUMA, notably the standardization procedure of meshes to greatly facil-
itate group-level analyses, and the ability to control SUMA's graphical interface from external programs
making it possible to handle large collections of data with relative ease.
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Introduction

SUMA (an abbreviation of SUrface MApping) is a freely available,
open-source suite of software programs for processing and visualizing
neuroimaging data defined over 2-manifold surface models in 3-space.
Triangulated cortical surface models are created from segmenta-
tions of MRI volumes and can approximate the cortical sheet at the
grey matter-CSF boundary, the grey matter to white matter boundary,
or intermediate layers. Such models can be created by a variety of soft-
ware packages and easily imported into SUMA. Surfacemodels can also
be created that represent the brain hull, the surface of the skull, or
implanted ECOG electrode arrays. Data mapped onto these surface
models can be functional MRI activation maps, anatomical attributes
such as labels, cortical thickness, or electrical or magnetic recordings
of brain activity. Univariate data processing tools for level-1 and level-
2 analyses are the same as those used for voxel data—all AFNI's (Cox,
16/j.neuroimage.2011.09.016
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1996) voxelwise programs can handle surface-based data, while spatial
operations such as smoothing, clustering, and regions-of-interest draw-
ing have their own implementation in SUMA. The visualization part of
SUMA allows for very fast and simultaneous display of multiple surface
models and correspondingmultitudes of datasets, all whilemaintaining
a direct two-way link to volumetric data from which surface models
and data originated.

In this retrospective article, we touch briefly on the motivation for
the use of surface models and the circumstances prompting the crea-
tion of SUMA a little less than 10 years ago, and expand on a few as-
pects of data analysis and presentation that are particular to SUMA.
To keep the tedium of software descriptions to a minimum, we in-
clude links to downloadable self-executing interactive demonstra-
tions of some features described herein.

Why surfaces?

The cortical surface is a highly convoluted sheet comprised of gyri
and deeply buried sulci that make it difficult to appreciate its topo-
graphic organization. Mapping such data onto cortical surface models
is the natural way to view organizations such as retinotopy, somato-
topy, and tonotopy. More recently, cortical resting state FMRI correla-
tion patterns were used to define functional areas (Cohen et al.,
2008). Anatomists who sought to understand the cortical layout by
studying nonhuman primates first appreciated the value of cortical sur-
facemodels. In the early days, brain contours of each slicewere outlined
manually with flexible wires which were then painstaking strength-
ened, or with pencil and tracing paper (Van Essen and Maunsell,
1980)—tasks reserved for the most patient and meticulously organized
among us. Fortunately, computational approaches arrived to make this
process simpler. The group of Van Essen, long a pioneer of the use of
surface models, produced software known as SureFit/CARET to create
cortical surface models from MRI data (Van Essen et al., 2001). About
the same time, Anders Dale, Martin Sereno, Bruce Fischl (Dale et al.,
1999) and colleagues produced the FreeSurfer software (http://surfer.
nmr.mgh.harvard.edu), which also created high-quality surfaces
from MRI data. A multitude of surface creation software followed; fa-
mous among them are BrainVoyager (http://www.brainvoyager.com),
BrainVisa (http://brainvisa.info), and mrVista (http://white.stanford.
edu/software).

Although surface-based analysis is restricted to the cortex, it offers
advantages with imaging data: 1—The preservation, enhancement,
and visualization of topological detail in FMRI volumes. Neighboring
voxels in the volume are not necessarily sampling the signal of neigh-
boring regions of the cortex. This often leads to a spatial aliasing of
the FMRI signal, that gets more pronounced when one isotropically
smoothes the data in the volume. By mapping data from the volume
domain onto the surface domain, one can then smooth along the sur-
face, thereby preserving and enhancing topological detail present in
the brain. An example of this would be the analysis of retinotopic
data, where isotropic smoothing in the volume can destroy the fine
topology of the activation pattern. 2—Increase in statistical power.
Multiple studies have shown increases in statistical power when
group statistics (level-2) are carried out on the cortical surface com-
pared to the volume domain (Anticevic et al., 2008; Fischl et al.,
1999b). This appears to be the case whether or not nonlinear warping
is utilized (Argall et al., 2006). The increase in power is likely due to
improved smoothing and domain matching across subjects. In other
words, the data at each node in the surface comes from gray matter
voxels (assuming proper alignment between surfaces and volumes
and neglecting partial volume effects), even if nonlinear warping is
not used. The same is not true of affine registered volumes. Proper do-
main matching is important, especially when comparing data from
groups with consistent differences in the anatomy, e.g. young vs. old
subjects. Without proper alignment and relevant tissue matching, the
same voxel in volume template space from a young subject group will
Please cite this article as: Saad, Z.S., Reynolds, R.C., SUMA, NeuroImage
likely reflect different brain tissue than in the elderly group, potentially
leading to artificial differences in FMRI measures between the two
groups. 3—Cortical thickness. Using two surfaces modeling the inner
and outer layers of gray matter, cortical thickness estimates can readily
be obtained and compared across subjects. 4—Beautiful renditions of
cortex and data.

To be sure, all these advantages can be achieved in volume-based
approaches, but at a greater computational complexity. For example
domain matching in the volume can be improved under highly non-
linear warps, but that is still rarely done despite marked improve-
ments in registration software (Ashburner, 2007; Klein et al., 2009).
It remains easier to deform the surface for the purposes of alignment
because there is simply less to align than in the volume.

And then came SUMA

In the early days of FMRI surface-based analysis, much of the effort
went into creating the surfaces out of MRI volumes—a complex task
to be sure—but manipulating surfaces or data, or relating the surfaces
to the volumetric data from which they originated was cumbersome
at best. In the mid to late nineties, by the time one got done analyzing
retinotopic data on a flattened version of the cortical surface, multiple
steps were needed to find out where a particular node on the flat (or
inflated) map came from in the volume. Even surface display was dif-
ficult and sluggish: one moved a slider bar to set viewing angles and
then clicked a button to refresh the display. Now the user simply
clicks on the brain and moves it around until the desired view is
achieved, or with a mouse flick sends the brain twirling gently in
space—a task particularly mesmerizing for toddlers and grizzled sci-
entists alike. This interactivity requires high-performance graphics
hardware that is now readily available on handheld devices. However,
in the early days displaying surface models was only available on ex-
pensive high-end Silicon Graphics Incorporated machines, and interac-
tivity was very limited. For instance, as a graduate student in the mid
nineties, where home-grown tools were the norm for creating and
mapping data onto cortical surfaces, I (author ZSS) was asked to com-
pare FMRI signal properties in visual areas that had been delineated
by FMRI retinotopy on flattened models of the occipital cortex. To my
chagrin, the only way to read the data values off of the flattened occip-
ital maps was by reverse mapping node colors back to data values per
the color scale! That was because a colorized rendering of the data
was the end point of the mapping process; data values were not pre-
served in the process. Needless to say, that project did not go far. Such
difficulties in relating surfaces to the volume made it harder to detect
anomalies in the segmentation, or in the functional data. It was also dif-
ficult to view in detail the meshes modeling the cortical surfaces, a
problem particularly vexing when trying to understand the source of
errors in the geometry or the triangulation of dense surface meshes.
Such frustrations, coupled with an interest in the spatial properties
of the BOLD response and the irresistible lure of beautiful 3D cortical
renderings begat SUMA and shaped its structure and features.

SUMA was first released on the 4th of March 2002, about 1 year
after I joined Bob Cox at the Scientific and Statistical Computing
Core at NIMH. Unencumbered by the task of creating surface models
and their myriad derivates, SUMA's design focus was on controlling
the mapping between volume and surface domains, concurrent dis-
play of all geometric variants of the same surface and maintaining
an interactive and direct link between the surface and volume do-
mains. Initially SUMA used surface models created by Caret (Van
Essen et al., 2001), FreeSurfer, and BrainVoyager. With the advent
and adoption of GIFTI http://www.nitrc.org/projects/gifti, surfaces
and data from other platforms such as BrainVisa are now readily uti-
lized. The rapid development and the high level of interactivity of
SUMA at the first release were due to multiple factors: 1—A first-
hand experience with what was missing in surface-based analysis:
the ability to see and access the data on the surface and relate surface
(2011), doi:10.1016/j.neuroimage.2011.09.016
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and data to the volume. 2—A MATLAB-based prototype of the mapping
process that I had developed for my own use during a post-doc in Peter
Bandettini's group. 3—An efficient organization of surfaces and data
structures and the use of C language and basic OpenGL libraries. 4—
Leveraging AFNI's existing functions for handling and rendering volu-
metric data.

Standardizing surface meshes for group comparisons

Before discussing the handling of data on surface models, we de-
scribe the process by which we take a set of surfaces and re-create
them with a new ‘standard’ mesh that is shared by all subjects in a
group study. A standard-mesh version of a surface is virtually identi-
cal in 3D shape to the original one; however, each node of the new
mesh encodes the same cortical location across subjects, within the
accuracy of the warping-to-template step. We detail this procedure,
Fig. 1. The process of transforming original- to standard-mesh surfaces. See text for details.
p1,p2,p3. Node colors of original-mesh surfaces (top two rows) show FreeSurfer's cortical pa

Please cite this article as: Saad, Z.S., Reynolds, R.C., SUMA, NeuroImage
which is particular to SUMA, because this simple process greatly facil-
itates the handling of group statistics when multiple subject surfaces
are not created to be topologically isomorphic, as is the case with
FreeSurfer and Caret (for example).

Fig. 1 shows the common approach for performing group analysis
in the surface domain. The first step (Fig. 1A) involves inflating a sub-
ject's surface to a sphere, then deforming the spherical mesh (Fig. 1B)
so that sulcal depth patterns match those of a template (Fischl et al.,
1999a). In volume-based analysis, the analogous step is transforming
the brain to a standard-template space. Other approaches match se-
lected sulcal patterns or patterns derived from functional data. To
what extent warping improves the final results remains the subject
of debate. However, it has been repeatedly shown that group analysis
on the cortical surface, even without nonlinear registration, results in
increased statistical power. Regardless of thewarping approach, the pro-
cedure for collecting group data then involves mapping each subject's
a1, a2, and a3 are the barycentric coordinates of node n in the triangle formed by nodes
rcellations. Colors on standard-mesh surfaces (bottom row) reflect each node's index.

(2011), doi:10.1016/j.neuroimage.2011.09.016

image of Fig.�1
http://dx.doi.org/10.1016/j.neuroimage.2011.09.016


4 Z.S. Saad, R.C. Reynolds / NeuroImage xxx (2011) xxx–xxx
data from a 3D voxel grid to his individual surfacemodel, and then inter-
polating into a common domain that is defined by a new standardmesh.
This is necessary because data values are attached to the nodes forming
the surface (topology) and not to a spatial location (geometry). When
the discrete surface topology differs, it is necessary to perform the analy-
sis on a common mesh. This double interpolation step onto the standard
model must be repeated for each new dataset, as is done in the volume
space; however, it is largely unnecessary on surfaces because the data do-
main is explicitly defined and not confined to a regular grid.With SUMA,
instead ofmapping a subject's data value onto the templatemesh, we re-
create each subject's original surface using the mesh of the standard
model (shown at a very coarse level in the illustration). In other words,
instead of assigning to each node n of the standard mesh a data value in-
terpolated fromdata on the subject's originalmesh (p.), wenowassign to
that node a new set of coordinates Xn based on the coordinates of the
subject's original mesh Xp. (Fig. 1C). When the process is repeated for
all the nodes of the standard mesh, its geometry becomes essentially
identical to that of the original surface: 99.9% of nodes of the standard-
mesh surface are within 0.01 mm of the original surface1 (Saad et al.,
2004). The spherical template coordinate system is now embedded in
the mesh of the newly created standard surfaces. In the bottom-most
row of Fig. 1, each node of the standard-mesh surface of each subject
is colorized based on its index. Nodes with similar numbers (colors)
now correspond to the same location in template space regardless of
their coordinates in subject space. Within the SUMA pipeline, we
begin by creating standard-mesh surfaces of each of the subject's original
surfaces, and we utilize the standard-mesh versions for all subsequent
analyses. On such standard meshes, functional data mapped directly
from the volume to node n on one subject's surface can be directly com-
pared to datamapped to node n on another subject's surface. Performing
group-level computations ondata definedon these isomorphicmeshes is
then readily carried out with any of the univariate analysis tools applica-
ble in the volume.

Typical pipeline

Once standard-mesh surfaces are created, they are brought into
alignment with data volumes often acquired at a different scanning
session. The overlay of anatomically correct surfaces atop anatomical
volume (Fig. 2A) and EPI time series (Fig. 2B) gives direct feedback as
to the quality of the surfaces and their alignment with EPI time series
as volumes and surfaces are navigated. Shell/Volume Intersection:
Motion-corrected EPI time series (or level-1 regression results) are
mapped onto standard-mesh surface models before any smoothing
(beyond that inherent to motion correction) occurs in the volume.
When surfaces modeling the inner and outer boundaries of the gray
matter are available, one has greater control over how voxel values
in the gray matter are mapped onto the surface. Our recommended
approach is to integrate all gray matter voxels that fall along a direc-
tion defined by corresponding node pairs from the bounding surfaces
(green and red contours in Figs. 2A–B). The endpoints for the integra-
tion can bemodified to change the integration range, including a simple
intersection at an intermediate depth in the gray matter. Smoothing is
performed on the surface for the same reasons it is applied in the vol-
ume. However, controlled smoothing on the surface is more difficult
than in the volume. Smoothing by or to a certain FWHM involves ap-
proximated iterativemethods that can fail in practice to achieve the de-
sired smoothing level (Hagler et al., 2006). SUMA's SurfSmooth gets
around this problem by iteratively smoothing and estimating the cur-
rent smoothness level of the noise in the data. The noise in the data is
either taken from the residual time series after a regression analy-
sis, or by a high-order detrending of the data to reduce stimulus–
response-related upward bias of the smoothness estimate. In the
1 Distances are measured from each node of the standard-mesh along the surface
normal to the original surface.

Please cite this article as: Saad, Z.S., Reynolds, R.C., SUMA, NeuroImage
default usage, the program can select appropriate iterative kernel
smoothing parameters while taking into account the mesh density
and the desired additive or target FWHM. Simulations using the
method detailed in (Hagler et al., 2006) verify that SurfSmooth
achieves in practice the specified smoothness levels. Level-1 and 2
analyses are carried out using the same AFNI programs used for voxel-
based tests. For multiple-comparisons correction, SUMA provides the
FDR approach with all statistical datasets, or FWE correction based on
Monte Carlo simulations that estimate the likelihood of observing spatial
clusters of a particular size given anuncorrected p-value and the smooth-
ness of the data.

Surface and volume domain linkage

SUMA, at the moment, has little support for displaying volumetric
data and relies on AFNI for that purpose. Fig. 2 is an illustration of the
graphical interface in a typical session. All the images displayed are
cropped versions of the live display. The main constraint for how
much can be shown is screen space. From SUMA, anatomically correct
(e.g. non-inflated) surfaces are sent to AFNI and their intersection
with the volume is displayed on all slice renderings (Figs. 2A–C).
Each surface model is shown in separate but linked interactive surface
viewers (Figs. 2D–G). All the renderings are connected, so that a click
on any of the surfaces updates the crosshair location on all surfaces
and time series windows (Fig. 2C), and jumps to the corresponding
location in all the volume views including volume-based time series
graphs (Fig. 2I). Vice versa, selecting a voxel close to the surface
causes crosshairs in SUMA windows to jump to the closest node. Sur-
face annotations and volume atlas information about crosshair loca-
tions are also updated (not shown). The display supports a layering
of multiple datasets that can be blended in different forms, including
node coordinate bumping as shown on the flattened cortical view in
Fig. 2G. While retinotopy is old hat in terms of FMRI techniques,
those who attempt it can testify to the difficulty in getting it right de-
spite cookbook recipes for the approach (Warnking et al., 2002), and
that being able to readily access the various stages of the data proces-
sing is particularly important in assessing the results (Fig. 2H). While
SUMA is tightly connected to AFNI, the two programs are independent;
they communicate by sending commands and associated data via
shared memory or network sockets using TCP/IP. Commands and data
are packaged in a simplified version of XML, which, unlike XML itself,
also allows for binary data. This communication mode is at the core of
SUMA and AFNI's ability to communicate together and with other pro-
grams. For example, the skull stripping program 3dSkullStrip can com-
municate with both SUMA, and AFNI, sending the envelope of the brain
with each iteration to SUMA and the processed volume to AFNI. Doing
this helped us refine the skull striping algorithm as we tested it on dif-
ficult brain images for humans and other species. Both AFNI and SUMA
remain available for user interaction during the process.

Hands-off GUI control

Another useful aspect of the communication support is the ability
to script the behavior of the graphical interface. This is easily done by
issuing commands via the command-line program DriveSuma. Such
scripting can be used to create complex summaries of the data as in
Fig. 3, which shows one frame from a movie depicting MEG beamfor-
mer results (Cheyne et al., 2006) 0 to 600 ms after the stimulus. This
particular movie was generated entirely automatically including text
annotations and pictures.

The ability to wade through a large number of datasets and readily
access the data remains crucial for MRI and FMRI studies. Twenty
years into FMRI, and we still struggle in practice with mundane issues
such as image registration when data is less than optimal. This can be
particularly challenging when scanning unhealthy populations and in
great numbers. Thanks to fully automated pipelines, analyzing
(2011), doi:10.1016/j.neuroimage.2011.09.016
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Fig. 2. The linkage between data renderingmodes. SUMA and AFNI directly control surface- and volume-based renderings, respectively (thin arrows). The two programs are independent
but communicate together via TCP/IP. Data shown is from the sample data for the retinotopy analysis pipeline (http://afni.nimh.nih.gov/pub/dist/tgz/AfniRetinoDemo.tgz) courtesy of
Peter J. Kohler and Sergey V. Fogelson.
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thousands of datasets is no more strenuous than analyzing a few, not
counting computation time. However, group differences can reflect
biases in some of the processing stages that can later be incorrectly
attributed to brain anatomical or functional changes. It is important
to be able to navigate the data from each subject and at various key
processing steps. The recent efforts which have resulted in the wide
adoption of NIFTI and GIFTI formats facilitate the exchange and exami-
nation of large data sets such as FCON1000 (Biswal et al., 2010) or
Fig. 3. Illustration for driving SUMA's GUI from the command line with DriveSuma. The exam
MEG SAM data from 0 to 600 ms after stimulus delivery. (Data and script to generate this mo
tgz/SumaMovieDemo.tgz).

Please cite this article as: Saad, Z.S., Reynolds, R.C., SUMA, NeuroImage
ADNI (Jack et al., 2008; Mueller et al., 2005), regardless of the package
in which they processed. An example that takes advantage of the
SUMA standard meshes approach, the cross-program communication,
the scripting of GUI control, and ease of visualization is illustrated by
running @Install_InstaCorr_Demo (part of the AFNI/SUMA installation),
which sets up an interactive seed-based group resting state connectivity
mapping using data from the FCON1000 dataset. A user's click on the
surface sends a seed location to AFNI's 3dGroupInCorr program, which
ple here illustrates the functioning of a script that automatically generates a movie of
vie are courtesy of Chunmao Wang, and available at http://afni.nimh.nih.gov/pub/dist/

(2011), doi:10.1016/j.neuroimage.2011.09.016
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performs group seed-based correlations on one or two groups, then per-
forms one- or two-sample t-tests with or without subject-level covari-
ates, and sends all the statistical results back for display in SUMA. We
detailed this feature, not only because it is really cool, but also to say
that being able to interactively query and navigate large collections of
datasets leads to insights into the data that are otherwise hard to find
when looking only at summary results. It remains quite striking to
watch resting state patterns shift as the cursor is dragged along the sur-
face, revealing the high level of detail present in the data; e.g., as
reflected in the bilateral homology of correlations (Jo et al., 2011).

Future features

For software developers, user feedback is mostly of the negative
variety. If we were to summarize the appeal of SUMA from the smal-
ler but quite positive sample, it would be the ease with which multi-
ple surfaces and associated data are displayed and related to the
volume, and the way group analysis can be carried out. Eye candy im-
ages are also a big plus. Currently, SUMA remains under active devel-
opment. The authors’ SUMA-specific code exceeds 250,000 lines of C
for the graphical interface and three dozen command-line programs.
Continuing with the theme of ready access to data, we plan to make
more information readily available with minimal interface clutter.
For example, beyond parcellation results (FreeSurfer), and various
volume-based atlas queries currently supported, it would be useful to
provide selective anatomical or functional connectivity information,
whether atlas-based or data-derived. A researcher examining a set of
SPM blobswould benefit from seeing, after pointing to a region of inter-
est, what connectivity or co-activation information exists from that re-
gion to the rest of the brain. Queries could be conducted on datasets
present on one's computer or more likely from websites containing ex-
tensive databases such as BrainMaphttp://www.brainmap.org. The new
XML-based connectivity format CIFTI http://www.nitrc.org/projects/cifti
would help facilitate such information exchanges.

Summary

SUMA is a suite of programs for performing surface-based analysis
and visualization. It was written to facilitate viewing sets of multiple
dense surfaces while maintaining the linkage between them, and to
allow for a fine control of and simplify the once tedious process from
mapping volume data to the surface domain, through the group statis-
tics stage. SUMA's graphical interface allows for fast, simultaneous, and
linked rendering of a large number of surfaces, along with composite
displays of multiple datasets with contouring options for representing
parcellations or atlas regions and translucent overlaying of continuous
valued datasets. The surface displays are intimately connected to the
volumetric data, allowing for direct verification of surface to volume cor-
respondence. The SUMAGUI is fully scriptable, making it uniquely suited
to navigate and summarize results from large numbers of datasets with
minimal effort.
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