1 Program 3dExtrema

1.1 Purpose

Program 3dExtrema was developed to find local extrema (minima or maxima) of the func-
tional dataset values for each sub-brick of the input dataset. The extrema may be de-
termined either for each volume, or for each individual slice. Only those voxels whose
corresponding intensity value is greater than the user specified data threshold will be con-
sidered as possible extrema.

1.2 Theory
1.2.1 Domain of Definition

The user has a choice of the domain for which the local extrema are determined. That
is, extrema may be defined for the volume as a whole (option -volume), or extrema may
be located on a slice-by-slice basis (option -slice). The set of voxels to be considered as
possible extrema can be further delimited by the use of a mask input file (option -mask _file)
along with a mask threshold (option -mask_thr).

The user can choose to consider for extrema only voxels that are inside but not on the
boundary (option -interior), or voxels that are on the boundary may be considered as well
(option -closure). The -interior option may be particularly helpful when the mask option
is used, as this will prevent identification of voxels as extrema simply because they lie on
the boundary of the mask area.

1.2.2 Merging of Extrema

Several options are available for merging of extrema which are close together. Program
3dExtrema calculates the distance between each pair of extrema (within the domain of
definition). Two different extrema are merged into a single extrema only if they are the
closest pair of extrema, and if they are less than the user specified distance d,., apart.
This process is repeated until all extrema are at least distance d, apart.

Suppose that extrema A has location (4, y4, 24) and extrema B has location (x5, yg, 25).
Then the Euclidean distance between these two extrema is defined:

d(A,B) = /(x4 — 25)° + (2 — ys)* + (24 — 28)°

If d(A,B) is the minimum distance between all pairs of extrema, and if d(A, B) < ds,
then extrema A and B will be merged into a new extrema, C. This is illustrated by:

Extrema A Extrema B Extrema C
Value VA Value vp Value Vo
Location | (z4,ya,24) |, | Location | (zp,ys, 2B) — | Location | (z¢, ye, 2¢)
Count na Count ng Count ne
Sum Sa Sum Sp Sum Sc

In the above diagram, “Value” refers to the intensity value of the extrema, “Location” is
the coordinate vector of the extrema (in mm.), “Count” is the number of extrema which

1

have been merged to form the current extrema, and “Sum” is the sum of intensity values
of all extrema which make up the present extrema.

The manner in which the two extrema are replaced by a single extrema depends on the
user selected merging option: -remove, -average, or -weight.

Removal

If the user elects to have extrema replacement by removal (option -remove), then the
value and location of the new extrema C are set equal to the corresponding elements of
the more extreme of A or B. For example, for finding local maxima, we have:

If vg > vp, then: If vg > vy, then:
Vo = Vg Vc = UB
To =TA, Yo = YA, 2Cc = %4 Tc = TB,Yc = YB,2C = ZBA
ng =na+np ng =nN4+npg
Sc =S4+ SB Sc =54+ 3B

For finding local minima, the reverse of the above inequalities is used.

Averaging
If the user elects to replace the two extrema by their average (option -average), then the
new extrema C is defined as follows:

NnAVA + NpBUB
’UC = "

nag+ng
o — NATA + NBITRB Vo = naYa + NBYB o — NnazZa +Npzp
c=——"""—"—"" c=—" c=————""—"—"
na+ng naA+ng na-+ng

ng =n4+ ng
Sc =84+ SB

Weighted Averaging
Finally, if the user chooses to use the weighted (by their respective intensity values)
average of the two extrema (option -weight), the new extrema C is given by:

S4VA + SBUB

SA + SB
SATA + SBTB SaYa + SBYB Saza + SBZB
sS4+ SB sS4+ SB sS4+ SB

ng =nNa+npg

Sc =84+ SB

This last option applies only for finding local maxima.

1.3 Usage
1.3.1 Syntax

The syntax for execution of program 3dExtrema is as follows:

3dExtrema [-prefix pname] [-session dir] [-quiet]

[-mask_file mname] [-mask_thr my,,] [-data_thr dy,] [-sep_dist d)]
[-minima | -maxima | [-strict | -partial | [-interior | -closure |
[-slice | -volume | [-remove | -average | -weight | datasets

The different command line options are explained below.

1.3.2 Options

-prefix pname
or

-output pname
Use pname for the output dataset prefix name. Note: If this option is not used,
then the only program output will be written to the screen.

-session dir
Use dir for the output dataset session directory. The default is dir = ./ = current
working directory.

-quiet
The optional -quiet command is used to suppress screen output as the program proceeds.

-mask_file mname
Use file mname as a mask dataset. Only voxels that are inside the mask will be
considered as possible extrema. If file mname contains more than one sub-brick, the
specific mask sub-brick must be specfied. (Default: no mask)

-mask_thr my,,
Only voxels whose corresponding mask value is greater than, or equal to, my, in
absolute value will be considered. (Default: my,, = 1.0)

-data_thr d;;,
Only voxels whose intensity is greater than, or equal to, d;,, in absolute value will be
considered. (Default: dy,, = 0.0)

-sep_dist d,,
Minimum separation distance (in mm.) for extrema to be considered distinct.
Extrema separated by less than d,e, will be merged. (Default: d, = 0.0)

Choose (one and only one) type of extrema:
-minima = Find local minima.
-maxima = Find local maxima. (Default)

Choose (one and only one) form of the binary relation:
-strict = > for maxima; < for minima. (Default)
-partial = > for maxima; < for minima.

Choose (one and only one) boundary criteria:
-interior = Extrema must be interior points only. (Default)
-closure = Extrema can be boundary points.

Choose (one and only one) domain for finding extrema:
-slice = Each slice is considered separately. (Default)
-volume = The volume is considered as a whole.

Choose (one and only one) method for merging extrema:

-remove = Remove all but strongest of neighboring extrema. (Default)
-average = Replace neighboring extrema with average.
-weight = Replace neighboring extrema with weighted average.

Command line arguments after the above are taken to be the names of input datasets. A
dataset is specified using one of these forms:

prefix+view prefix+view. HEAD prefix+view. BRIK

1.3.3 Sub-brick selection

You can also add a sub-brick selection list after the end of the dataset name. This allows
only a subset of the sub-bricks to be used for finding extrema (by default, all of the input
dataset sub-bricks are used for finding extrema). A sub-brick selection list looks like one
of the following forms:

fred+orig[5] ==> use only sub-brick #5
fred+orig[5,9,12] ==> use #5, #9, and #12
fred+orig[5..8] or [5-8| ==> use #5, #6, #7, and #8

fred+orig[5..13(2)] or [5-13(2)] ==> use #5, #7, #9, #11, and #13
Sub-brick indexes start at 0. You can use the character ’$’ to indicate the last sub-brick in
a dataset; for example, you can select every third sub-brick by using the selection list:

fred+orig[0..$(3)]

The ’$’, ’(’, ’)’, ’[’, and ’]’ characters are special to the shell, so you will have to escape
them. This is most easily done by putting the entire dataset plus selection list inside single
quotes, as in fred+orig[5..7,9]’.

1.4 Examples

Example 1.
Suppose that the bucket dataset myData.bucket+orig is the output of some analysis (such
as 3dDeconvolve or 3dNLfim). The user wishes to find the local maxima for the parameter

4

estimates contained in sub-bricks #7 and #11. Also, a separate analysis has yielded
dataset signal.max+orig, consisting of a single sub-brick. The user wishes to find local
maxima, for this sub-brick as well.

Since sub-brick #0 of myData.bucket+orig contains the constant offset, the intensity
levels in this sub-brick can be used as a crude mask for determining which voxels are inside
the brain. By observation, it is determined that a constant offset of greater than 1333
roughly corresponds to voxels that are inside the brain, whereas voxels with a constant
offset of less that 1333 lie outside the brain.

The objective is to find the locations of local maxima, for each individual slice, within
the 3 selected volumes. This can be accomplished using the following script:

Command Line for Example 1

3dExtrema \
-prefix myData.extrema \
-mask_file ’myData.bucket+orig[0]’ -mask_thr 1333.0 \
-data_thr 400.0 \
-maxima -strict -slice -interior \
-sep.dist 10.0 -average \
'myData.bucket+origl[7,11]’ \
signal .max+orig
|

The command -mask_file 'myData.bucket+orig[0]" is used to specify that sub-brick #0
from dataset myData.bucket+orig is to be used as the mask. The command -mask_thr 1333.0
indicates that only voxels whose corresponding mask voxel has absolute value > 1333.0 will
be considered in finding the extrema.

The command -data_thr 400.0 indicates that only voxels whose absolute value is > 400.0
will be considered in finding the extrema.

The next two lines list the various command options for finding the extrema. The
commands -maxima and -strict, taken together, indicate that only those voxels whose value
is > (not >) each of its neighbors will be considered as extrema. The command -slice
indicates that local maxima are to be found on a slice-by-slice basis. The command
-interior indicates that local maxima must be interior to, and not on the boundary of, the
set of allowable voxels.

The command -sep_dist 10.0 specifies that extrema less than 10 mm. apart should be
merged into a single extrema. The command -average indicates that the merged extrema
should be calculated as the average (in position, and in intensity) of the original extrema.

The last two lines of the batch command file specify the input datasets. Sub-bricks
#7 and #11 of myData.bucket+orig, as well as the single sub-brick of signal.max+orig, will
be used as input for finding local maxima.

The command -prefix myData.extrema indicates that the output bucket dataset, which
will contain 3 sub-bricks, is to be written to file myData.extrema+-orig.

Screen output for this example is depicted below.

Program 3dExtrema Screen Output from Example 1

Program: 3dExtrema

Author: B. Douglas Ward

Date: 06 April 2001

Reading mask dataset:
Number of voxels above threshold = 9642
Reading input dataset:

Reading volume #0
Reading volume #1

Reading input dataset:

Reading volume #2
Number of volumes

Maxima for Volume #0 and Slice #0:

Index Intensity

500.895
446.787
439.408
428.267
423.741
401.188

O WN -

etc.

'MaXima for Volume
Index Intensity

603.184
469.856
446.860
433.850
417.544

a s W -

etc.

'MaXima for Volume
Index Intensity

1 528.884

etc.

=3

RL [mm]

1.88
35.62
-43.12
1.88
1.88
43.12

#2 and Slice #1:

RL [mm]

-1.88
50.62
1.88
1.88
46.88

#2 and Slice #3:

RL [mm]

56.25

AP [mm]

-1.88
-13.12
20.62
-20.62
39.38
-1.88

AP [mm]

65.62
1.88
35.62
-54.38
-20.62

AP [mm]

-9.38

signal.max+orig

IS [mm]

28.
28.
28.
28.
28.
28.

00
00
00
00
00
00

IS [mm]

20.
20.

00
00

20.00
20.00
20.00

IS [mm]

4.00

myData.bucket+orig[0]

myData.bucket+orig[7,11]

Count Dist[mm]

e

18.
13.
48.
18.
41.
13.

750
521
750
750
250
521

Count Dist[mm]

e

30.
22.
30.233
56.250
22.810

233
810

Count Dist[mm]

Output dataset will have 3 sub-bricks

Computing sub-brick statistics

Writing output to ./myData.extrematorig.HEAD and ./myData.extrematorig.BRIK
[|

Note that the local maxima are listed separately for each slice and for each volume.
The coordinates for each local maxima, in mm., are printed out in the format specified by
the AFNI environmental variable. The “Count” output indicates how many extrema have
been merged to form the current extrema. The “Dist” output indicates the distance, in
mm., to the nearest extrema.

The output dataset contains 3 sub-bricks. These 3 sub-bricks contain a “1” at the
locations of all local maxima within the 3 input volumes. The data type for the output
dataset is “byte”.

