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The methods of group theory are applied to the problem of
characterizing the diffusion measured in high angular resolu-
tion MR experiments. This leads to a natural representation of
the local diffusion in terms of spherical harmonics. In this rep-
resentation, it is shown that isotropic diffusion, anisotropic
diffusion from a single fiber, and anisotropic diffusion from
multiple fiber directions fall into distinct and separable chan-
nels. This decomposition can be determined for any voxel with-
out any prior information by a spherical harmonic transform,
and for special cases the magnitude and orientation of the local
diffusion may be determined. Moreover, non-diffusion–related
asymmetries produced by experimental artifacts fall into chan-
nels distinct from the fiber channels, thereby allowing their
separation and a subsequent reduction in noise from the re-
constructed fibers. In the case of a single fiber, the method
reduces identically to the standard diffusion tensor method.
The method is applied to normal volunteer brain data collected
with a stimulated echo spiral high angular resolution diffusion-
weighted (HARD) acquisition. Magn Reson Med 47:1083–1099,
2002. Published 2002 Wiley-Liss, Inc.†
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The sensitivity of the magnetic resonance (MR) signal to
molecular diffusion provides the most sensitive noninva-
sive method for the measurement of local tissue diffusion
characteristics (for a review, see Ref. 1). The basic effect
from which diffusion information is derived is the signal
diminution due to diffusive motions along the direction of
an applied gradient field (2,3). The fact that diffusion can
have a directional dependence was recognized early on
(4), but there has been a great resurgence of interest in the
application to diffusion-weighted imaging of human tis-
sues, where inferences about tissue structure can be made
from the directional dependence it imposes on the local
diffusion. Anisotropic diffusion was first demonstrated in
the brain by Moseley et al., (5,6) and has been used to
study a variety of other tissues (7). The determination of
anisotropy requires a reconstruction of the local apparent
diffusion, Dapp. If the diffusion process has spatially ho-
mogeneous Gaussian increments, the directional depen-
dence can be completely characterized by the diffusion
tensor D. This relates the signal loss along an applied
gradient in an orthogonal Cartesian system defined by the

imaging coordinate system to the diffusion along a direc-
tion in an arbitrarily rotated orthogonal system defined by
the tissue (8). Reconstruction of local Gaussian diffusion
can thus be posed as estimating the diffusion tensor (8),
which, in principle, requires only six measurements plus
an additional measurement for normalization (9). This
technique is of particular interest in its application to the
characterization of white matter tracts (10,11).

However, it has long been recognized that the Gaussian
model for diffusion can be inappropriate within the com-
plex structure of human tissues (8,12). One way in which
this model can fail is the presence of multiple fiber direc-
tions within a single imaging voxel. Because the single
fiber diffusion tensor model is no longer appropriate, the
characterization of the diffusion in such voxels becomes
problematic. A novel approach to this problem, proposed
by Tuch et al.(13), is to map Dapp at high angular resolu-
tion in order to more accurately detect variations in diffu-
sion along different directions. This has been extended to
a scheme by Wedeen et al. (14) in which measurements
through a range of diffusion sensitivities are made. There
remains, however, no method for characterizing the diffu-
sion measured by these high angular resolution diffusion-
weighted (HARD) methods.

In a recent paper (15) we proposed a simple method by
which anisotropy can be detected from HARD measurements
by using the variations of Dapp from a sphere as a measure of
deviation from isotropy. This method has the advantage that
it does not depend upon any particular diffusion model, but
simply indicates whether the diffusion is not isotropic. It has
the disadvantage that it does not characterize the structure of
the diffusion and is sensitive to artifacts. Motivated by the
inherent spherical symmetry in the HARD technique, we
present here a formalism to characterize diffusion based on
the mathematical discipline of group theory, which is a pow-
erful tool in the study of systems with intrinsic symmetry.
We show that HARD measurements can be decomposed into
isotropic, single-fiber, and multiple-fiber components. The
theory reduces to the standard diffusion tensor model in the
case of a single fiber. A new transform is introduced with
which the composition of a voxel in terms of the three sub-
spaces can be determined, as well as the magnitude and
orientation of the local diffusion. Moreover, asymmetries
produced by experimental artifacts fall into channels distinct
from the fiber channels, thereby allowing their separation
and a subsequent reduction in noise from the reconstructed
fibers. The method is demonstrated by simulation and on
normal human volunteers. A preliminary report of this method
and its rationale were described in a recent abstract (16).

MR DIFFUSION MEASUREMENTS

Before presenting our strategy for characterizing diffusion
anisotropy in multifiber systems, we summarize in this
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section the basic mathematical underpinnings of MR dif-
fusion measurements. In what follows, a “fiber” will be
defined as a particular diffusion tensor D. With this defi-
nition, a large bundle of parallel fibers would be synony-
mous with a single “fiber.” While it is natural to confer
cylindrical symmetry on a diffusion tensor as part of the
definition of a fiber, we relax this restriction in order to
more clearly establish where such symmetry actually af-
fects the more general results.

Single Fiber

We first consider diffusion measurements made in a voxel
containing a single fiber, following Hsu and Mori (17)
throughout. The signal attenuation can be written

S�b, D� � S0e�bDapp [1]

where b is related to the k-space trajectory k(t) by b
��0

TE k2�t� dt and incorporates the gradient strengths. The
gradient directions can be defined by the unit vectors u. If the
measurements are made along the principal axes, i.e. in the
coordinate system in which the diffusion tensor is diagonal,
the apparent diffusion coefficient Dapp is (17)

Dapp � uT � D� � u [2]

and the applied diffusion-encoding gradients u are in the
direction of the eigenvectors of D.

u � � u1

u2

u3

�, D� � � d1 0 0
0 d2 0
0 0 d3

� [3]

where the eigenvalues are the principal diffusivities {d1,
d2, d3}. Generally, however, this principal axis coordinate
system is not known. The applied diffusion-encoding gra-
dients v are therefore not coincident with the principal
axis system, but are related to it by a rotation R:

u � Rv [4]

where v is a unit vector in the direction of diffusion en-
coding.

Thus, one usually wants to infer the principal diffusivi-
ties and the rotation R. From these can be determined the
diffusion properties, such as the anisotropy, and the fiber
directions. The rotation R is defined within the coordinate
system shown in Fig. 1. The two angles that define the
direction in this coordinate system are the polar angle � �
[0, �], which is defined as the angle between the vector and
the positive z-axis, and the azimuthal angle � � [0, 2�),
which is defined as the angle in the x�y plane relative to
the positive x axis. It is also common to use the elevation
angle � 	 90° � �, which is the angle between the vector
and the x�y plane. These definitions are sometimes re-
versed in the mathematics literature. We retain the stan-
dard physics usage, depicted in Fig. 1, where (�, �) denote
the polar and azimuthal angles, respectively. We will often
employ the shorthand notation 
 � (�, �).

It is helpful to note that (�, �) are two of the Euler angles
(18) used to described rotations in 3-D coordinates. These
angles are typically denoted as (�, �, 
), where � is the
azimuthal rotation angle, � is the polar rotation angle, and

 is a rotation about the new axis defined by the rotation
through (�, �). For the description of a single point (i.e., a
measurement) on a sphere, as is the case in this work,
rotations about the final (radial) axis are unimportant, so
the rotations can be described by the two angles (�, �). It is
common in this case to denote these as (�, �).

The gradient direction vectors in the two coordinate
systems are related by a rotation (17)

R � � sin � �cos � 0
cos � cos � sin � cos � �sin �
cos � sin � sin � sin � cos �

�. [5]

The apparent diffusion coefficient for an arbitrary gradient
direction v can thus be written (17)

Dapp � vT � D � v [6]

where

D � RTD�R. [7]

Equation [7] defines the diffusion tensor D in a rotated
coordinate system. The signal from a single fiber is typi-
cally expressed in the form

log(S/S0) � � bD̂ [8]

where we introduce the shorthand notation D̂ � Dapp 	
vTDv. For any symmetric matrix D, such as the diffusion
tensor, the product xTDx is a pure quadratic form (19).
From Eq. [8] one can estimate the diffusion tensor D by an
eigenvalue decomposition in which the eigenvectors effec-
tively determine the rotation of the fiber coordinate system
relative to the laboratory system, and the eigenvalues de-
termine the diffusivities (8). Since D is positive definite, it
can be written in the form of Eq. [7], where D� is diagonal

FIG. 1. Spherical coordinate system.
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and the unit eigenvectors of D are the columns of R. The
rotation y 	 Rv produces the sum of squares

vTDv � vT RD�RTv � yTD�y � �
i

n

�iyi
2. [9]

The equation vTDv 	 1 describes an ellipsoid whose axes
end at the points where �iyi

2 	 1, and the remaining y
components are zero (19). Undoing the rotation, these
points are in the directions of the eigenvectors and the
axes have half length 1/��i. It is important to emphasize,
however, that the ellipsoid that describes the eigenspace of
the diffusion tensor is not a description of the shape of the
measured local diffusion Dapp (15).

Multiple Fibers

The above definition of a “fiber” can be extended to multiple
fibers by defining the k’th fiber as synonymous with the k’th
diffusion tensor Dk, with no assumption of cylindrical sym-
metry until it is necessary. In addition, the assumption will
be made throughout that there is no exchange between fibers
so that the signals add independently.

In general, the signal from a voxel containing N fibers
can be written

S � S0 �
k	1

n

fke�bD̂k [10]

where fk is the volume fraction of the k’th fiber (�k	1
n fk

� 1). It will prove useful to express this in the following
form (Taylor expanding about b 	 0):

log(S/S0) � � b �
k	1

n

fkD̂k

�
b2

2 ��
k	2

n

fk�1 � fk��D̂k1
2 � 2 �

i	2
i�j

n �
j	2
j�i

n

fi fj�D̂i1�D̂j1� [11]

where we have defined the differential apparent diffusion
�D̂kj � D̂k � D̂j. This form of writing the signal is useful in
that it expresses the effect of additional fibers k �
2 relative to the first (k 	 1). For a single fiber, the terms in
the bracket drop out and the log signal assumes the pure
quadratic form utilized in Eq. [8] in the standard diffusion
tensor approach. Moreover, it makes explicit the higher
order (in b) dependence of the terms that couple different
diffusion tensors through the differential apparent diffu-
sion, revealing why high b values bring out the complex
diffusion structure, whereas for low b values, the weighted
mean D (the term linear in b) is dominant. Each D̂ is a
quadratic, so each term in Eq. [11] is an even power poly-
nomial in gradient direction v. The approximation to or-
ders O(b2) yields even polynomials up to order 4.

Special Case: Two Fibers

For multiple fibers within a voxel, Eq. [11] can be compli-
cated. However, the special case of two fibers is instruc-

tive, and is a useful approximation in practice. This is the
simplest multifiber case, and the resulting equations have
an intuitively clear interpretation and are numerically rel-
atively simple to manage. From Eq. [11], the log signal be
written

log(S/S0) � � b �f1 D̂1 � f2 D̂2� � f1 f2b2�D̂ 21
2 [12]

where f1 and f2 are the volume fractions in compartments
1 and 2, respectively, so that f1 � f2 	 1 and �D̂21 	 D̂2 �
D̂1, and we have kept terms up to the second order in b.
The measurements D̂i are composed of second-order poly-
nomials, so the coupling term � � f1 f2 b2 �D̂21

2 is com-
posed of even order polynomials up to the fourth order.

The two terms linear in b represent the “individual”
fiber components and are pure quadratic forms. In addi-
tion, there is a “coupling” term, second order in b, with
coefficient f1f2 that is of the fourth order. Note the inter-
esting fact that the coefficient term f1f2 is a quadratic
function, with a maximum at f1 	 f2. The magnitude of the
coupling thus depends on the volume fractions; however,
the shape does not. This is clear from the fact that the
volume fraction enters only as a multiplicative factor in �.
Variations in the shape of the coupling term are more
easily understood by rewriting � in a more illuminating
form. First note, from Eqs. [6] and [7] that

�D̂21 � vTR1
T D̂12R1v [13]

where we have defined

D̂12 � R12
T D2,�R12 � D1,� [14]

R12 � R2R1
�1. [15]

The term R12 is the product of rotation matrices and is
therefore also a rotation matrix (by virtue of the group
properties of the 3D rotation group, denoted as O(3) (20)).
It first undoes the rotation R1, then applies the rotation R2.
If the rotations R1 and R2 are the same, meaning that the
fibers are pointing in the same direction, then R12 	 1, and
D̃12 is a diagonal matrix with eigenvalues equal to the
difference in principal diffusivities between D1 and D2. If
the fibers are identical in orientation and diffusivities (by
our definition, D1 	 D2), then D̃12 	 0, so that �D̃12 	
0 and the coupling term disappears, reducing the log sig-
nal to the standard single-fiber form (Eq. [8]). In general,
though, the term �D̂21 is of the same form as the rotated
single-fiber diffusion matrices (e.g. Eq. [7]) but in terms of
the new tensor D̃12, which we term the reduced diffusion
tensor.

The accuracy of the approximation in Eq. [12] depends
upon both the b-value and the relative orientation of the
fibers. As shown in Fig. 2, this approximation is good up to
quite high b-value. The manifestation of these errors is
most clearly visualized by plotting Dapp as a function of
b-value for �� 	 90° (the angle at which the influence of
the coupling term is the greatest), an example of which is
shown in Fig. 3.
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The results for the HARD diffusion measurements can
be summarized as follows:

1. The measured local diffusion is related to the diffu-
sion in the fiber coordinate system by 3D rotations.

2. The measured log signal from a single fiber is a pure
quadratic form.

3. The measured log signal from multiple fibers can be
approximated by the sum of two pure quadratic forms
and a coupling term of even polynomial up to order 4.

FIG. 2. Mean squared error between the true diffusion log (signal) (Eq. [11]) and the approximate form (Eq. [12]) as a function of b-values and azimuthal
angle �� between two identical fibers oriented in the x-y plane (i.e., polar angle � 	 90°). The approximation error gets worse for large b and large ��,
but is less than .05 for b � 5000 s/mm2. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 3. The effect of the coupling term in the
approximation (Eq. [12]) in a voxel containing
two fibers oriented in the x-y plane at an angle
�� 	 90° relative to one another for three b-
values: b 	 500, 2500, 5000 s/mm2. (Left) The
true Dapp and the approximate Dapp determined
from Eq. [12]. (Right) The mean and coupling
terms in Eq. [12]. The mean term is always
circular. For increasing b-values the approxi-
mation is less accurate, as demonstrated by
the increasing discrepancy between the true
and the estimated shapes in Fig. 2.
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The question then is this: If an eigenvector decomposition
is sufficient to determine the diffusion tensor in the single-
fiber case, is there a decomposition sufficient to determine
the diffusion in the case of multiple fibers? We show in the
next section that this is indeed possible.

SPHERICAL HARMONIC DECOMPOSITION

Spherical Tensor Representation of Rotations

As described in the previous section, the diffusion mea-
surements along different encoding directions can be ex-
pressed as rotations in three dimensions relative to the
(unknown) principal axis system of the diffusion. In the
HARD technique, these measurements are along a set of
directions covering the range of the spherical coordinates
(�, �). The rotations R were expressed using a form, or
representation, in terms of the Euler angles. However, the
problem was formulated in the familiar Cartesian coordi-
nate system, or basis: e 	 {x, y, z}, because this is the
natural coordinate system for imaging. Systems with
spherical symmetry are often more conveniently handled
in the spherical basis: e 	 {r, �, �}, as defined in Fig. 1. As
we show next, rotation matrices transformed into the
spherical basis are the spherical harmonics (21). Tensors
transformed into this representation are called spherical
tensors (21).

The HARD diffusion measurements have an inherent
spherical symmetry because they are made by a series of
3D rotations. The inherent symmetry in this problem can
be elucidated through the theory of groups, which was
originally developed for the purpose of characterizing
symmetry (21). The concept and consequences of groups,
although extremely powerful, are conceptually relatively
simple. Their great power is that they facilitate the char-
acterization and classification of mathematical structures
into classes or groups with similar symmetry properties.
All members within a particular group can then be treated
as equivalent, even if their specific manifestations differ.
For example, two points constrained to move on the sur-
face of the same sphere can be seen as having identical
symmetry properties even if their precise locations on that
sphere differ.

The importance of the spherical tensor formulation is
encapsulated in the following expression, which shows
how a spherical tensor T is affected by a general rotation
�m’m

l (�) in some representation � of the rotation group in
the basis e:

Tlm � �
m�	�l

l

�m�m
l ���Tlm� . [16]

Notice that rotations of the individual m components
within a particular component of rank l do not “mix”
elements amongst components of different rank l. This
quality of the T is called irreducibility. Equation [16] can
be considered the defining quality of a spherical tensor: a
tensor that transforms accordingly is by definition a spher-
ical tensor. The spherical tensor representation is useful
because rotations of the individual tensor components pre-
serves the rank.

Both the spherical tensor and the rotations can be re-
lated to our specific problem as follows. A single fiber
tensor is a second-rank tensor and so consists of nine
components, represented by a 3 � 3 matrix. In its irreduc-
ible representation, the tensor is written as the sum of
three terms:

T � T0 � T a � T s [17]

where T0 	 T0I in which T0 is a rank 0 tensor (i.e., a scalar)
and I is the 3 � 3 identity matrix; T a is an antisymmetric
rank 1 tensor (i.e., a vector); and Ts is a symmetric, rank
2 tensor. For a general spherical tensor, the rotations �m�m

l

(�, �, 
) in the spherical tensor basis expressed in terms of
the Euler angles are called the Wigner rotation matrices
(21). For a point in spherical coordinates, the Wigner ro-
tation matrices are proportional to the spherical harmonics
(22):

�m0
l* ��, �, 
� � �2l � 1

4� ��1/2

Ylm��, ��. [18]

Therefore, the process of rotating a diffusion tensor can be
reformulated by expressing the diffusion tensor in an irre-
ducible form in which its individual components trans-
form separately under rotations affected by spherical har-
monic components. In this general formulation, the con-
cept of the diffusion tensor can easily be extended to more
complex structures by considering tensors of higher rank
because now the transformation under rotations are of
exactly the same form (Eq. [16]) and the functions that
perform the rotations are exactly the same basis set (the
spherical harmonics).

Application to HARD Measurements

Now, consider the general case of a HARD measurement of
a voxel of unknown fiber composition. The measured ap-
parent diffusion coefficient D(
) is then an arbitrary real
function. The complex spherical harmonics form a com-
plete orthonormal basis (18) so an arbitrary real function
parameterized by the spherical coordinates (�, �) can be
expanded in a Laplace series:

D��, �� � �
l	0

� �
m	�1

l

almYl
m��, ��. [19]

The coefficients alm are determined by (18) multiplying
both sides of Eq. [19] by Yl�

m�* (�,�) and using the orthog-
onality condition

�
0

2� �
0

�

Yl
m��,��Yk

n��,�� sin��� d�d� � �lk �mn. [20]

The expansion coefficients are uniquely determined by
multiplying each side of Eq. [19] by Yk

n (�, �) and integrat-
ing over the sphere. The result is that the coefficient can be
determined by
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alm � �
0

2� �
0

�

Dapp��, ��Yl
m��, �� sin��� d�d�. [21]

This is precisely analogous to a Fourier decomposition of
sinusoidal functions, but on the unit sphere. This will be
called the spherical harmonic transform (SHT) of the mea-
sured apparent diffusion coefficient.

The utility of describing the measured HARD (log) signal
in terms of group theoretical constructs can now be shown
directly as follows. The measured HARD signal D̂(
) is an
arbitrary real function and so can be expanded in terms of
a Laplace series (Eq. [19]) with the coefficients determined
by the SHT (Eq. [21]). But the symmetry of HARD diffusion
measurements imposes severe restrictions on the expan-
sion coefficients that allow direct classification of the dif-
fusion from the SHT. In particular, the SHT of D̂(
) pro-
duces the coefficients of the irreducible representation of
D̂(
).

Specifically, the following is true: Isotropic diffusion is
independent of direction, so the lowest order Y00(
) is the
basis for the representation of �(0). This is easily seen
because Y00(
) is just a sphere, so the calculated coeffi-
cient merely scales the radius of the sphere. This provides
a 2L � 1 	 1-dim representation of the O(3). For a single
fiber, the irreducible representation of D̂(
) (Eq. [17]) pro-
vides a basis for a 6-dim representation of O(3) (with T0

providing 2 � 0 � 1 	 1, and Ts providing 2 � 2 � 1 	 5).
The basis functions are then the spherical harmonics
Ylm(
) of order L 	 0, 2. Because this is an irreducible
representation, Eq. [16] expresses the fact that fiber rota-
tions do not alter the basis functions. That is, they only
produce a redistribution of energy amongst the M compo-
nents or variations in the phase of the M components, but
not the order L. For multiple fibers, the log signal from
multiple fibers can be expressed in terms of an expansion
in even-power polynomials (Eq. [11]) and approximated
up to relatively high b-values by keeping terms up to the
second order in b, which corresponds to terms of 4’th-
order polynomials. A multifiber voxel, therefore, provides
a basis for a 2 � (0 � 2 � 4) � 3 	 15-dim representation
of O(3), with basis functions being the spherical harmonics
of even orders up to order L 	 4. The dimensions of the
representation are the number of measurements that are
required to characterize the D̂(
). It is for this reason that
2 � (0 � 2) � 2 	 6 measurements are required to charac-
terize the standard single-fiber diffusion tensor.

The results can be summarized by the following rather
remarkable conclusions:

1. Isotropic diffusion is described by a00Y0
0(
).

2. Single-fiber diffusion is described by �l	0,2 almYl
m�
�.

3. Multiple-fiber diffusion is approximately described
by �l	0,2,4 �m almYl

m�
�.
4. In general, the local diffusion, including the magni-

tude and orientation, can be described by sum of
spherical harmonics of even order, i.e.,
�l �m almYl

m�
�, l � 0,2,4, . . . .
5. Odd orders of the spherical harmonics describe

asymmetric components and therefore imaging arti-
facts.

6. The coefficients alm are determined by the spherical
harmonic transform of D̂(
).

7. The dimension of the representation is the number of
measurements required to characterize the apparent
diffusion coefficient D̂(
).

It is important to point out that the order L required to
characterize the diffusion in a multifiber voxel depends
upon the orientation of the two fibers. For fibers more
closely aligned, higher orders of L will be required. This
can be seen by considering the simplest case of two iden-
tical fibers lying in the � 	 90° plane, oriented nearly
parallel to one another. Distinguishing between the two
fibers requires high resolution in the azimuthal angle �.
Since the azimuthal dependence of the spherical harmon-
ics is proportional to exp(im�), higher frequency varia-
tions in � require larger values of m and thus higher orders
of L in the basis functions. By 7 above, more dense sam-
pling is then required. We have focused on the simplest
case in the present work where L 	 4 is considered suffi-
cient, but this is not required.

The group theory arguments provide a simple and concise
description of the categorization of voxel diffusion character-
istics, since the above results are expressible as direct sum
subspaces. Let us call the “state” of a voxel with k fibers �k,
where k 	 0 means isotropic diffusion. Then we can write

1. Isotropic diffusion: �0 	 �(0).
2. Single-fiber diffusion: �1 	 �(0)

Q �(2).
3. Multiple-fiber diffusion; �2 � �(0)

Q �(2)
Q �(4)

where the �(j) are the irreducible representations of the
rotation group, and Q denotes the direct sum subspace. In
principle, the composition of a voxel in terms of these can
be determined, as well as the magnitude and orientation of
the local diffusion.

The symmetry inherent in this problem precludes the
existence of power in the odd L channels. Energy in these
channels in the SHD of actual experimental data is there-
fore produced by non diffusion effects, such as subject
motion or eddy currents, which are not constrained to the
same symmetry properties. This can be used to advantage
as a means of identifying nondiffusion-related variations.
Of course, such variations may also have power in the
diffusion-related channels, so their reconstruction may not
be trivial. The information in the odd channel might also
be useful in incorporating eddy current correction into the
image reconstruction.

The ability to characterize the diffusion does not imply
that extraction of fiber information is easy, however. This
becomes apparent in examining the coupling term �, about
which can be said:

1. The shape of � depends on the eigenvalues of the
reduced diffusion tensor, and thus on the relative
anisotropies of two fibers.

2. The orientation (and hence phase) of � depends upon
the mean orientation of fibers.

3. The magnitude of � depends on the volume fractions
and the relative orientations of the fibers.

The last item underscores a basic ambiguity in the diffu-
sion measurements: the volume fractions and relative ori-
entations can confound information about one another in
the measured signal. However, the orientations affect the
phase, whereas volume fraction changes do not.
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Simulation and Computation of the SHD

Display of the SHD

Before proceeding, it is important to outline our basic method
of displaying the SHD data. Because there is a great deal of
information produced by this method, we have found it
important to have a concise method for displaying the re-
sults. The SHD calculates components up to a user-specified
value of L, for all the 2L � 1 values of M associated with each
L (because M 	 �L, . . . 0, . . . � L). A useful way to display
the coefficients is thus on an array of coordinates (L, M), as
shown in Fig. 5. Since M � L, the diagram has a characteristic
triangular shape (white boxes have no coefficients).

This theory is easily confirmed by simulation, as shown
in Fig. 4 where the Dapp for a single fiber and for two
identical perpendicular fibers are broken down in terms of
the separate contributions from the different spherical har-
monic components. In this simulation we use a fiber
model that possesses cylindrical symmetry, since this is a
reasonable physical model for white matter geometry (e.g.,
Ref. 17), though the above results do not require this. The
corresponding SHD is shown in Fig. 6, which shows on the
right the SHT of the Dapp from a single fiber (top) rotated
through the entire range of both � and �, and two fibers
(bottom) with one fixed along the x-axis and the relative
angle between the fibers rotated through the entire range of
both � and �. The Dapp for one particular orientation is
shown on the left. No energy is produced in channels other
than those predicted by the group arguments above.

Generally, the coefficients are determined for a range of
parameters, in which case the boxes become arrays wherein
the parameters are varied. The first is where the parameters
are the spatial coordinates (x, y). Then each “box” on the (L,
M) plot is just an image of the spatial distribution of the
amplitude of that specific (L, M) component of the SHD. The
other case of importance is when the parameters are the
azimuthal and polar fiber angles (�, �) as shown in the ex-

ample in Fig. 6. This is useful, for example, in showing that
as a single fiber is rotated arbitrarily, there is a redistribution
of amplitudes within the �1 subspace, but the energy remains
completely contained with this channel, as predicted.

Numerical Methods

The spherical harmonic decomposition is achieved by
computing the spherical harmonic transform of the mea-
sured (i.e., apparent) diffusion coefficient (Eq. [21]). Un-
fortunately, unlike the discrete Fourier transform (DFT),
for which there exists a matrix decomposition that allows
the fast Fourier transform (FFT), no such algorithm exists
for the SHT. Although a variety of algorithms have been
proposed for the computation of spherical harmonic coef-
ficients (23,24), no clear algorithm has emerged as clearly
superior, and the subject remains an area of active re-
search. Therefore, for the present work the coefficients
were determined by direct computation of Eq. [21].

The direct computation of Eq. [21] to order Lmax on a
grid of N values of � and M values of � requires the
computation of �

l	0

Lmax
�2l � 1) spherical harmonics evalu-

ated at N M points. The spherical harmonics involve mul-
tiple expensive trigonometric evaluations. Many of the
trigonometric evaluations are redundant, however, so pre-
computation of these values can be used to speed up the
computation. Direct computation of the measure
sin(�)d�d� requires M trigonometric evaluations and N M2

multiplies. However, an efficient algorithm for computing
the measures was developed by noting that these weights
in the summation that approximates the integral are equal
to the Voronoi areas for the sampling points on the unit
sphere.1 Precomputation of the trigonometric functions and

1The code for computing spherical voronoi areas was written by R. W. Cox.

FIG. 4. Graphical representation of the
SHD. The contributions to Dapp from the
different L orders of the SHD are shown
for (a) a single-fiber and (b) a double-fiber
voxel. a: The Dapp contains contributions
only from the L 	 0 term (the sphere) and
a more complex shape produced by the
L 	 2 spherical harmonic components. b:
The Dapp for two identical fibers oriented
(��, ��) 	 (90°, 0°) relative to one another
contains contributions only from the L 	
0 and L 	 2 spherical harmonic compo-
nents, as in a, as well as a contribution
from the L 	 4 component (bottom right).
Note that the four-lobe structure of Dapp in
the equatorial plane is generated by the
addition of the four positive red lobes and
the four negative blue lobes of the L 	
4 component to the L 	 0 component
sphere. The color scheme has red at max-
imum positive, and the blue at maximum
negative. Each shape is scaled indepen-
dently for display.
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the weights therefore allowed an efficient SHT. This algo-
rithm has been incorporated into the author’s diffusion
plug-in module in AFNI (25) and is sufficiently fast to rapidly
process reasonably large HARD data sets. For example, the
data shown in the present work are comprised of 10 slices
and 43 directions. The SHT on the entire data set took only
1.25 min on an SGI Octane2 with dual R12000 processors.

STRUCTURE OF THE SHD OF DIFFUSION
MEASUREMENTS

Determining Significance of the Multiple-Fiber Channel

The categorization of voxel fiber composition outlined
above suggests a strategy for the analysis of HARD data.
The SHT is taken for each voxel in the image and sorted
into even- and odd-order L. The odd orders represent
artifacts and therefore can be eliminated from the analysis.
The remaining even orders up to order L 	 4 are then
sorted in the following manner. Voxels with significant
power in L 	 4 are classified as “multiple fibers,” voxels
with significant power in L 	 2 but not L 	 4 are classified
as “single fibers,” and voxels with significant power in L 	
0 but not L 	 2 or L 	 4 are classified as “isotropic.” The
proper method for determining significance is to deter-
mine which fiber model is most probable in any particular
voxel. This approach will be pursued in a future work.
Having determined into which classification each voxel
falls, the voxel local diffusion is determined from the sum

of the appropriate spherical harmonics components (iso-
tropic: L 	 0; single fiber: L 	 0,2; multiple fiber: L 	 0, 2,
4), with the coefficients determined from the spherical
harmonic transform.

In lieu of a more complete analysis, a simple method for
the determination of significance is suggested by the re-
sults above that show that the magnitude of the L 	 4 term
increases with increasing relative orientation of the fibers.
Therefore, a comparison of energy in the L 	 4 to the L 	
2 channel can be used to gauge of whether or not a voxel is
of state �0 or �1. One measure of the significance of a
multiple-fiber channel is the fractional even order greater
than 0 in that channel. We can define the fractional mul-
tifiber index (FMI) as

FMI �
�L�4 �M 	AL,M	2

�M 	AL	2,M	2
, L even. [22]

An example is shown in Fig. 10 (bottom) for the simplest
example of two fibers at a range of relative orientations
ranging from parallel to perpendicular. This is a reason-
able measure of comparison and means of separating sin-
gle- and multifiber channels, raising the question of which
threshold to choose. We will use this here in lieu of a more
complete probabilistic model, which will be pursued in
the future.

FIG. 5. Graphical representation of the spheri-
cal harmonic transform. For each value of L
there corresponds 2L � 1 values of M :
�L, . . . , 0, . . . , L. The box at each (L, M) co-
ordinate contains an array (upper right diagram)
whose coordinates are varied parameters at the
fixed values (L, M). The transform is identically
zero for 	M	 � L (blank boxes).

FIG. 6. Rotational variations of the SHD. Reconstructed
Dapp’s are on the left. The SHT coefficients are on the
right, with the varied parameters azimuthal (��) angle
on the horizontal axis and the polar (��) angle on the
vertical axis, and displayed as described in Fig. 5. a: A
single fiber rotated through the full range of (�, �). b:
Two identical fibers oriented (��, ��) relative to one
another: (left) Dapp for (��, ��) 	 (90°, 0°), (right) spher-
ical harmonic transform of two fibers with one fiber
rotated through the full range of (��, ��). The angular
variations are with respect to the first fiber, which is
fixed along x 	 0. The SHT in a and b shows that only
L 	 0, 2 components arise from the single fiber and only
L 	 0, 2, 4 arise from the multiple fiber. This is a
consequence of the fact that rotations only mix M
components.
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Symmetry of Diffusion Weighting: Projective Subspaces

Decomposition of the diffusion into separate isotropic,
single, and multifiber channels is a consequence of the
group algebra, which generates additive subspaces that
depend upon the degree of polynomial necessary to de-
scribe the measurements. However, this is far from the
complete story, for it is just the L story. There is structure
within the SHD contained in the way in which the energy
is distributed among the M components.

There is a fundamental symmetry in the Dapp imposed
by the imaging process because the signal loss due to
diffusion along the direction of a gradient is insensitive to
the sign of the motion. That is, equal diffusive motion in
both the �x and �x directions produce the same diffusion-
related signal loss. This results in a projective symmetry,
which can be visualized by the diagram in Fig. 7a. In the
mathematics literature, projective is synonymous with an-
tipodal, and is unrelated with projection in the sense com-
monly used in the physics literature (i.e., the component
along a chosen axis). Diffusion measurements are therefore
represented by the projective subgroup of O(3) (denoted
PSO(3) 	 O(3)/Z(2) where “/” can be thought of as “mod”
and Z(2) represents the group of two integers). This means

that two antipodal points (the two integers) on a sphere are
indistinguishable. The effect of projective symmetry is that
it restricts the energy to even values of M because odd
values are not symmetric in �. However, this symmetry
imposed on the PSO(2) subgroup of O(3) is only evident
for a single fiber in the equatorial plane (� 	 90°) because
arbitrary rotations can be represented by mixtures of (�, �)
components. These effects are demonstrated by simulation
in Fig. 7b–d.

The SHD for two fibers exhibits a similar symmetry. For
two fibers in the equatorial plane oriented at �� 	 90° to
one another, the mean component is cylindrically sym-
metric and therefore does not possess (L, M) 	 (2, �2)
components. For two fibers in the meridian plane oriented
at �� 	 90° to one another, the coupling term generates all
even M terms for L 	 0, 2, 4 except for (L, M) 	 (L, �4).
Two fibers in the equatorial plane generate only one set of
non-zero M components: (L, M) 	 (4, �4) components,
similar to the single fiber, and by symmetry do not possess
(L, M) 	 (2, �2) components. Again, arbitrary rotations
produce mixing into all available M components. The pro-
jective subspace behavior of two identical crossed fibers is
shown in Fig. 7e–g.

FIG. 7. MR diffusion measurements are sensitive only to the absolute value of the direction: motion in �x has the same effect as motion
in �x. This imposes a projective symmetry on the measurements so that antipodes on the measurement sphere (a) are identical. b–d:
Projective subspace of the single fiber with � 	 0, � 	 b) 90°, c) 0°, d) 45°. e–g: Projective subspace behavior of two fibers with (�1, �1)
	 (90°, 0°) and �2 	 90° with �2 	 e) 0°, f) 90°, g) 45°. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Fiber Orientation

Characterizing the local diffusion amounts to determining
diffusion tensor(s) and their orientation(s) relative to the
laboratory system. In the special case of cylindrically sym-
metric diffusion, a natural definition of the fiber orienta-
tion is the direction of the principal (i.e., largest) eigenvec-
tor e1 of the diffusion tensor (8). For the problem of mul-
tiple-fiber voxels, the issue of orientation becomes more
complicated, for one can examine the orientation of the
individual fibers as well as their orientation relative to one
another. In this section we reconsider the case of the single
fiber, but now in the context of the SHD. We then consider
the simplest multifiber case of two cylindrically symmet-
ric fibers at arbitrary orientations.

Single-Fiber Orientation From the SHD

Because the SHD results for a single fiber identically re-
produce those of the diffusion tensor, a single-fiber orien-
tation can always be determined from the SHD by trans-
forming from the spherical basis back to the Cartesian
basis, thereby reconstructing the diffusion tensor, and then
determining the fiber orientation from the principal eigen-
vector.

The key to determining the fiber orientation from the
SHD is to recognize that a rotation R� of the fiber by an
azimuthal angle � modulates that phase of the SHT com-
ponents because the � dependence of the coefficients is of
the form exp(i�). On the other hand, fiber rotations R� by a
polar angle produce amplitude variations because the �
dependence is proportional to Pl(cos �), the Legendre poly-
nomial, which is a polynomial in cos � of order L. As a
consequence of Eq. [16], the � variations mix energy among
the available M components for a particular L component,
but does not exchange energy among the L components.

These variations are illustrated in Fig. 8(a and b), where
a single cylindrically symmetric anisotropic fiber is ro-
tated through azimuthal angles � 	 {0°, 45°, 90°} while
fixed at the equatorial plane (i.e., � 	 90°) and through
polar angles � 	 {0°,45°, 90°} while fixed at the prime
meridian (i.e. � 	 0°). The phase and magnitude for the
single-fiber case shown in Fig. 8a–d demonstrate that the �
orientation can be determined from the phase, while the �
orientation can be determined from the amplitude.

In this example, the phase (Fig. 8a and b) is determined
from the coefficient a2,2 that corresponds to the spherical
harmonic Y2

2 	 �15/32� sin2(�)ei2� so that the estimate of
the azimuthal orientation is �̂ 	 arg[a2,2]/2, where arg

FIG. 8. Single-fiber rotations. a and b: Single-fiber azimuthal rotation. Rotations in the equatorial plane produce only phase changes. c and
d: Single-fiber polar rotation. Rotations in the meridian plane produce only magnitude changes.
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denotes the phase angle. The magnitude variation of a2,0 as
a function of 0 � � � � is seen (Fig. 8c and d) to follow
Pl(cos �) so that the estimate of the polar orientation �̂ can
be made by noting that the a2,1 component has no energy
for � 	 90°, so that the ratio of a2,1 to a2,0 can be related to
the polar angle by: �̂ 	 tan�1(a2,0/a2,1).

Two-Fiber Orientation From the SHD

Determination of the fiber orientations in a multifiber
voxel is complicated by the fact that the measured signal is
not just a function of the individual fiber orientations, but
of their relative orientations and their volume fractions.
However, the coupling term � that generates the L 	
4 components have some remarkable properties that make
this problem tractable, at least for the two fiber case. Three
limiting cases illustrate these properties.

The first is two fibers coplanar in the equatorial plane
(i.e., � 	 90°). If the angle between the two fibers is kept
constant but the two fibers are rotated relative to the
laboratory coordinate system, then the coupling term

� rotates, causing a phase change in the L 	
4 components, but no magnitude change. This is shown
in Fig. 9a and b.

The second is two fibers coplanar in the meridian plane
(i.e., � 	 0°). If the angle between the two fibers is kept
constant but the two fibers are rotated relative to the lab-
oratory coordinate system, then the coupling term � ro-
tates, causing a phase change in the L 	 4 components, but
no magnitude change. This is shown in Fig. 9c and d.

The third is two fibers coplanar in the meridian plane
(i.e., � 	 0°). If the angle between the two fibers is varied
but the mean angle between the fibers is kept fixed, the size
of the coupling term � changes, disappearing when the
fibers are aligned (since this is identical to a single fiber).
This is shown in Fig. 10a and b (top).

The orientation results for the special case of two fibers
can be summarized as follows:

1. Azimuthal rotations R� of two fibers together (i.e.,
fixed relative orientation but variable mean � orien-

FIG. 9. Double-fiber rotations. a and b: Double-fiber azimuthal rotation. Rotations in the equatorial plane produce only phase changes in
the coupling term. c and d: Double-fiber polar rotation. Rotations in the meridian plane produce only magnitude changes in the coupling
term and a mixing of energy amongst the M components.
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tation relative to laboratory frame) produces only
phase change in the components.

2. Polar rotations R� of two fibers together (i.e., fixed
relative orientation but variable mean � orientation
relative to laboratory frame) produces a redistribution
of magnitude change in components, but no phase
changes.

3. Variable relative orientation but fixed mean orienta-
tion relative to the laboratory frame produces only
magnitude changes in the coupling component, but
the relative amplitudes of the components (i.e., the
pattern) remains unchanged.

Utilizing these results, however, necessitates the assump-
tion of a two-fiber model.

METHODS

To test the application of this method on actual data,
images were acquired on a GE SIGNA 1.5T Clinical Imager
with high-speed gradient hardware using a previously de-
scribed stimulated-echo spiral acquisition (15). Diffusion-
sensitive images were acquired on five normal human
subjects, with approval from the Human Subjects Commit-
tee of UC–San Diego and the VA San Diego Healthcare
System.

HARD encoding was achieved by generating gradient di-
rections equally spaced on a sphere by tessellations of an
icosahedron (13,15), as shown in Fig. 11. This procedure
produces directions that are equally separated in angle on the
surface of a sphere. Single-shot images were acquired at nine

FIG. 10. Double-fiber relative rotations and the FMI. [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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slices with the following parameters: FOV 	 24 cm, slice
thickness 	 3.8 mm, and matrix size 64 � 64 for approxi-
mately (3.75 mm � 3.75 mm � 3.8 mm) isotropic resolution,
TR 	 2700 ms, TE 	 52 ms. The diffusion parameters were:
diffusion gradient duration, � 	 20 ms, stimulated-echo mix-

ing time TM 	 200 ms, and b � 3000 s/mm2, and 43 diffusion
directions determined by the icosahedral tessellations of a
sphere. Twenty averages at each diffusion direction were
collected to ensure high signal-to-noise ratios (SNRs), and
resulted in a total scan time of � 34 min.

FIG. 11. Diffusion-encoding directions
generated by the pulse sequence are
spherical tessellations of an icosahe-
dron (13) of user-specified order
(shown here for clarity is the fifth-order
tessellation). [Color figure can be
viewed in the online issue, which is
available at www.interscience.wiley-
.com.]

FIG. 12. SHD and the separate fiber channels it produces.
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RESULTS
The spherical harmonic decomposition (up to order L 	 5)
of a single slice from a HARD data set collected in a normal
human volunteer is shown in Fig. 12. Note that the energy

is indeed confined to the L 	 0,2,4. The isotropic, single-
fiber, and multiple-fiber channels reconstructed from this
transform are shown at the bottom of the figure. As pre-
dicted, the isotropic channel appears to consist of gray

FIG. 13. Dapp estimated from the L 	 0, 2, 4 fiber channels. (Top left) Single-fiber channel (grayscale) overlaied in color with multifiber channel
(FMI � .4) (color scale). (Top right) Grayscale image is relative anisotropy index determined from diffusion tensor calculation from the same data.
In circles are three points from the (A) isotropic, (B) single fiber, and (C) multifiber channels for which Dapp is (colored shapes) reconstructed from
all three SHT components L 	 0, 2, 4. The gray matter voxel (A) is essentially isotropic, so that Dapp is a sphere and is unaffected by the inclusion
of L 	 2, 4. The single-fiber voxel (B) has the characteristic peanut shape, which is unaffected by the inclusion of L 	 4. The voxel in C requires
L 	 0, 2, 4 to represent Dapp, which in this case is consistent with two identical but perpendicular fibers. c: The DTI reconstruction, on the other
hand, can only accurately reconstruct the isotropic and single-fiber channels. Both (A) isotropic and (B) single-fiber voxels are correct, but (C) the
multifiber voxel produces a nearly spherical Dapp, with very low anisotropy and a subsequent “black hole” in the anisotropy image.

FIG. 14. Fiber magnitude and orientation. a: Magnitude of a single-fiber channel, representing the presence of single fibers, b: Map of
estimated �. c: Map of estimated �.
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matter, the single-fiber channel looks like a white-matter
map, and the multifiber channel corresponds anatomically
to regions of complex fiber geometry. The measured
Dapp(�, �) from the multifiber channel of Fig. 12 are com-
pared with simulations in Fig. 16, assuming two fibers
oriented �� relative to one another. From the coefficients
of the SHT the local Dapp can be calculated. In Fig. 13 are
shown representative shapes from the three different fiber
channels in another slice from the same data set.

For the representative voxel from the multiple-fiber voxel
the extreme case of nearly identical fibers crossed at 90° was
chosen, because the failure of the DTI method is most appar-
ent in this circumstance. However, it is important to note that
regions of significant energy in the multifiber channel do not
necessarily correspond to “black holes” in the standard DTI
maps (such as those shown in Ref. 15) since this effect is
produced only in the specific case of identical fibers oriented
at 90° to one another. However, these regions do correspond
to regions in which characterization by a single diffusion
tensor is incorrect, and will produce spurious results in the
estimation of diffusivities and orientations.

The magnitude of the single-fiber channel, and the esti-
mated maps of � and �, are shown in Fig. 14 for a different
slice from the same data set. A white-matter map is recon-
structed from the energy in the L 	 2, 4 channels, regard-
less of any categorization as single or multiple fiber, and
shown in Fig. 15, along with a map of the energy in the odd
channels which shows little structure.

DISCUSSION AND CONCLUSIONS

MR’s sensitivity to diffusion anisotropy (4) was recognized
shortly after the initial studies of isotropic diffusion (2,3),

but it really blossomed with the recognition of its utility
for the study of fibrous biological systems (10,11). The
natural first step in quantifying anisotropic diffusion is to
assume a Gaussian model for a single fiber, from which a
diffusion tensor model ensues (8). From this model can be
estimated the fiber diffusivities and orientation, and the
conditions sufficient to capture this information (9). While
it was recognized that this method is restricted to single
fibers (8,12), development of a technique to measure more
complex systems was only recently proposed (13). With
the general goal being to investigate complex anatomical
structures with no a priori assumptions about the diffusion
characteristics, the sampling criterion is no longer based
upon a presumed model, and this is phrased in terms of
being “unbiased” in the sense that no direction is assumed
to be preferable. The result is sampling on a sphere with a
radius defined by the b-value with sufficient density to
detect diffusion changes in different directions (13). The
question then arises: How does one characterize the diffu-
sion from such measurements? One approach, suggested
by Wedeen et al. (14), is to extend the measurements to
several radii by collecting “shells” of high angular spher-
ical resolution data and Fourier transforming the data to
produce a “q-space” image (26). This method is sensitive
to restricted diffusion because it samples a range of b-
values, but is unnecessarily complicated for the determi-
nation of non-Gaussian diffusion arising, for instance,
from multiple-fiber directions. As pointed out in Ref. 15,
the magnitude of b, in conjunction with high angular res-
olution sampling, is sufficient for this purpose and allows
data acquisition in a time that is clincally feasible. The
more pertinent question is how to characterize HARD mea-

FIG. 15. Left: A white-matter map reconstructed by adding the energy in the L 	 2, 4 channels. Right: A map made from the energy in the
odd-order components (L 	 1, 3, 5) shows little structure. These images are not on the same scale, but are scaled independently for display.
[Color figure can be viewed in the online issue; which is available at www.interscience.wiley.com.]

Anisotropy in HARD MRI 1097



surements made at high b-values, which is the subject of
the present work.

Our approach to characterizing the diffusion measured
with the HARD technique is based on characterizing the
shape of the measured apparent diffusion coefficient. Us-
ing the methods of group theory, this characterization is
that HARD measurements can be decomposed into irre-
ducible representations of the rotation group in which
isotropic, single-fiber, and multiple-fiber components are
three, separable, direct-sum subspaces. In our initial in-
vestigation of this problem, deviations from a spherical
surface in the form of the variance of the measurements
were used as a measure of anisotropy, the spherical diffu-
sion variance (15). While this has the advantage over the
diffusion tensor method in identifying regions of anisot-
ropy not well characterized by a single diffusion tensor, it
is unable to quantify the anisotropy in any meaningful
way. In particular, it does not allow the quantitation of
either the magnitude or the direction of diffusion. In ad-
dition, all non-spherical noise or artifacts contribute to
this variance. The present work can be seen as a formal-
ization of this approach, since the spherical harmonics
higher than Y0

0 that contribute to the spherical diffusion
variance characterize how the various anisotropic compo-
nents contribute to the variance.

A strength of the approach is that it does not require any
a priori information about the diffusion. The utility of the
decomposition results from the group algebra imposed by
the symmetries of both the measurement scheme and the
diffusion. The decomposition allows distinction of diffu-
sive and nondiffusive signal variations, as well as distinc-
tion among diffusion variations. In particular, the diffu-
sion channels can be broken down into direct-sum sub-
spaces representing isotropic, single-fiber, and multiple-
fiber components. Asymmetries produced by experimental
artifacts fall into channels that are impossible to reach by
diffusion, thereby providing a direct means of noise reduc-
tion within the diffusion channels as well as a means of
identifying artifactual effects. The technique lends itself to
prior information and model selection, which will be re-
quired to properly estimate voxel composition.

The numerical computation of the SHT was imple-
mented, by direct computation of the coefficients by a
discretized version of the integral Eq. [21], in a fashion
analogous to a DFT on a sphere. Unfortunately, there is no
matrix decomposition of the SHT analogous to that used to
implement the FFT from the DFT that would facilitate a
fast SHT. Several methods for fast SHT computation have
been proposed (e.g., Refs. 23,24, and 27–30). Our imple-
mentation based on direct integration using spherical
Voronoi weight is sufficiently fast and accurate for most
practical sampling schemes.

A very general problem that arises is the determination
of the voxel composition from the SHD. The solution to
this problem hinges on the ability to estimate the param-
eters of a voxel, in particular, the number of fibers, their
volume fractions, anisotropies, and orientations. Even in
the simple example discussed above of two fibers, it was
shown that it is not possible to determine all of these
uniquely, as the volume fraction and relative fiber orien-
tation both affect the higher-order SHD components in a
similar fashion. In practice, fiber configurations within a

voxel may be much more complicated than the simple
two-fiber model, making the problem of parameter deter-
mination exceedingly complicated.

The power of the SHD, however, is the fact that the
identification of the existence of multiple fibers is not
dependent upon making this distinction: multiple fibers of
any sort show energy in the higher channels. Moreover,
even in lieu of a particular fiber model, the SHD allows the
shape of the diffusion measurements to be quantified by
the coefficients of the SHT. These may be then used to
reconstruct the diffusion structure in each voxel depend-
ing upon the model used. With constraints, such as on the
number of fibers, the computational complexity can be
reduced. An example is shown in Fig. 16, in which two
fibers were assumed. One solution for the composition in
both angles and volume fractions was estimated simply by
trial and error in the simulation. However, one can imag-
ine formalizing this process by choosing a limited maxi-
mum number of fibers and searching for the relative angu-
lar displacements between the fibers and the fiber volume
fractions in order to estimate these quantities. Incorpora-
tion of other imaging information may augment this esti-
mation by determining which fiber model is most probable
in any particular voxel.

To assess the significance of the power in the multiple-
fiber channels in order to determine whether a voxel ac-
tually contains multiple-fiber directions, some comparison
with the single-fiber channel is required. For this purpose,
a simple statistic for determining the significance of the
multifiber channel, the FMI, was introduced. While this is
a natural measure, there is no indication of its optimality.
A more formal probabilistic analysis needs to be under-
taken to determine a method for determining the signifi-
cance of energy among the channels.

Remember that what we have loosely referred to as
“fibers” are really fiber bundles, within which the water
movement that produces the diffusion signal is most likely

FIG. 16. Evidence of consistency with the two-fiber model. Dapp

measured from multifiber channel in Fig. 12 (top) and simulated
(bottom) for (d) f1 	 f2, �� 	 90°, (e) f1 	 2f2, �� 	 90°, (f) f1 	 2f2,
and �� 	 75°. The shapes have been interpolated from the diffu-
sion-directional sampling for clarity. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.
com.]
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complex. We have implicitly assumed that all the fibers
that make up a bundle are essentially identical. Moreover,
we have also made the assumption throughout this work is
that there is no exchange between fibers, and thus the
signals from the individual fibers add independently. This
will not be true in general. Both of these assumptions are
made here, as they are in most of the DTI literature, not for
lack of recognition, but because the true nature of the
diffusion signal can be exceedingly complicated and is
beyond the scope of the current study.

The characterization of fibers in terms of even orders of
L is a consequence of the symmetry. Experimental arti-
facts, such as eddy current effects, that do not possess such
symmetry are not confined to the even channels, and
therefore appear in the odd L channels. Energy in these
channels therefore indicates the presence of nondiffusion
effects. The SHD, by automatically separating out some
fraction of the non-diffusion energy, effectively reduces
the noise in the diffusion channels. This has great poten-
tial for use on systems for which artifacts are present.

In practice, the issue of multiple fiber directions within
a voxel is intimately tied to the image resolution: for
higher resolution there will be fewer voxels with multiple
directions. Nevertheless, there will always remain hetero-
directional voxels at any resolution. Moreover, the penalty
in SNR per unit time can make high-resolution diffusion
imaging over a large region prohibitive. A postprocessing
scheme capable of accurately identifying and quantifying
multiple-fiber voxels may lead to more efficient acquisi-
tion protocols.

One important application of our method is its incorpo-
ration of multifiber voxels into fiber-tract mapping
schemes. This will require utilizing estimates of the indi-
vidual fiber orientations and volume fractions determined
from the SHD of individual voxels. Additional machinery
to keep track of multiple possible pathways of fibers pass-
ing through such voxels will then be necessary.

It is worth reiterating, in summary, that the proposed
method reduces to the standard diffusion tensor method in
the presence of single-fiber voxels, so no penalty of infor-
mation is imposed by its usage. Rather, deviations from the
DTI model due to artifacts or multiple fiber directions are
readily extracted and quantified, allowing a more com-
plete description of complex diffusion processes in tissues
using a clinically efficacious diffusion encoding scheme.
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