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White Matter Fiber Tractography Via Anisotropic
Diffusion Simulation in the Human Brain

Ning Kang, Jun Zhang*, Eric S. Carlson, and Daniel Gembris

Abstract—A novel approach to noninvasively tracing brain white
matter fiber tracts is presented using diffusion tensor magnetic res-
onance imaging (DT-MRI). This technique is based on successive
anisotropic diffusion simulations over the human brain, which are
utilized to construct three dimensional diffusion fronts. The fiber
pathways are determined by evaluating the distance and orienta-
tion from the fronts to their corresponding diffusion seeds. Syn-
thetic and real DT-MRI data are employed to demonstrate the
tracking scheme. It is shown that the synthetic tracts are accurately
replicated, and several major white matter fiber pathways can be
reproduced noninvasively, with the tract branching being allowed.
Since simulating the diffusion process, which is truly a physical
phenomenon reflecting the underlying architecture of cerebral tis-
sues, makes full use of the diffusion tensor data, including both the
magnitude and orientation information, the proposed approach is
expected to enhance robustness and reliability in white matter fiber
reconstruction.

Index Terms—Anisotropic diffusion simulation, diffusion tensor
MRI, fiber tractography.

I. INTRODUCTION

D IFFUSION tensor magnetic resonance imaging, or
DT-MRI, is an extension of conventional MRI with the

added capability of tracking and measuring the random motion
of water molecules in all three dimensions, usually referred
to as self-diffusion or “Brownian motion.” It is known that
water diffusion is anisotropic in brain white matter. The sig-
nificant anisotropy present in white matter reveals microscopic
properties of the anatomy of the nerve fibers by the fact that
water tends to diffuse predominantly along the long axis of
the fibers. The longitudinally oriented tissue structures, the
densely packed axons and in particular their membranes, which
are widely assumed to be the main barrier for water diffusion,
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hinder diffusion perpendicular to the fibers [1]. DT-MRI is
sensitive to this anisotropy and is able to characterize it by
noninvasively quantifying and assessing the self-diffusion of
water in vivo. The information concerning the local orientation
of fibers, extracted from the water anisotropic diffusion in
white matter, forms the basis of utilizing DT-MRI to track
fiber pathways and build connectivity maps in vivo. The water
diffusion behavior elucidated by the diffusion tensor imaging
reflects the directional organization of the underlying white
matter microstructure. DT-MRI characterizes the behavior on
a voxel-by-voxel basis and for each voxel, the diffusion tensor
yields the diffusion coefficient corresponding to any direction
in space [2]. The direction of the greatest diffusion can be
determined by evaluating the diffusion tensor in each voxel,
which corresponds to the dominant axis of the white matter
fiber bundles traversing the voxel. This has been validated
to be the case, for instance, in the optic tract of the rat using
manganese-enhanced MRI tracing techniques [3].

Typical fiber tracking schemes reconstruct the pathways of
white matter tracts by starting from a seed voxel and tracing
them down in a voxel-by-voxel manner, using an estimate of the
local fiber orientation determined by the principal eigenvector
in each voxel. At each voxel, the principal eigenvector, which
is the one corresponding to the largest eigenvalue generated by
the eigen decomposition of the diffusion tensor, is aligned with
the mean fiber direction in that voxel. Hence, trajectories can be
produced by integrating the principal eigenvector field, which
are expected to coincide with the course of the white matter
fiber bundles. Attempts have been made to trace the neural fiber
pathways by this technique [4]–[7] and very impressive results
on major fiber structures are exhibited. Those approaches are
sometimes referred to as streamline tracking techniques, stem-
ming from their similarity to computing flow streamlines from
the velocity fields in fluid dynamics.

The streamline-type techniques appear to give excellent
results in many instances if the principal eigenvector field
is smooth. However, it suffers from a couple of significant
limitations [8]–[10], particularly those related to the effects of
noise and partial voluming. The vector field is error prone in
that the noise in DT-MRI data will influence the direction of the
principal eigenvector, yielding an accumulation of orientational
errors and, thus, an erroneous fork of the trajectory reconstruc-
tion process. The partial volume effects [11], on the other hand,
will cause it to run into trouble in tracking fibers correctly and
reliably through the primary eigenvector field in regions of fiber
crossing, branching, or merging, which renders a complicated
averaging of multiple fiber populations within a single voxel.
Since the current resolution of DT-MRI is 1–4 mm while the
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diameter of nerve fibers is in the magnitude of m, it is difficult
for the measured diffusion tensor to describe such entangled
structures in those areas, making it undesirable to do fiber
tracking by simply tracing down the principal eigenvector field.

A variety of methods have been proposed aiming to alle-
viate the effect of these limitations with more information
incorporated and interpreted from the diffusion tensor data.
The tracking algorithm presented in [8] uses a deflection term
obtained from the diffusion tensor to improve the image noise
immunity. The tracing scheme of [9] is based on a regularized
fiber orientation map computed from a bending-energy model,
partly overcoming the proneness to inaccurate forks. Taking
into account the uncertainty of fiber direction, probabilistic and
statistical approaches have been developed to rebuild the brain
anatomical connections using regularized stochastic modeling
[12], linear state space models [13], and Monte-Carlo type
methods [14]–[16]. These methods introduce the possibility
with varying degrees to mitigate the effects of fiber crossing
and diverging as well as the sensitivity to noise. However,
the techniques mentioned above are restricted to reconstruct
the connectivity as a one-to-one mapping between points in
different regions since they produce a single path for each
starting point, potentially leading to a considerable loss of
information. The fast marching methods based on level set
theory, which models the evolution of an interface or front over
time, have been applied in the context of fiber-tracking [17] to
remedy the limitation. Another front evolution algorithm with
the same capability of handling such situations is proposed in
[18], which utilizes the fiber orientation density function to
evolve the front and, thus, reconstruct fiber tracts. The level
set method has also been used to implement other tracking
algorithms based on diffusive similarity [19], the fiber orienta-
tion likelihood distribution [20], and Riemannian manifold and
metric tensor [21], [22] to better deal with noise contamination
and ambiguous diffusion tensors.

Most of the existing tracking techniques solely employ the
orientation information carried by the diffusion tensor, totally
ignoring the influence of the diffusion strength or magnitude
of the tensor, which contains information about the strength of
the water diffusion. A more robust way to determine the fiber
network from diffusion tensor data is to conduct simulations of
water diffusion over the brain, in which the magnitude of ten-
sors plays an indispensable role. The diffusion is anisotropic and
governed by the diffusion equation, where fiber bundles are as-
sumed to proceed along the direction in which the diffusion is
the greatest. The fiber tracking method presented in this paper
exploits simulations of the diffusion process, through the solu-
tions to the anisotropic diffusion equation.

The idea of studying brain connectivity by way of simulating
the anisotropic diffusion has been preliminarily explored in
[22]–[24], and [25] further extends the diffusion equation to
a diffusion-convection equation by adding a convection term.
However, there is no (or at best limited) attempt at determining
the route of fiber pathways and connectivity between anatom-
ically or functionally defined regions in the brain using this
method, although the concentration or flow field over the brain
is calculated. The technique in the current work relies on suc-
cessive anisotropic diffusion simulations over the whole brain,

which are utilized to construct three dimensional diffusion
fronts. The next voxel, where a seed (an initial concentration
value) will be placed, is located on the diffusion front which
is created by the diffusion process initiated from the previous
seed voxel. It is selected in terms of the fact that the higher
the diffusion rate, the longer the distance that will be traveled
within the same amount of time, as well as the orientation
information from itself and its neighboring voxels. The fiber
pathways can be determined by evaluating the distance and
orientation of the vector from voxels on the fronts to their
corresponding diffusion seeds.

We introduce in detail the diffusion equation-based fiber
tracking algorithm in the next section. Experimental results
with both synthetic and real DT-MRI data are presented in
Section III. Section IV contains a discussion on the relation
between our tracking method and the other competing methods.
A brief summary is included in Section V.

II. METHODS

A. Data Acquisition and Processing

Real diffusion tensor data were acquired from a single
healthy subject at the Institute for Medicine, Jülich Research
Center, Jülich, Germany. A Siemens Magnetom Vision 1.5
T scanner was used to do the measurement using single-shot
spin-echo echo planar imaging with the following parameters:

s; ms; resolution: 96 128; plane ori-
entation: transversal; Field of View (FoV): 240 240 mm ;
slice thickness: 5 mm; number of slices: 16. The diffusion
weighting corresponded to the Stejskal-Tanner gradient scheme
[26] ( -factor: approximately 1000 s/mm ). The gradient di-
rection angles and were chosen as multiples of 22.5

. For the suppression of
eddy-current artifacts the employed sequence included a zero
and first order phase correction [27], [28]. The non-diffusion
weighted images ( s/mm ) actually had a small diffusion
weighting of about s/mm , which was neglected in the
computation of the diffusion tensors, but which is sufficient to
significantly reduce sensitivity against blood flow changes.

For the data acquisition, the measurements were distributed
over 22 pulse sequences (four different weightings per se-
quence: the first with s/mm and the other three with

s/mm , but with three different gradient directions
resulting in 66 gradient directions in total), which were re-
peated 10 times to increase the signal-to-noise ratio. This
resulted in blocks of 4 10 data sets for each sequence. The
averaging was performed in postprocessing with any poten-
tial head motion during the repetitions neglected (no motion
compensation). The measurement was distributed over three
sessions on different days. For the averaged data sets, however,
a motion correction was performed using the SPM99 software
package (http://www.fil.ion.ucl.ac.uk/spm), where the largest
displacements were due to changes in head position between
different sessions. (Some alternative DT-MRI motion correc-
tion and registration strategy is discussed in [29].) The total
measurement time was about eight hours including the latency
times for image reconstruction that could not be postponed to
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the end of the measurement or performed off-line for technical
reasons.

The resolution of the original calculated tensor data volume
is 128 128 16 with each voxel having size 2.5 2.5 7.5
mm defined on a Cartesian mesh. It has been recomputed using
trilinear interpolation, resulting in a uniform voxel size of (2.5
mm) .

B. Anisotropic Diffusion in Brain

In the diffusion-based fiber tractography, we treat the whole
3-D brain volume as a system with anisotropic diffusion prop-
erties, over which a virtual water diffusion process is simulated.
A thorough discussion about the diffusion process and related
transport mechanisms in brain can be found in [30]. Anisotropic
systems are those that exhibit a preferential spreading direction
while isotropic systems are those that have no preference. Ac-
cording to Fick’s macroscopic law of diffusion, which describes
the physical behavior of the diffusion process, the flux, , is re-
lated to the concentration, , by

(1)

where is the so-called diffusion coefficient. This equation
states that the concentration gradient causes the flux which
aims to compensate for this gradient. Substituting (1) into the
continuity equation

which expresses the conservation law of mass, we end up with
the equation governing the anisotropic diffusion process

(2)

where is the independent time variable. This equation says that
over the time, the rate of change in concentration is proportional
to the divergence of the flux.

For a homogeneous isotropic environment, is a
scalar-valued constant and the directions of and are
parallel. In the presence of anisotropy, the flow field does
not follow the concentration gradient directly. The diffu-
sion coefficient , therefore, has to be characterized as a
second-order tensor, which delivers a complete description of
the molecular mobility along each direction and the correlation
between these directions. The diffusion tensor is represented
by a three-by-three symmetric (semi)positive definite matrix,
namely,

where , and the sub-
scripts , etc., denote the values of the individual co-
efficients in the matrix that can be seen as the influence from
directions in the input (being the concentration) on the various
directions in the output (being the flux).

Since the brain tissue is not only anisotropic but also het-
erogeneous, the diffusion tensor in such a case depends on

the position in space and, thus, the spatial derivatives of the
tensor components , etc., must be introduced. In
a Cartesian coordinate system, for a given position in the tensor
volume, (2) is written as

(3)

C. Constructing Successive Diffusion Fronts

The fundamental idea behind our fiber tractography is to per-
form successive diffusion simulations over the brain stemming
from a series of selected starting voxels where a seed is placed.
With certain thresholds satisfied, the starting voxels, or diffusion
root nodes, are dynamically picked up from the nodes on the
three dimensional diffusion interfaces or fronts produced by pre-
vious rounds of the diffusion simulation. Thus, the first step to
reconstruct fiber pathways starting from a prechosen root node

(where is a set of real numbers) involves the simula-
tion of diffusion starting from a seed in this voxel. The virtual
concentration seed of water spreads from the root node through
neighboring nodes, within a limited amount of time, forming a
diffusion front which is the surface of a diffusion volume con-
taining nodes with nonzero1 concentration values. The expan-
sion of the diffusion volume originated from the root voxel is
achieved by integrating the anisotropic diffusion equation (2)
through the whole brain over a certain amount of time, subject
to the following initial condition

(4)

For the boundary condition of (2), we assume that the physical
system containing the brain is insulated, i.e.,

(5)

where is the outward-pointing vector normal to the boundary
surface. This corresponds to the Neumann condition, which im-
plies that the normal part of the gradient of the concentration on
the boundary is zero, in other words, nothing escapes out of the
domain.

The solution of the time-dependent diffusion equation (2) is
not trivial since the human brain structure displays anisotropic,
inhomogeneous diffusion properties. We have recently devel-
oped and implemented an unsteady state anisotropic diffusion
solver framework, which is adapted to the cerebral circumstance
and has been designed for both sequential and parallel com-
puting environments [31], [32]. In the current paper, we solve
sequentially the governing diffusion equation (2) by resorting to
the established computational framework. Since the tensor data
set used in the simulation is processed and stored on a Carte-
sian mesh, we do this by first discretizing the diffusion equa-

1For zero concentration values, we actually mean values close to zero. A
threshold can be applied to determine zero and nonzero values.
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tion (3) on this grid using finite difference approximations. The
central difference scheme in space and the backward differen-
tiation formula in time are applied to approximate the spatial
derivative and time derivative terms in (3), respectively. The dis-
cretization of (3) and its boundary condition (5) on the Cartesian
grid generates a large scale system of semi-explicit differen-
tial-algebraic equations (DAEs). We then solve the initial value
problem for the resulting system of DAEs by way of a high per-
formance implicit differential-algebraic (IDA) solver, using the
scaled preconditioned generalized minimal residual (GMRES)
iterative method with incomplete LU (Lower-Upper) factoriza-
tion preconditioning applied. The IDA solver is one of the soft-
ware packages contained in the Advanced CompuTational Soft-
ware (ACTS) collection (http://acts.nersc.gov).

In order to construct the diffusion front propagated from a
root voxel where a seed has been placed, we only integrate
(3) over a fine-tuned amount of time through the whole brain
using the time-dependent diffusion solver framework described
above. The length of the integration time is determined in a way
such that without the loss of revelations of the anatomical prop-
erties of the underlying nerve fibers, the number of voxels swept
by the diffusion process initiated from the root voxel should
be as small as possible. In fact, this value is chosen according
to several factors including the magnitude of the tensor data,
the spatial resolution of the computational grid, and the ini-
tial concentration at the root voxel. Once the time integration
procedure is completed, a discrete approximation to the diffu-
sion front can be calculated in terms of whether the concentra-
tion value is zero in a voxel. This is the ideal case though, we
have to set a threshold to define zero concentration in the ac-
tual implementation. Thus, all nodes in the computational grid
can be partitioned into two groups, one with zero concentra-
tion value and the other with nonzero value. Let denote
the set of voxels that have nonzero concentration values, cor-
responding to the nodes in the diffusion swept volume, where

is the position of the root node. For each member of ,
we consider its surrounding 6 closest neighboring nodes in a
3 3 3 kernel. Let index the relative coordinates of the
6 nearest neighbors to with . If is the
set of voxels that form the diffusion front of , then for any node

, we define

or
or (6)

Fig. 1 shows a simulated concentration distribution map of
the anisotropic diffusion in the human brain by using the afore-
said diffusion tensor data. The simulated result is derived from
solving (3) under the initial condition (4) and boundary condi-
tion (5). Demonstrated in Fig. 2 is an illustration of the discrete
approximation to a diffusion front emerging from a root voxel
.

Before presenting the algorithm to build up successive dif-
fusion fronts originated from the starting voxel , we set up a
queue , a first-in first-out data structure, to store and handle
the dynamically produced front nodes. is initialized to con-
tain just the starting node , i.e., before the start of the

Fig. 1. Illustration of the anisotropic diffusion process originated from a
starting voxel where a seed is placed. Left: an axial map of the fractional
anisotropy (fa) in grey scale, shown for anatomical reference. Upper-right: a
close-up of the splenium (fa map) with the starting voxel indicated as a black
circle pointed to by a white arrow. Lower-right: a cross-section image of the
concentration distribution field corresponding to the close-up fa map, where
the warmer colors (like red and yellow) represent larger concentration values,
while the cooler colors (like blue and green) stand for smaller values.

Fig. 2. The illustration of the discrete approximation to a diffusion front,
which borders the diffusion-swept volume V (r) containing the node r (shown
in red) as the root where a seed is diffused and grey nodes with nonzero
concentration value. Those originally grey nodes that satisfy the condition (6)
are colored black, which are used to approximate the front. The white nodes
are the ones with zero concentration value.

successive diffusion simulations; thereafter, always contains
the set of diffusion front nodes. We also define a set to bear
a number of criteria, which controls the way of determining the
connection of fiber pathways. A detailed description of this set,
comprising the choice of the thresholds, will be given shortly in
Section II-D.

Once is computed for the root node , we further apply
the criteria in to the nodes of and pick up those that
meet the corresponding thresholds. We define to be the set
of nodes selected from that are in accordance with those
criteria in , i.e.,

is then appended to the tail of the queue . The current
head node of is removed from the queue and is considered
to be a new root from which a seed is diffused, and its diffu-
sion front is calculated in the same way as that of by
solving and integrating (3) over a certain amount of time through
the whole brain. As the derivation of , the set is deter-
mined as well by checking each member of based upon
the criteria in , then it is added to the tail of . We continue in
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this way by repeatedly taking off the head node of and pro-
cessing it as a new root to diffuse a seed over it, until the queue
becomes empty. The following algorithm outlines the procedure
for constructing successive diffusion fronts.

D. Determining Fiber Pathways

During the construction of successive three dimensional dif-
fusion fronts, the connection between a diffusion root node
and the nodes in its diffusion front may determine the pos-
sible routes of the fiber tract going through both and . As
mentioned earlier, the connectivity is regulated by the criteria set

, which determines the members of . The fiber pathways
passing the node and its diffusion front can be obtained by just
connecting and the nodes in . Obviously, fiber branching is
achieved in this way since the size of the set can be greater
than 1 such that the tracking route is allowed to split at .

There are seven criteria in used to evaluate the information
about distance and orientation between the root and its front
nodes in . Let .

The first criterion, , is the threshold for distance ratio ( )
measure, which is defined as

where is the Euclidean distance in of two points,
connected by the vector pointing from to a node in ,
while is the maximum value among the ’s. The path re-
construction of white matter fiber bundles, which are assumed
to proceed along the direction in which the diffusion is fastest,
can be accomplished by our tracking approach, thanks primarily
to the fact that the faster the diffusion rate is, the longer the dis-
tance will be traversed within the same amount of time by the
diffusion medium, water. If we just follow the direction with the
longest distance, branching of fiber pathways cannot be handled
adequately in the reconstruction. Moreover, both the error and
noise in measurement and the partial voluming can deflect the
tracking from the true path and orientation. In order to accom-
modate the branching tracts and minimize the possibility of de-
viation from the fiber trajectories, we choose a value between
0.7 and 0.85 for the threshold and consider the cases with

, following a few more directions with less fast diffusion
rates rather than only the orientation with the fastest diffusion.
By this way, the tracking procedure is likely to be more robust
and reliable in noisy measurements.

We set the second criterion to be a threshold of an invariant
anisotropy index, the fractional anisotropy ( ), which is de-
fined as [33]

where , and (assuming ) are the
three eigenvalues of the 3 3 symmetric diffusion tensor .

assesses the fraction of the magnitude of that can be
attributed to anisotropic diffusion. It takes on values between 0
(fully isotropic diffusion) and 1 (infinite anisotropy). If the
value of any voxel falls below will not be considered
as a diffusion root node, which prevents erroneous trajectory
propagation into the grey matter structures and cerebrospinal
fluid in the brain. A value of 0.1 or 0.2 for has proved to
serve the purpose in this study.

The next four criteria, from to , are called smoothness
criteria which are used to judge the coherence of fiber directions
along the reconstructed trajectories passing through . The co-
herence measure depends on the inner products of four pairs of
unit vectors , which are expressed as

(7)

(8)

(9)

(10)

where and are normalized vectors,
. Here, is

called the predecessor voxel of , i.e., , and
is the vector pointing from toward . and are
the principal eigenvectors (corresponding to the largest eigen-
value of the diffusion tensor ) at the voxel and ,
respectively. are the thresholds for ,
respectively. Indeed, measure the angles between
orientations of those vectors, as shown in Fig. 3, and (7)–(10)
also imply that and . Since

is an established vector implying the presence of a
trajectory passing in this direction, the information contained in

is exploited to appraise the next possible fiber path orienta-
tion aligned with by examining the degree of co-linearity
between and . The thresholds for , and ,
which are chosen to be the same value for each testing case
ranging from 0.55 to 0.85, are used to guard the local directional
coherence of the estimated tract and curb the trajectory from
following unlikely pathways. is set to be a value between
0.7 and 0.8 such that the tracking direction could be pushed
forward consistently and smoothly without erratically turning
backward, preventing the computed path from sharp transition.

The last criterion, , is the maximum number of voxels
is allowed to have if there are more voxels than expected satis-
fying all previous six criteria. The elements of are deter-
mined by checking each voxel in in a nonascending order
of the distance ratio to see if it meets all aforementioned six cri-
teria until the prescribed capacity of is reached. The pur-
pose of setting this threshold is to control the total computational
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Fig. 3. Transition smoothness of fiber trajectory relies on the size of the
angles � ;� ; � , and � , which are determined by ip ; ip ; ip , and ip ,
respectively.

time for doing the successive diffusion simulations. In the cur-
rent work .

Aimed at recovering the fiber pathways after the construc-
tion of diffusion fronts, each voxel in the voxel grid owns a
memory of its predecessor voxel, , where . In
the current implementation of the tracking scheme, is the
sole predecessor of if there is one. Thus, back propagation
from the voxels on the diffusion fronts by following continu-
ously the corresponding predecessor voxels may lead to paths
that merge to the starting voxel . This merging corresponds
to the procedure that can be viewed in the reverse direction as
fiber tracts branch outwards from . Finally, the pathways are
smoothed out by using B-spline least-square approximations.
By combining Algorithm 1 with the back propagation process,
the diffusion simulation based fiber tracking algorithm is pre-
sented as follows:

III. RESULTS

A. Synthetic Diffusion Tensor Data

In order to assess fidelity and robustness of the tracking algo-
rithm, we generated synthetic DT-MRI data with a regular voxel
size of (1 mm) , where the true path of a fiber tract is known. The
tensor field was constituted from an anisotropic tensor dataset
and an isotropic tensor dataset taken out of real DT-MRI data.
The shape of the diffusion tensor in synthetic fibers was de-
scribed by the anisotropic one such that was approx-
imately 2.5:1:1, while the isotropic one was used to forge the
background of the simulated tensor field. The vector field for
fiber orientations was derived by sampling discretely the trajec-
tories which were analytically defined. To make the simulated
field more realistic, an approximation to Rician noise [34] was
added in the diffusion-weighted images which were calculated
from the Stejskal-Tanner equation using the gradient sequence
in [35] and a -value of 1000. The values of the diffusion co-
efficients are around m /s and the noisy realization

Fig. 4. Tracing results on single-turn helical tracts of varying radii. Left: 3-D
view. Right: A projection onto the X-Y plane.

Fig. 5. Tracing results on crossing tracts with different local coherence
thresholds applied. The two crossing straight-line fiber bundles are illustrated
as diffusion tensor ellipsoid map, showing an oblate shape for tensors in
crossing regions. The blue and red pathways yielded by the algorithm are
initiated from a single voxel pointed to by a blue and red arrow, respectively.
Upper: c = c = c = 0:75. Lower: c = c = c = 0:7.

led to a signal-to-noise ratio of 10. A compact analytic solution
to the Stejskal-Tanner equation [35] was employed to yield the
desired noisy synthetic diffusion tensor data.

Three single-turn helical fiber bundles have been syntheti-
cally generated in a 70 70 20 grid with radius being 30 mm,
20 mm, and 10 mm, respectively. For each helix, trajectories are
traced from a single voxel located at the lower end of the tract.
Fig. 4 presents the tracking results, showing that the simulated
helical curves are accurately reproduced. It is also evident from
the plots that the tract-following algorithm barely exhibits any
performance degradation when the diameter of the helical curve
decreases.

Fig. 5 delineates the tracing results on crossing fiber tracts
synthetically constructed with two straight-line fiber bundles
running along the - and -axis, respectively, in a 50 50 10
grid. The tracking, being released from a single starting voxel
on one end of each tract, is carried out under different local co-
herence thresholds with the remaining criterion settings staying
the same. As seen from the plots in the first row of Fig. 5 which
show the computed tracks with , the
tracking along the -axis (the blue paths) stops right before the
crossing region, while the whole ideal tract in the direction of
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Fig. 6. Fiber pathways of corpus callosum computed from two starting voxels
located in the genu (fibers are colored in blue) and splenium (fibers are colored
in red), as pointed to by white arrows, respectively. Upper: Fibers are viewed
from the inferior direction, overlaid on an axial fa map. Lower-left: A 3-D
superior-anterior view of the genu fibers, shown together with axial and coronal
fa maps. Lower-right: A 3-D superior-posterior view of the splenium fibers,
shown together with axial and coronal fa maps.

-coordinate (the red paths) is faithfully followed by the algo-
rithm. With a relaxed setting for the local coherence threshold,

, it turns out that both tracts are closely repli-
cated by the algorithm which penetrates the area of planar ten-
sors along the -axis and allows more paths along the -axis
to get through, as displayed in plots in the second row of Fig.
5. One can also observe that there is no jump or divergence
from one tract to another over the crossing area under the stated
threshold settings.

B. Real DT-MRI Data

We now demonstrate the tracking approach by exploring its
ability to reproduce some well-known courses of white matter
structures in the human brain. The reconstructed fiber trajec-
tories launched from different starting points are overlaid on
grey-scale maps of the fractional anisotropy for anatomical ref-
erence, where bright grey-scale regions reflect high diffusion
anisotropy.

The first of the fiber pathways considered as an example of the
method is the corpus callosum tract, which interconnects the left
and right cerebral hemispheres and has the highest anisotropy
and temperate curvature. Fig. 6 shows the reconstructed fiber
tracts stemming from two starting voxels located in the ante-
rior and posterior portions of the corpus callosum, i.e., the genu
and splenium, respectively. The tracking from the two starting
voxels results in fibers traversing the genu and splenium and

Fig. 7. Fiber pathways of cingulum calculated from a starting voxel which is
slightly above the body of the corpus callosum and labeled by a white arrow in
the right front lobe. Left: Viewed from right, overlaid on a midline sagittal fa
map. Right: A posterior view, shown together with a coronal fa map.

Fig. 8. Fiber pathways of corticospinal tract computed from a starting voxel
positioned approximately in the left portion of the base of the pons area.
Upper-left: Viewed from left, overlaid on a sagittal fa map at the midline.
Lower-left: Viewed from front, superimposed on a coronal fa map. Right: A
3-D view, shown together with an axial fa map.

running toward the frontal and occipital poles of the two cerebral
hemispheres, respectively. The trajectories are traced following
the curvature of the genu and splenium, exhibiting an arched
shape, which is consistent with the known anatomy. It is evident
from Fig. 6 that the diffusion-based tracking scheme allows for
tract branching since the generated fiber trajectories start from
a single point and then end up with multiple points, forming a
number of branching pathways from one single starting voxel.

Depicted in Fig. 7 is another tracking example, which shows
computed fiber pathways of the cingulum, a major tract consti-
tuting the limbic system. The reconstruction takes off from a
single starting voxel lying within the white matter of the cingu-
late gyrus, slightly above the body of the corpus callosum in the
right frontal lobe. The fibers generated run longitudinally along
and above the corpus callosum to the posterior parietal lobe and
the splenium.

The next example of the fiber tract reconstruction belongs to
the system of projection pathways, which connects the cerebral
cortex and the spine. More specifically, we have attempted to
generate the fiber pathways for the corticospinal tract, which
conveys impulses for cortical control of the voluntary move-
ments. The tracking result of the projection traces is elucidated
in Fig. 8. The estimate of this type of corticofugal fiber bun-
dles is obtained by launching trajectories from a single starting
voxel placed approximately in the left portion of the base of the
pons area. The yielded pathways traverse superiorly through the
posterior limb of the internal capsule and form the corona ra-
diata, consistent with the route of the corticospinal tract. It is
also apparent that the computed course of the fiber tract from
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Fig. 9. Fiber pathways in the optic radiations, from two starting voxels
(indicated by white arrows) lateral to each of the lateral geniculate nuclei
(LGN). Fibers are viewed from top, overlaid on an axial fa map. The
approximate positions of the LGN are pointed to by yellow arrows.

Fig. 10. Fiber pathways in the inferior occipitofrontal fasciculus, emerging
from a starting voxel (labeled by a white arrow) in the junction area of the
frontal and temporal lobes in the left hemisphere. Upper: Viewed from left,
shown together with a midline sagittal fa map. Lower: Viewed from above,
overlaid on an axial fa map.

the starting point branches into a couple of different cortical
motor regions, including the medial and lateral parts of the pri-
mary motor cortex, the supplementary motor area, and the pre-
motor cortex, as shown in Fig. 8. The projections to the pons
area from the motor regions via the estimated corticospinal tract
are in good agreement with the known anatomical connections.

The following demonstration of the tractography algorithm
is to replicate the tract of optic radiations, or geniculo-calcarine
visual projection, that relays visual information from the lateral
geniculate nucleus (LGN) of the thalamus to the visual cortex.
Two starting points, one for each of the cerebral hemisphere, are

placed in the body of the optic radiations, lateral to the position
of the LGN. The computed fibers of the optic radiations are dis-
played in Fig. 9, showing that each optic radiation arises from
the starting voxel, sweeps posteriorly through the temporal lobe
then the occipital lobe, and terminates in the region of the cal-
carine sulcus with branching traces. It is characteristic for the
topology of the optic radiation that its spatial course runs in a
medial-lateral orientation after coming out of the LGN and then
changes to an anterior-posterior orientation, which is demon-
strated by the tract behavior in [5], [17]. However, the portion
of the optic radiation that runs in the medial-lateral direction
between the LGN and the starting points is not identified in the
current tracking result. This could be due to the insufficient spa-
tial resolution in the superior-inferior direction of the original
DT-MRI data acquisition.

Fig. 10 shows the result of the last experiment, in which we
have traced one of the long association pathways, the tract of the
inferior occipitofrontal fasciculus. The position of the starting
voxel is located approximately in the junction area of the frontal
and temporal lobes in the left hemisphere, from which the gener-
ated fasciculus fans out in both anterior and posterior directions.
On one hand, the fasciculus runs anteriorly, radiating into cor-
tical regions of the frontal lobe. On the other hand, it streams
backward, branching into the temporal and occipital lobes. Ap-
parently, the reproduced tract of the inferior occipitofrontal fas-
ciculus connects the frontal cortex with the posterior temporal
cortex and the occipital lobe.

IV. DISCUSSION

We have tested the diffusion simulation-based tracking algo-
rithm on real diffusion tensor MRI data as well as on syntheti-
cally generated noisy tensor fields. The algorithm performs very
well on the simulated data, tracing accurately through the helical
and crossing tracts. The experiments on real brain data include
the corpus callosum, the cingulum, the corticospinal tract, the
optic radiation, and the inferior occipitofrontal fasciculus, and
the estimated pathways are largely faithful to the corresponding
neuroanatomy known from postmortem dissections [36], [37]
and compatible to those obtained by using other tracking ap-
proaches [4], [5], [7], [8], [17], [38]. The demonstration shows
it is feasible to employ the diffusion-based tracking technique to
noninvasively reconstruct white matter fiber tracts in the living
human brain.

Previous work, as shown in [22]–[24], has attempted to per-
form fiber tracking by solving simplified variants of the general
anisotropic diffusion equation (2). In the approach proposed in
[23], a seed diffuses through the brain from a selected starting
point by solving the full diffusion equation and the amount of
concentration at some location is interpreted as a probability to
reach that point. The work of [22] instead solves the steady-state
diffusion equation with boundary conditions representing one
source and one sink and then uses this information to calcu-
late the steady-state flow field which is supposed to recover the
underlying anatomical path between the source and sink. Both
methods are completely different from our method to exploit
the diffusion process, in which we construct successive three
dimensional diffusion fronts to determine the fiber pathways by
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evaluating the distance and orientation from the computed fronts
to their analogous diffusion seeds. In [24], an anisotropic diffu-
sion equation is solved, however, no effort has been made to
show that the paths of fibers or the connections can be recon-
structed between anatomical or functional regions of the brain.

Regarding the use of diffusion tensor data for unveiling the
organizational patterns of white matter structures, the diffu-
sion-based tractography has several potential advantages. First,
as we have demonstrated, it has the similar desired capability of
elucidating branching pathways naturally, giving a one-to-many
mapping, like the fast marching approach [17] and the front
evolution algorithm described in [18], which is an advantage
over the streamline-based methods. As noticed in [17], without
using some schemes such as making multiple interpolated
starting points within the starting voxel, it is impossible for
the existing streamline-based tracking methods to generate
diverging fiber trajectories when the tracing starts from a single
point, while with the use of these schemes, the density of trajec-
tories will reduce and, thus, get subsequent connected regions
undersampled. There is no such undersampling problem for
the branching process in our tractography since the algorithm
follows all branching pathways in the same manner, computing
diffusion fronts consecutively. The fast marching technique
is adopted in the context of the diffusion tensor domain to
propagate fronts that evolve at a rate controlled by the principal
eigenvector field. The front evolution algorithm employs the
information provided by the fiber orientation density function.
Compared to both approaches, the diffusion-based tractography
relies on successive diffusion fronts constructed by a series of
simulations of the diffusion process in the whole brain, which is
a totally different mechanism exploited to do front propagations
with a clear physical interpretation.

Another feature of our method is that it is likely to enhance
the robustness and reliability in fiber reconstruction. Used as
the basis for our tractography, performing simulations on the
diffusion process, which is truly a physical phenomenon, is ev-
ident to help reveal the underlying tissue structures. The fiber
reconstruction process is, thus, able to take into consideration
the impact of the diffusion strength, as measured by the diffu-
sion distance map, instead of fully counting on the orientation
of the tensor in each voxel. As mentioned earlier, the noise of
the imaging system will add uncertainty to the estimation of
the diffusion tensor field and its eigenvectors. This effect will
yield an accumulation of orientational errors and result in spu-
rious trajectories when the tracing on white matter tracts is en-
tirely dependent on the principal eigenvector field, as most of the
streamline-based tracking methods and the fast marching trac-
tography do. The diffusion-based tractography, however, has a
lower chance to get affected by the noise. Since the anisotropic
diffusion equation which governs the diffusion simulation is
macroscopic, the noise effect is apt to get minimized or aver-
aged out during the simulation procedure. More information,
including the magnitude as well as the orientation of the tensors,
is involved in determining fiber pathways, also helping palliate
the sensitivity of the algorithm to noise.

Since our tractography process spreads diffusion over the
brain regardless of whether an area is filled with anisotropic,
oblate, or isotropic tensors, the method with appropriate

threshold settings can greatly improve the handling of regions
with crossing fibers or flat tensors, and make it more likely for
the tracking process to slide through with correct pathways, as
demonstrated in the synthetic crossing tracts, the corticospinal
tract, and the cingulum. When the algorithm enters a region
with planar tensors, if the diffusion tensor at a front voxel is
somewhat disc-shaped, it is possible that , the principal
eigenvector of , gets orthogonal to the direction of or

(see Fig. 3 for illustration). If the threshold or is set
to be positive, which most often is the case, the tracking through
voxel will stop. However, one stop does not automatically
terminate the whole tracking process since there may have other
voxels available on the front which satisfy the threshold setting,
making it stay on. A usual way for our method to assuage such
a situation is to relax some of the thresholds such that more
voxels on fronts will be available for evaluation, increasing
the chance for the algorithm to behave correctly through the
entangled area. The capability of capturing fiber crossings with
this feature is made possible by the leap-frog tracking style of
the algorithm, which leaps over a couple of voxels each time
controlled by the diffusion simulation and measured by the
distance traveled, instead of continuously assessing the very
next neighboring voxel, which is easier for tracking algorithms
to get stuck in intersecting areas. Although the technique has
this potentiality, with relaxed thresholds imposed, it bears the
risk of establishing more suspicious or even false crossing fiber
connections in realistic and complicated cases, which has to
be treated cautiously. But if the crossing structure is relatively
simple and is known in advance, the algorithm seems to give
reliable results, as proved in the simulated data as well as by
the real data. Clearly, this approach is only an approximate
solution to the complex problem of equivocal tensors, not yet a
rigorous way to account for partial volume effects.

In fact, diffusion tensor imaging (DTI), as is used by our
diffusion-based tracking method, is unable to truly resolve the
crossing of multiple axon directions within a single voxel [11],
[39]–[41]. Despite the fact that the information captured from
DTI is limited by the second-order tensor model it applies,
which assumes water molecules follow Gaussian diffusion in
biological tissues, the tensor formalism is well accepted and its
attributes can be obtained in a straightforward way. Further-
more, the macroscopic theory of Gaussian diffusion is modeled
by Fick’s first law (see (1)), which makes simulating the dif-
fusion process by solving the diffusion equation (2) a natural
fit-in to obtain information of the underlying fiber structure and
connectivity. For those reasons, the tracking algorithm based on
diffusion simulations is implemented to use the DTI data, which
needs to be fed into the corresponding diffusion equation (2).
Essentially most existing tracking techniques are banking on
the diffusion tensor framework. However, it has been suggested
to get around the inadequacy presented in DTI by using newly
developed imaging approaches, like high angular resolution
diffusion imaging (HARDI) [39]–[42], q-space imaging (QSI)
[43], [44], or generalized diffusion tensor imaging (GDTI) [45],
[46]. An outstanding feature of the fiber reconstruction method
using diffusion simulations is that it can be seamlessly adapted
to a platform established by the new imaging techniques.
Studies have shown that the generalized diffusion tensor model
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is able to not only accommodate HARDI and GDTI methods
but QSI as well, due to the inherent relationships among DTI,
HARDI, GDTI, and QSI [45], [46]. This makes it possible for
the diffusion simulation-based tractography to become inde-
pendent of the particular imaging techniques used to collect
data. The proposed fiber tracking method may accommodate
other diffusion imaging data by adopting a more sophisticated
diffusion simulation, which is governed by a generalized dif-
fusion equation associated with generalized diffusion tensors,
according to a generalization of Fick’s second law [45]. We are
planning in the future work to develop an improved computa-
tional framework for building fiber connections that can solve
the generalized diffusion equation.

As mentioned earlier, our algorithm presents a leap-frog
tracking style which is not seen in most of the existing tracing
techniques. This characteristic, however, raises challenge for
the algorithm to work at a sub-voxel dimension, which usually
is attained in other methods by doing interpolation or even con-
structing a continuous tensor field. As for the diffusion-based
approach, increasing the data resolution is still a viable way
to ease the restraint, though a few voxels have to be jumped
over for each step moving forward no matter how fine the data
grid is. Nevertheless, in what way the tracking results of the
current algorithm are influenced by the interpolation is not
clear and subject to further analysis. When the tensor data is
interpolated to a higher resolution, another problem arises,
where the increased computation burden cannot be underes-
timated. For example, the total running time for tracking the
corpus callosum tract from splenium (Fig. 6) is about 293
min on an HP-UX machine with a 750 MHz PA-RISC 8700
processor. The reason lies in the fact that we have to carry out
diffusion simulation for each of the diffusion roots and each
of the simulations sweeps the whole brain volume. As to the
current real data resolution (interpolated), it means the diffusion
process has to be simulated on a 128 128 48 grid, which
is very time-consuming. And the number of diffusion roots
determines how many such simulations need to be conducted.
The improvement for the algorithm on computational cost has
been under way, in which each diffusion simulation initiated
from a root only spreads through its neighboring parts of the
brain, expected to drastically reduce the running time down to a
couple of minutes. In addition, the development of connectivity
likelihood measures will be included in the future work to
appraise the confidence in each of the computed fiber tracks by
some quantitative way to see how each point along a path is
connected to the starting voxel.

V. CONCLUSION

In summary, a novel white matter fiber tractography algo-
rithm has been developed using diffusion tensor MRI. This
algorithm is based on conducting consecutive simulations of
anisotropic diffusion over datasets obtained from living human
brain, which are utilized to construct three dimensional diffu-
sion fronts. The fiber trajectories are constructed by evaluating
the distance and orientation from fronts to their corresponding
diffusion seeds. Synthetic tensor data has been generated to
validate the algorithm. For the demonstration on real DT-MRI

data several major white matter fiber pathways have been recon-
structed, which are in agreement with the known anatomy and
similar to those estimated by using other reported approaches.
The ability to yield branching pathways is the primary advan-
tage of the diffusion-based tractography presented in this work
and it also has a greater potential to get through regions with
crossing fibers and, thus, enhances robustness and reliability of
the tracking process. Another desired feature of the algorithm is
its capability of fitting into the environment of the generalized
diffusion tensor imaging.
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