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Abstract

Program 3dRegAna was developed to provide multiple linear regression analysis
across AFNI 3d datasets. Applications of program 3dRegAna include: simple linear
regression, polynomial regression, multiple linear regression, regression analysis in-
volving combinations of quantitative and qualitative predictor variables, and analysis
of variance (ANOVA) for cases with unequal sample sizes (provided that the number
of factor levels is not too large).
For each input dataset, the user must enter the quantitative level that applies for

each of the independent (predictor) variables. The user also speci�es which variables
are to appear in the linear regression model.
If repeat observations are available, program 3dRegAna �rst performs a test for

�lack of �t�, to determine if the model is adequate for explaining variation in the
data, for each voxel in the dataset. For those voxels where lack of �t is not indicated,
program 3dRegAna then calculates the least squares �t of the regression parameters
for the speci�ed model, the F -statistic for signi�cance of the overall regression, the
coe¢ cient of multiple determination R2, and the t-statistics for signi�cance of the
individual parameters.
Program 3dRegAna output includes separate AFNI 3d datasets containing the

individual parameter estimates, along with the corresponding Freg statistic, R2, and
t-statistics, as requested by the user. The resulting output may be stored either as
multiple AFNI 2 sub-brick datasets, or as a single AFNI �bucket�type dataset.
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1 Program 3dRegAna

1.1 Purpose

Program 3dRegAna was developed to provide multiple linear regression analysis across
AFNI 3d datasets. For each input dataset, the user must enter the quantitative level that
applies for each of the independent (predictor) variables. The user also speci�es which
variables are to appear in the full linear regression model, as well as a simpler reduced
model.
If repeat observations are available, program 3dRegAna �rst performs a �lack of �t�

test for each voxel in the dataset. The Flof statistic is used to determine if the full linear
regression model is adequate for explaining variation in the data. Although the lack of �t
test is not mandatory, it is strongly recommended for cases where repeat observations are
available. Due to the large number of voxels in a typical FMRI dataset, visual inspection
of each of the individual linear regression functions is not practical; therefore, automatic
screening for adequacy of the regression model is important.
Program 3dRegAna continues with the regression analysis for those voxels where lack

of �t is not indicated. The least squares �t of the regression parameters for the full model
is calculated individually for each voxel. The regression statistic Freg is calculated; this
statistic indicates the signi�cance of the full model relative to the reduced model. Therefore,
the Freg statistic can be used in tests of hypotheses about the model structure. The
coe¢ cient of multiple determination, R2, represents the proportion of variation in the data
that is explained by the full model. As such, it indicates how well the full model explains the
data, and can be used in comparing alternative models. The t-statistics, which indicate the
statistical signi�cance of individual parameters within the full model, are also calculated
for each voxel. Program 3dRegAna output includes separate AFNI 3d datasets containing
the individual parameter estimates, along with the corresponding Freg statistic, R2, and
t-statistics. Also, the user has the option of storing the output as a single AFNI �bucket�
type dataset.
Applications of program 3dRegAna include: simple linear regression, polynomial regres-

sion, multiple linear regression, regression analysis involving combinations of quantitative
and qualitative predictor variables, and analysis of variance (ANOVA) for cases with un-
equal sample sizes (provided that the number of factor levels is not too large).
Section 1.2 discusses the theory underlying multiple linear regression analysis. This

section is a very brief summary of material that may be found in references such as ([1],[2]).
Sections 1.3, 1.4, and 1.5 explain the batch commands necessary to run program 3dRegAna,
and what the various command line options do. Section 1.6 contains examples illustrating
the use of program 3dRegAna.

1.2 Theory

1.2.1 Multiple Linear Regression Models

A linear regression model is a linear function of its parameters. For example,

Yi = �0 + �1Xi + "i; i = 1; : : : ; n;
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is a linear function of the (unknown) parameters �0 and �1 (here, "i is additive noise). The
index i denotes the observation number. Note that

Yi = �0 + �1Xi + �2X
2
i + "i; i = 1; : : : ; n;

although a nonlinear function of the independent variable X, is, in fact, a linear regression
model, since Y is a linear function of �0, �1, and �2.
The general linear regression model, written as a function of p independent variables

X1, X2, : : :, Xp�1 (and the constant X0 � 1), is given by:

Yi = �0 + �1Xi1 + �2Xi2 + � � �+ �p�1Xi;p�1 + "i.

where
Yi are the measurements (intensities for a given voxel)
�0, �1, : : :, �p�1 are the unknown parameters (to be estimated for each voxel);
Xi1, Xi2, : : :, Xi;p�1 are the known predictor variables (constants for a given FMRI

image);
"i are random errors, i.i.d. N(0; �2);
i = 1; : : : ; n.

Using the following matrix notation:

Y =

26664
Y1
Y2
...
Yn

37775 ; X =

26664
1 X11 � � � X1;p�1
1 X21 � � � X2;p�1
...

...
...

...
1 Xn1 � � � Xn;p�1

37775 ; � =

26664
�0
�1
...

�p�1

37775 ; " =

26664
"1
"2
...
"n

37775 ;
the above general linear regression model can be written

Y = X� + ":

The linear regression problem is then to �nd an estimate b of the vector of unknown
parameters

b = �̂;

which provides a good ��t�to the data. The observed voxel intensity data is then estimated
by:

Ŷ = Xb

The usual criterion for estimating b is to minimize the error sum of squares:

SSE = Q(b) =
nX
i=1

�
Yi � Ŷi

�2
=

�
Y � Ŷ

�t �
Y � Ŷ

�
:

It is easy to show that
b =

�
XtX

��1
XtY
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gives the least squares estimate of �. Then, SSE can be written:

SSE = Yt
h
I�X

�
XtX

��1
Xt
i
Y

1.2.2 F-test for Lack of Fit

The �rst question that must be considered is whether the speci�ed model adequately ex-
plains the data. This is done by a test of the alternative hypotheses:

Ho : E(Y ) = �0 + �1X1 + � � �+ �p�1Xp�1
Ha : E(Y ) 6= �0 + �1X1 + � � �+ �p�1Xp�1

In order to conduct a statistical test for whether the speci�ed model is adequate for
explaining variation in the observed results, it is necessary that there be repeat observations.
Let c be the number of distinct rows in theXmatrix; i.e., there are c distinct levels at which
the response was measured, where c < n. Then there are n�c repeat observations at one or
more of the c levels. These repeat observations allow us to estimate the �pure error�arising
from measurement errors or random variation in the underlying process, independent of
error in the model itself. Let �Yj be the mean of the observations at the jth level, 1 � j � c.
Then the sum of squares due to �pure error�is given by:

SSPE =
cX
j=1

njX
i=1

�
Yij � �Yj

�2
where nj is the number of observations at the jth level. Note that SSPE has n� c degrees
of freedom. For each of the c distinct levels, the hypothesized model provides the estimated
response Ŷj. The di¤erence between the mean response and the estimated response at each
level is due to inadequacy of the model itself. Therefore, the sum of squares due to �lack
of �t�is given by:

SSLF =
cX
j=1

nj

�
�Yj � Ŷj

�2
Therefore, the error sum of squares SSE can be decomposed as a sum of the �pure

error�sum of squares, and the sum of squares due to �lack of �t�:

SSE = SSPE + SSLF:

Since SSE has n�p degrees of freedom, it follows that SSLF has (n�p)� (n� c) = c�p
degrees of freedom. To test for adequacy of the model, one then calculates the statistic
F �lof :

F �lof =
MSLF

MSPE

=
SSLF=(c� p)
SSPE=(n� c)

The test statistic F �lof has an F (c�p; n� c) distribution under the null hypothesis ([1],[2]).
Therefore, the decision rule for the above test of hypotheses is:
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if F �lof � F (1� �; c� p; n� c), conclude Ho
if F �lof > F (1� �; c� p; n� c), conclude Ha:

The above can be summarized in the following ANOVA table:

Source SS df MS F

Regression SSR p-1 MSR = SSR
p�1 Freg =

MSR
MSE

Error SSE n-p MSE = SSE
n�p

Lack of Fit SSLF c-p MSLF = SSLF
c�p Flof =

MSLF
MSPE

Pure Error SSPE n-c MSPE = SSPE
n�c

Total (corrected) SSTO n-1

If there are repeat observations, and if the operator so speci�es (see description of -�of
command below), program 3dRegAna will perform the F -test for lack of �t for each voxel in
the dataset. Those voxels which show a statistically signi�cant lack of �t will be excluded
from further analysis. The capability to test for lack of �t is particularly important for
analysis of FMRI data, which involves many thousands of voxels. It is common for linear
regression analysis software to omit a formal test for lack of �t. Typically, one would plot
the linear regression function on top of the actual data, so there would be a visual indication
of a lack of �t. However, for FMRI data, it is not practical to visually inspect each of the
thousands of separate linear regression functions. Thus, an automatic procedure for testing
for lack of �t is essential.
In the following discussion we will assume that, for the particular voxel under consid-

eration, there is no lack of �t.

1.2.3 F-test for Signi�cance of the Linear Regression

In building a model, one often wishes to determine if adding more parameters to the
model is necessary (or, if certain parameters that are already in the model can be safely
eliminated). Of course, the error sum of squares is reduced when more parameters are
added. The question is, does the reduction in the error justify the additional complexity
of the model? This usually takes the form of a statistical test whether adding additional
parameters to the model results in a statistically signi�cant improvement in the explanatory
capability of the model. For the case of a simple linear regression,

Yi = �0 + �1Xi + "i; i = 1; : : : ; n;

one would wish to test

Ho : �1 = 0
Ha : �1 6= 0

5



to determine if there is a linear relationship between the measured data Yi and the Xi.
More generally, suppose an investigator has already �tted the model:

Yi = �0 + �1Xi1 + �2Xi2 + � � �+ �q�1Xi;q�1 + "i,

and he is trying to decide whether to use the more elaborate model:

Yi = �0 + �1Xi1 + �2Xi2 + � � �+ �q�1Xi;q�1 + �qXi;q + � � �+ �p�1Xi;p�1 + "i

(we are assuming, without loss of generality, that the variables of interest are numbered
sequentially). This is done by a test of the alternative hypotheses:

Ho : �q = �q+1 = � � � = �p�1 = 0
Ha : �k 6= 0, for some k, q � k � p� 1:

A test of the null hypothesis is made by �rst calculating the error sum of squares for
the reduced model (SSE(R)):

SSE(R) = Yt
h
I�Xr

�
Xt
rXr

��1
Xt
r

i
Y

and then the error sum of squares for the full model (SSE(F )):

SSE(F ) = Yt
h
I�Xf

�
Xt
fXf

��1
Xt
f

i
Y

where the matrices Xr and Xf are the submatrices of the original independent variable
matrix X obtained by extracting those columns corresponding to the reduced and full sets
of variables:

Xr =

X0 X1 Xq�126664
1 X11 : : : X1;q�1
1 X21 : : : X2;q�1
...

...
...

...
1 Xn1 : : : Xn;q�1

37775 Xf =

X0 X1 Xq�1 Xp�126664
1 X11 : : : X1;q�1 : : : X1;p�1
1 X21 : : : X2;q�1 : : : X2;p�1
...

...
...

...
...

...
1 Xn1 : : : Xn;q�1 : : : Xn;p�1

37775
We have reason to reject the null hypothesis if SSE(F ) is much less than SSE(R).

However, if SSE(F ) is only slightly smaller than SSE(R), then we do not have reason to
reject the null hypothesis. Consider the test statistic F �reg :

F �reg =
MS(Regression)
MS(Error)

=

SSE(R)� SSE(F )
dfR � dfF
SSE(F )

dfF

=
SSE(X0; : : : ; Xq�1)� SSE(X0; : : : ; Xp�1)

(n� q)� (n� p) � SSE(X0; : : : ; Xp�1)

n� p
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where dfR is the number of degrees of freedom for the reduced model, and dfF is the number
of degrees of freedom for the full model. Speci�cally, we have:

dfR = n� q;
dfF = n� p;

so dfR � dfF = p� q:

The above can be summarized in the following ANOVA table:

Source SS df MS F

Error (reduced) SSE(R) n-q MSE(R) = SSE(R)
n�q

Regression SSR p-q MSR = SSR
p�q Freg =

MSR
MSE(F )

Error (full) SSE(F ) n-p MSE(F ) = SSE(F )
n�p

Lack of Fit SSLF c-p MSLF = SSLF
c�p Flof =

MSLF
MSPE

Pure Error SSPE n-c MSPE = SSPE
n�c

Total (corrected) SSTO n-1

By the above reasoning, we see that a large value for F �reg indicates that the full re-
gression model is signi�cant, whereas a small value for F �reg suggests that the full model is
not signi�cantly better at explaining the data than the reduced model. The test statistic
F �reg has an F (p� q; n� p) distribution under the null hypothesis ([1],[2]). Therefore, the
decision rule for the above test of hypothesis is:

if F �reg � F (1� �; p� q; n� p), conclude Ho
if F �reg > F (1� �; p� q; n� p), conclude Ha:

Program 3dRegAna calculates the F �reg statistic for each voxel and, if so requested by
the user, appends these values as the second sub-brick of an AFNI ��ft�3d dataset.

1.2.4 Coe¢ cient of Multiple Determination R2

The coe¢ cient of multiple determination, R2, can be used as an indicator for how well the
full model �ts the data. R2 is de�ned:

R2 = 1� SSE(F )
SSTO

where SSTO is the total (corrected for the mean) sum of squares:

SSTO =

nX
i=1

�
Yi � �Y

�2
= Yt

�
I� 1
n
11t
�
Y
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(here, 1 is the column vector of 1�s). Roughly speaking, R2 is the proportion of the variation
in the data (about the mean) that is explained by the full regression model. Note that, for
every voxel, 0 � R2 � 1. Also, note that the reduced model plays no role in calculating
R2.
Program 3dRegAna calculates R2 for each voxel and, if so requested by the user, appends

these values as the second sub-brick of an AFNI ��th�3d dataset.

1.2.5 t-test for Signi�cance of Individual Parameters

When developing linear regression models, it is frequently useful to know the signi�cance
of the individual parameters that constitute the model. This may help identify terms in
the model that may be safely discarded in order to simplify the model. Therefore, linear
regression programs often provide the t-statistics for the individual parameters in the model.
For the linear regression model, the variance-covariance matrix for the regression coef-

�cients is given by:

s2(b) = MSE �
�
Xt
fXf

��1
=

SSE(F )

n� p �
�
Xt
fXf

��1
The standard deviation for the kth parameter is estimated by the square root of the (k; k)th
element of the variance-covariance matrix:

s(b[k]) =
q
[s2(b)]k;k

Then the test statistic t� :

t�[k] =
b[k]

s(b[k])

has a t(n� p) distribution under the null hypothesis ([1],[2]).
Note that the reduced model de�nition plays no role in the calculation of t�.
Program 3dRegAna calculates the t� statistic for each parameter at each voxel location

and, if so requested by the user, appends these values as the second sub-brick of an AFNI
��tt�dataset for each parameter.

1.2.6 Summary

The overall procedure is summarized below.

1. Extract the independent variable matrices for the reduced and full models: Xr and
Xf . Calculate the matrices:

I� 1
n
11t, I�Xr

�
Xt
rXr

��1
Xt
r,

�
Xt
fXf

��1
,�

Xt
fXf

��1
Xt
f , and I�Xf

�
Xt
fXf

��1
Xt
f .

Since these matrices are constant for all voxels, these calculations are done only once.
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2. Calculate the total (corrected for the mean) sum of squares:

SSTO = Yt

�
I� 1
n
11t
�
Y

If SSTO is very small, skip steps (3)� (7) (see the -rmsmin command, explained
below).

3. Calculate the error sum of squares for the reduced model :

SSE(R) = Yt
h
I�Xr

�
Xt
rXr

��1
Xt
r

i
Y

4. Calculate the error sum of squares for the full model :

SSE(F ) = Yt
h
I�Xf

�
Xt
fXf

��1
Xt
f

i
Y

5. If repeat observations are available, calculate the pure error sum of squares and lack
of �t:

SSPE =
cX
j=1

n(j)X
i=1

�
Yij � �Yj

�2
SSLF = SSE(F )� SSPE

F �lof =
SSLF=(n� p)
SSPE=(c� p)

If F �lof is very large, skip steps (6)� (7) (see the -�of command, explained below).

6. Calculate the linear regression �t of the full model :

b =
h�
Xt
fXf

��1
Xt
f

i
Y

s2(b) =
SSE(F )

n� p �
h�
Xt
fXf

��1i
7. Calculate statistics for the linear regression:

F �reg =
MS(Regression)
MS(Error)

=

SSE(R)� SSE(F )
dfR � dfF
SSE(F )

dfF

R2 = 1� SSE(F )
SSTO

t�[k] =
b[k]

s(b[k])

8. Repeat steps (2)� (7) for each voxel in the data set.
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1.3 Usage

The syntax for execution of program 3dRegAna is as follows:

3dRegAna -rows n -cols m
-xydata X11 X12 : : : X1m �lename

...
-xydata Xn1 Xn2 : : : Xnm �lename
-model i1 : : : ip�q : j1 : : : jq
[-diskspace] [-workmem mega] [-rmsmin r] [-fdisp f] [-�of �]
[-fcoef k pre�xname] [-rcoef k pre�xname] [-tcoef k pre�xname]
[-bucket n pre�xname] [-brick m1 options] : : : [-brick mn options]

The di¤erent command line options are explained below.

1.4 Option

-rows n
The mandatory -rows command is used to indicate the number n of input datasets; equiv-

alently, n is the number of rows in the independent variable matrix. The -rows command
must appear �rst in the batch command �le.

-cols m
The mandatory -cols command is used to indicate the number m of independent X

variables, whose values will be entered for each dataset. Note that the number m does
not include the column of 1�s, which is automatically supplied by the program. The -cols
commands must appear second in the batch command �le.

-xydata Xi1 Xi2 : : : Xim fname
The -xydata command speci�es the values for the m independent X variables that apply

for the observed AFNI 3d dataset whose �lename is fname.

-model i1 : : : ip�q : j1 : : : jq The -model command is used to specify the independent
variables for the reduced and the full models. The integers j1, : : :, jq following the �:� are
the indices for the independent variables in the reduced model, i.e.,

Ŷ = fr(Xj1 ; : : : ; Xjq):

The integers i1, : : :, ip�q preceding the �:� are the indices for the independent variables in
the full model which are not already in the reduced model, i.e.,

Ŷ = ff (Xj1 ; : : : ; Xjq ; Xi1 ; : : : ; Xip�q):

Note: The index 0 must always appear to the right of the �:�. This means that the
constant term is always in the reduced model.
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-diskspace
The -diskspace command tells program 3dRegAna to calculate how much free disk space is

required to solve the given problem. The amount of disk space required depends upon the
dimensions of the input datasets (i.e., number of voxels per image) as well as the number
of output datasets requested. The program prints to the screen how much disk space is
required, and a tabulation of the disk space currently available on the system. The program
then asks the operator if he wishes to continue.

-workmem mega
The optional -workmem command speci�es the number of megabytes of RAM to use for

the statistical workspace. The default value is 750 megabytes. The program will (usually)
run faster if this value is set higher.

-rmsmin r
The optional -rmsmin command is used to set the minimum rms error r required in order

to reject the constant response model. The full model will not be calculated for those voxels
whose measured data, when �tted with the constant response model, has error rms < r.

More precisely, if
q

SSTO
n�1 < r, then no further calculations are performed for this voxel.

This option is used primarily to speed program execution by screening out voxels which
lie outside the brain. The user should choose a value for r which is much smaller than the
natural measurement error. The default value is r = 0.

-fdisp f
The optional -fdisp command is used to control output to the user�s terminal during

program execution. For each voxel in the data set, if the calculated F �reg is greater than
or equal to f , then the estimated full model regression coe¢ cients, Freg statistic, R2,
and t-statistics, are written to the screen; otherwise, nothing is written to the screen for
that particular voxel. Note that the -fdisp command e¤ects screen output only, and has
absolutely no e¤ect upon the data �le output generated by the program.

-�of �
The optional -�of command is used to set the threshold for discarding voxels due to lack

of �t of the full model. The value of �, 0 � � � 1, is the user set probability for falsely
rejecting the null hypothesis that the full model is adequate for explaining variation in the
data. Note: if � is set to 0, all voxels would be accepted; if � is set to 1, all voxels would
be rejected. Given �, the value Flof is calculated which yields a cumulative probability of
1�� under the F -distribution, with c� p for the numerator degrees of freedom, and n� c
for the denominator degrees of freedom, i.e.,

Flof = F (1� �; c� p; n� c):

For each voxel in the data set, if the calculated F �lof is greater than or equal to Flof
(indicating that the full model is not adequate for explaining variation in the data), then
the regression analysis is not performed for that voxel. All output parameters and statistics
for that voxel are set to zero.
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By default, the test for lack of �t is not performed. However, it is strongly recommended
that this option be used whenever there are repeat observations in the data.

-fcoef k pre�xname
The optional -fcoef command tells program 3dRegAna to save the least squares estimated

value of the kth parameter in an AFNI 3d data set, along with the F -statistics for sig-
ni�cance of the regression. The output is then written to the �le with the user speci�ed
pre�x �lename. This output consists of a 2 sub-brick AFNI dataset of type ��ft�. The
�rst sub-brick consists of the regression parameter estimate b[k], and the second sub-brick
contains the corresponding F -statistics F �reg. It must be emphasized that the F -statistics
pertain to signi�cance of the overall regression, and do not indicate the signi�cance of the
individual parameter (compare with command -tcoef).

AFNI ��ft�dataset

8>>>>>>><>>>>>>>:

b[k] = L.S. est. of �[k]

F �reg =
MS(Reg)
MS(Error)

=

SSE(R)� SSE(F )
dfR � dfF
SSE(F )

dfF

When this data �le is used as input to program afni, the second sub-brick can be used
as a �threshold�for determining which voxels �light-up�; the intensity is then determined
by the �rst sub-brick. So, by setting the appropriate threshold, only those voxels having
the user-speci�ed p-values for signi�cance of the linear regression will �light-up�. The
color coding of the voxels which light-up indicates the sign and magnitude of the estimated
regression coe¢ cients.

-rcoef k pre�xname
The optional -rcoef command tells program 3dRegAna to save the least squares estimated

value of the kth parameter in an AFNI 3d data set, along with the coe¢ cient of multiple
determination R2. The output is then written to the �le with the user speci�ed pre�x
�lename. This output consists of a 2 sub-brick AFNI dataset of type ��th�. The �rst sub-
brick consists of the regression parameter estimate b[k], and the second sub-brick contains
the corresponding R2. It must be emphasized that R2 is an indicator of the e¢ cacy of
the overall regression, and does not indicate the signi�cance of the individual parameter
(compare with command -tcoef).

AFNI ��th�dataset

8>>><>>>:
b[k] = L.S. est. of �[k]

R2 = 1� SSE(F )
SSTO

When this data �le is used as input to program afni, the second sub-brick can be used
as a �threshold�for determining which voxels �light-up�; the intensity is then determined
by the �rst sub-brick. So, by setting the appropriate threshold, only those voxels exceeding
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the user-speci�ed threshold value for the coe¢ cient of multiple determination will �light-
up�. The color coding of the voxels which light-up indicates the sign and magnitude of the
estimated regression coe¢ cients.

-tcoef k pre�xname
The optional -tcoef command is used to save the estimated value of the kth parameter

for the full regression model, as well as the corresponding t-statistic for signi�cance of that
parameter, for each voxel in the dataset. The result is stored as a 2 sub-brick AFNI data
set of type ��tt� in the �le with the user speci�ed pre�x �lename. The �rst sub-brick
consists of the regression parameter estimate b[k], and the second sub-brick contains the
corresponding t-statistic t� for each voxel.

AFNI ��tt�dataset

8>>><>>>:
b[k] = L.S. est. of �[k]

t� =
b[k]

s(b[k])

When this is used as an input �le to program afni, the second sub-brick can be used to
set the threshold for determining which voxels have an estimated parameter value which is
signi�cantly di¤erent from zero. The �.HEAD��le informs program afni that the second
sub-brick contains t-statistics, and that df = n�p should be used for the degrees of freedom.

-bucket n pre�xname
The -bucket command is used to create a single AFNI �bucket�type dataset having n

sub-bricks. The output is written to the �le with the user speci�ed pre�x �lename. Each
of the individual sub-bricks can then be accessed for display within program afni. The
purpose of this command is to simplify �le management, since all of the output datasets
for a particular problem can now be contained within the single AFNI bucket dataset. (See
Example 3).
If n = 0, then the default output bucket dataset is created. This default dataset has

2p+ 2 sub-bricks, as illustrated below.
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Brick Label Contents
#0 Coef #0 est. b[0] = L.S. est. of �[0]

#1 Coef #0 t-stat t� =
b[0]

s(b[0])
#2 Coef #1 est. b[1] = L.S. est. of �[1]

#3 Coef #1 t-stat t� =
b[1]

s(b[1])
...

...
...

#2p-2 Coef #p-1 est. b[p� 1] = L.S. est. of �[p� 1]

#2p-1 Coef #p-1 t-stat t� =
b[p� 1]
s(b[p� 1])

#2p F-stat Regression F �reg =
MS(Reg)
MS(Error)

#2p+1 R^2 Regression R2 = 1� SSE(F )
SSTO

If n > 0, then the contents and labels for the individual sub-bricks within the bucket
dataset are speci�ed by the user, by means of the -brick command described below. Note
that the -bucket command must precede the -brick commands.

-brick m options
The -brick command is used to specify the contents and labels for the mth sub-brick

(0 � m < n) within the bucket dataset. There must be one -brick command for each
of the n sub-bricks in the dataset (where n has been previously speci�ed by the -bucket
command). (See Example 3).
There are 4 versions of the -brick command:

-brick m coef k label The mth sub-brick is to contain the least squares estimate
of the kth regression coe¢ cient.

-brick m tstat k label The mth sub-brick is to contain the t-statistic for signi�cance
of the kth regression coe¢ cient.

-brick m fstat label The mth sub-brick is to contain the F -statistic for signi�cance
of the regression.

-brick m rstat label The mth sub-brick is to contain the coe¢ cient of multiple
determination R2.

In each case, the label for the sub-brick is speci�ed by label.

1.5 Notes

� Since program 3dRegAna uses temporary disk �les to hold the results of intermediate
calculations, the user should be aware that there must be enough available disk space
for the temporary �les, in addition to the permanent output �les. If the -diskspace
command is used, then prior to the start of the linear regression calculations, program
3dRegAna calculates the maximum amount of disk space required to solve the given
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problem, and reports this value to the user, along with the amount of disk space
currently available. The user has the option of halting program execution at this
point if there is insu¢ cient disk space.

� Program 3dRegAna will not overwrite previously existing �les. Therefore, if a �le
already exists with the same name as an output �le speci�ed by the user, the pro-
gram will report this fact and halt. This applies as well to the temporary data �les
created by the program. All temporary �les created by program 3dRegAna have
the su¢ x �.3dregana�. If, for any reason, the program should terminate execution
prematurely, the user must manually remove any �.3dregana��les that may be left.

� Program execution time depends on the number of input datasets and the number
of voxels per dataset. Execution time can be reduced by �rst applying a mask to
zero out non-brain voxels. Then, the -rmsmin command can be used to exclude these
non-brain voxels from the regression analysis.

� This program cannot handle complex-valued datasets or time-dependent datasets.

1.6 Examples

Example 1. Simple Linear Regression It is hypothesized that there is a simple linear
relationship between the frequency of an external excitation and the corresponding neural
activation intensity.

Yi = �0 + �1Xi + "i

To test this hypothesis, FMRI data is collected for excitation frequencies 1.5, 2.5, 3.5,
and 4.5 Hz. Three images are produced for each excitation frequency, in randomized order.
The batch command �le which was used to execute program 3dRegAna is as follows:

Batch Command File for Example 1

3dRegAna n
-rows 12 n
-cols 1 n
-xydata 1.5 fred005+orig n
-xydata 1.5 fred012+orig n
-xydata 1.5 fred010+orig n
-xydata 2.5 fred007+orig n
-xydata 2.5 fred001+orig n
-xydata 2.5 fred006+orig n
-xydata 3.5 fred008+orig n
-xydata 3.5 fred003+orig n
-xydata 3.5 fred009+orig n
-xydata 4.5 fred004+orig n
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-xydata 4.5 fred011+orig n
-xydata 4.5 fred002+orig n
-diskspace n
-rmsmin 1.0 n
-fdisp 10 n
-model 1:0 n
-flof 0.01 n
-fcoef 0 fred.constant n
-fcoef 1 fred.linear

The commands -rows 12 is used to indicate that there are 12 input datasets. Since there
is only one predictor variable, X1 (not countingX0 � 1), the command -cols 1 appears next.
This is followed by 12 -xydata commands, one for each dataset. Each -xydata command is
immediately followed by the value of X1 (i.e., the excitation frequency) for that dataset,
and the name of the �le containing the 3d dataset.
The -diskspace command means that the program is to display the amount of disk space

required for program execution, along with the available disk space, prior to the start of the
actual calculation. The command -rmsmin 1.0 indicates that the regression analysis should
be calculated for a voxel only if the rms error from �tting just a constant to the data
exceeds 1.0. The command -fdisp 10 indicates that the regression coe¢ cients, F -statistics,
R2, and t-statistics should be written to the screen for those voxels whose F �reg is equal to
or greater than 10.
Next, the -model 1 : 0 command indicates that the full model is given by:

Yi = �0 + �1Xi + "i:

and the reduced model is:

Yi = �0 + "i

Since there are repeat observations, the command -�of 0.01 is used to perform an F -test
for lack of �t. This allows the test of hypotheses:

Ho : E(Y ) = �0 + �1X
Ha : E(Y ) 6= �0 + �1X

at each voxel location. In this example, there are 4 unique values for X, hence c = 4, so,

Flof = F (1� �; c� p; n� c)
= F (0:99; 2; 8) � 8:65

Therefore, any voxel with F �lof � 8:65 is automatically excluded from further analysis due
to lack of �t.
The output consist of two AFNI ��ft�datasets: dataset fred.constant+orig.HEAD (and

.BRIK) contains the estimate for the constant parameter �0 for each voxel in the �rst sub-
brick, and the F -statistics for signi�cance of the linear regression in the second sub-brick;
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dataset fred.linear+orig.HEAD (and .BRIK) contains the estimate for the linear slope para-
meter �1 in the �rst sub-brick, and the F -statistics for signi�cance of the linear regression
in the second sub-brick. Note that the second sub-brick for these two datasets is identical;
only the �rst sub-bricks di¤er. The second sub-brick provides the results for the test of
hypotheses:

Ho : �1 = 0
Ha : �1 6= 0

at each voxel location. Therefore, when viewed with afni, and for a given operator speci�ed
signi�cance level, the same set of voxel locations will light up for both datasets (i.e., those
voxels for which there is a statistically signi�cant linear dependence of FMRI intensity upon
task excitation frequency). However, the color coding of the voxels will vary depending upon
the magnitude of the respective regression coe¢ cient at each voxel location.

Example 2. Polynomial Regression A researcher is using FMRI to study neural
activation as a function of drug dosage. It is suspected that some voxels will show a
linear (intensity) response to drug dosage level, whereas other voxels may show a quadratic
response. Two images were obtained at each of �ve drug dosage levels. The following batch
commands produce a least squares �t of the data to a quadratic drug response model:

Batch Command File for Example 2

3dRegAna n
-rows 10 n
-cols 2 n
-xydata 0.5 0.25 ethel001+orig n
-xydata 0.5 0.25 ethel004+orig n
-xydata 1.5 2.25 ethel002+orig n
-xydata 1.5 2.25 ethel000+orig n
-xydata 2.5 6.25 ethel008+orig n
-xydata 2.5 6.25 ethel006+orig n
-xydata 3.5 16.00 ethel007+orig n
-xydata 3.5 16.00 ethel005+orig n
-xydata 4.5 20.25 ethel009+orig n
-xydata 4.5 20.25 ethel003+orig n
-diskspace n
-rmsmin 1.0 n
-fdisp 10 n
-model 2 1 : 0 n
-flof 0.01 n
-tcoef 0 ethel.constant n
-tcoef 1 ethel.linear n
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-tcoef 2 ethel.quadratic n
-fcoef 2 ethel.regression

The command -rows 10 is used to indicate that there are 10 input datasets. Since there
are two predictor variables, X1 and X2 � X2

1 , the command -cols 2 appears next. This
is followed by the 10 -xydata commands, one for each dataset. Each -xydata command
is immediately followed by the value of X1 (i.e., the drug dosage level) and X2

1 for that
dataset, and the name of the �le containing the corresponding 3d dataset.
Next, the -model 2 1 : 0 command indicates that the program should calculate the

reduced model

Yi = �0 + "i

and the full model

Yi = �0 + �1Xi + �2X
2
i + "i:

where Xi = drug dosage level, and Yi = measured response. This allows the test of
hypotheses:

Ho : �1 = �2 = 0
Ha : �1 6= 0 or �2 6= 0

at each voxel location. Thus, the command -model 2 1 : 0 tests for the statistical signi�cance
of adding both variables X and X2 to the model. That is, do X and X2, combined,
signi�cantly improve the explanatory power of the model?
Since there are repeat observations, the command -�of 0.01 is used to perform an F -test

for lack of �t. This allows the test of hypotheses:

Ho : E(Y ) = �0 + �1X + �2X
2
i

Ha : E(Y ) 6= �0 + �1X + �2X
2
i

at each voxel location. In this example, there are 5 unique values for X, hence c = 5, so,

Flof = F (1� �; c� p; n� c)
= F (0:99; 3; 5) � 12:1

Therefore, any voxel with F �lof � 12:1 is automatically excluded from further analysis due
to lack of �t.
The last four commands generate the output �les. The three -tcoef commands each

creates an AFNI ��tt�3d dataset; the �rst sub-brick contains the least squares estimate of
the regression coe¢ cient for the respective independent variable (from the full model), and
the second sub-brick contains the t-statistic for statistical signi�cance of that parameter
(being di¤erent from zero) within the full model. The -fcoef command creates an AFNI
��ft� 3d dataset; the second sub-brick contains the F -statistics for signi�cance of the
regression.

Note that just by changing the -model command, one can test various alternative hy-
potheses:
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Ha Ho
-model 1 : 0 Yi = �0 + �1Xi + "i vs. Yi = �0 + "i
-model 2 : 0 Yi = �0 + �2X

2
i + "i vs. Yi = �0 + "i

-model 2 : 1 0 Yi = �0 + �1Xi + �2X
2
i + "i vs. Yi = �0 + �1Xi + "i

-model 2 1 : 0 Yi = �0 + �1Xi + �2X
2
i + "i vs. Yi = �0 + "i

Example 3. Multiple Linear Regression Five predictor variables, X1, X2, X3, X4,
and X5, were recorded for each of a set of 100 FMRI images, where
X1 = drug dosage level,
X2 = (drug dosage level)2,
X3 = subject�s age,
X4 = subject�s weight,
X5 = drug dosage level � subject�s weight.
The investigator has already determined that variables X1 and X2 are useful in explain-

ing the observed variation in the neural activation data. Now, he wishes to determine if
adding variables X4 and X5 (both related to the subject�s weight) to the model will sig-
ni�cantly improve the predictive ability of the model. The following batch command �le
could be used to perform the test.

Batch Command File for Example 3

3dRegAna n
-rows 100 n
-cols 5 n
�xydata 1:30 1:69 32 127 0:0102 a366+ tlrc n
�xydata 2:50 6:25 47 165 0:0152 k894+ tlrc n
�xydata 3:20 10:24 25 225 0:0142 c804+ tlrc n

...
...

...
...

...
...

...
�xydata 2:25 5:06 29 107 0:0210 w904+ tlrc n
�xydata 1:75 3:06 39 250 0:0070 f011+ tlrc n
�xydata 2:75 7:56 44 120 0:0229 m515+ tlrc n
-diskspace n
-rmsmin 1.0 n
-fdisp 10 n
-model 4 5 : 0 1 2 n
-fcoef 1 dosage n
-fcoef 2 dosage^2 n
-fcoef 4 weight n
-fcoef 5 dose%wght
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The command -rows 100 indicates that 100 AFNI 3d datasets will be used as input.
This is followed by -cols 5, indicating that 5 numerical values will be entered for each
dataset. Following this there are 100 separate -xydata commands, one for each dataset.
The command -model 4 5 : 0 1 2 is used to test the alternative models:

Ho : Yi = �0 + �1Xi1 + �2Xi2 + "i
Ha : Yi = �0 + �1Xi1 + �2Xi2 + �4Xi4 + �5Xi5 + "i

In other words, this is a test for the signi�cance of variables X4 and X5, assuming that
variables X1 and X2 are already in the model.
For this particular example, the reduced and full independent variable matrices are

given by:

Xr =

X0 X1 X226666666664

1
1
1
...
1
1
1

1:30 1:69
2:50 6:25
3:20 10:24

...
...

2:25 5:06
1:75 3:06
2:75 7:56

37777777775
Xf =

X0 X1 X2 X4 X526666666664

1
1
1
...
1
1
1

1:30 1:69 127 0:0102
2:50 6:25 165 0:0152
3:20 10:24 225 0:0142

...
...

...
...

2:25 5:06 107 0:0210
1:75 3:06 250 0:0070
2:75 7:56 120 0:0229

37777777775
Note that the 3rd column of data is not used. It is not necessary to rewrite the data

portion of the batch command �le in order to experiment with di¤erent sets of predictor
variables. Only the -model command (and the output commands) need be changed.
The -fcoef commands create 4 AFNI ��ft� 3d datasets; the �rst sub-brick of each

contains the respective parameter estimate; the second sub-brick contains the F -statistics
for signi�cance of the regression. The second sub-brick is identical for each of these 4
datasets, only the �rst sub-bricks di¤er.
When afni is used to view the above ��ft�datasets, only those voxels for which variables

X4 and X5 are statistically signi�cant in explaining variation in the data (variation that is
not already accounted for by variables X0, X1, and X2) will �light-up�. The color coding
of the voxels will correspond to the respective parameter estimates.

As we have seen, this batch command �le generates 4 separate AFNI 3d datasets (8
�les, counting the �.HEAD�and �.BRIK��les). To simplify �le management, all of these
datasets can be grouped into a single AFNI �bucket� dataset by appending the -bucket
command, as shown below.

Batch Command File for Example 3

3dRegAna n
-rows 100 n
-cols 5 n
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...
(same as above)

...
-model 4 5 : 0 1 2 n
-bucket 0 drug.results

As may be seen, the batch command �le is the same as before, except that the 4 -
fcoef commands have been replaced by the single -bucket command. The �0� following
-bucket indicates that the default dataset should be created; the AFNI bucket dataset is
written to �le �drug.results+tlrc�(.HEAD and .BRIK). The structure of the bucket dataset
is described in the following table.

Brick Label Contents
#0 Coef #0 est. b[0] = L.S. est. of �[0]
#1 Coef #0 t-stat t� for b[0]
#2 Coef #1 est. b[1] = L.S. est. of �[1]
#3 Coef #1 t-stat t� for b[1]
#4 Coef #2 est. b[2] = L.S. est. of �[2]
#5 Coef #2 t-stat t� for b[2]
#6 Coef #4 est. b[4] = L.S. est. of �[4]
#7 Coef #4 t-stat t� for b[4]
#8 Coef #5 est. b[5] = L.S. est. of �[5]
#9 Coef #5 t-stat t� for b[5]
#10 F-stat Regression F �reg
#11 R^2 Regression R2

The default option for the -bucket command is easy to use, but there are a couple
limitations. First, the labels generated by the program for the sub-bricks are generic;
i.e., they are not very informative. The second limitation is that everything is included
in the output. However, the user may only be interested in certain speci�c parameters
or statistics; the remainder may only clutter-up the output. The alternative approach is
for the user to specify what goes into each sub-brick, and the label for each sub-brick, as
illustrated below.

Batch Command File for Example 3

3dRegAna n
-rows 100 n
-cols 5 n

...
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(same as above)
...

-model 4 5 : 0 1 2 n
-bucket 5 drug.results n
-brick 0 coef 1 Dosage n
-brick 1 coef 2 Dosage^2 n
-brick 2 coef 4 Weight n
-brick 3 coef 5 ��Dose/Weight�� n
-brick 4 fstat ��F-statistic��

The �5�following -bucket indicates that the the bucket dataset will contain 5 sub-bricks.
The AFNI bucket dataset is written to �le �drug.results+tlrc� (.HEAD and .BRIK), as
before. The 5 -brick commands are used to specify the contents of the individual sub-
bricks, as well as their labels.

Brick Label Contents
#0 Dosage b[1] = L.S. est. of �[1]
#1 Dosage^2 b[2] = L.S. est. of �[2]
#2 Weight b[4] = L.S. est. of �[4]
#3 Dose/Weight b[5] = L.S. est. of �[5]
#4 F-statistic F �reg

We see that the labels for the individual sub-bricks are more informative. Also, the
dataset contains only the output quantities of interest to the user.

Example 4. Quantitative and Qualitative Independent Variables In the previous
examples, the independent (predictor) variables always appeared at quantitative levels.
Now, we will consider an example where one of the predictor variables is quantitative, and
the other is qualitative.
We will again suppose that the drug dosage level is the quantitative factor: X1 = drug

dosage. For the qualitative factor, we will use whether the subject is a non-smoker, a light
smoker, or a heavy smoker. We could de�ne predictor variable X2:

X2 =

8<:
0; subject is non-smoker
1; subject is light smoker
2; subject is heavy smoker

and then �t the linear regression model:

Yi = �0 + �1Xi1 + �2Xi2 + "i

The problem with this approach is that it inherently assumes a linear relationship between
the response and the levels of variable X2; i.e., �level of smoking� is being treated as a
quantitative variable.
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In order to treat �level of smoking�qualitatively, each level of smoking could be given
an indicator variable, e.g.:

X2 =

�
1; subject is non-smoker
0; otherwise

X3 =

�
1; subject is light smoker
0; otherwise

X4 =

�
1; subject is heavy smoker
0; otherwise

and then �t the linear regression model:

Yi = �0 + �1Xi1 + �2Xi2 + �3Xi3 + �4Xi4 + "i

However, this causes computational di¢ culties, as may be seen by examining theXf matrix:

Xf =

X0 X1 X2 X3 X4266666666666666664

1 0:5 1 0 0
1 1:5 1 0 0
1 2:5 1 0 0
1 3:5 1 0 0
1 1:5 0 1 0
1 2:0 0 1 0
1 4:2 0 1 0
1 0:5 0 1 0
1 2:4 0 0 1
1 0:8 0 0 1
1 3:6 0 0 1

377777777777777775
In terms of column vectors, X0 = X2 +X3 +X4, i.e., the column vectors are not linearly
independent. This makes it impossible to invert the Xt

fXf matrix. The solution is simple:
eliminate one of the indicator variables. A natural choice in this case would be:

X2 =

�
1; subject is light smoker
0; otherwise

X3 =

�
1; subject is heavy smoker
0; otherwise

in which case the full regression model is:

Yi = �0 + �1Xi1 + �2Xi2 + �3Xi3 + "i

The implication of this model is that the response to the drug consists of 3 parallel linear
functions:

E(Y ) = �0 + �1Xi1 for non-smokers
E(Y ) = (�0 + �2) + �1Xi1 for light smokers
E(Y ) = (�0 + �3) + �1Xi1 for heavy smokers
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For this model, the predictor variable matrix is:

Xf =

X0 X1 X2 X3266666666666666664

1 0:5 0 0
1 1:5 0 0
1 2:5 0 0
1 3:5 0 0
1 1:5 1 0
1 2:0 1 0
1 4:2 1 0
1 0:5 1 0
1 2:4 0 1
1 0:8 0 1
1 3:6 0 1

377777777777777775
and the corresponding batch command �le is:

Batch Command File for Example 4

3dRegAna n
-rows 11 n
-cols 3 n
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata

0:5 0 0
1:5 0 0
2:5 0 0
3:5 0 0
1:5 1 0
2:0 1 0
4:2 1 0
0:5 1 0
2:4 0 1
0:8 0 1
3:6 0 1

d338+ tlrc n
h289+ tlrc n
f040+ tlrc n
a202+ tlrc n
c499+ tlrc n
b437+ tlrc n
i746+ tlrc n
g846+ tlrc n
e325+ tlrc n
h820+ tlrc n
g920+ tlrc n

-diskspace n
-rmsmin 1.0 n
-fdisp 10 n
-model 1 2 3 : 0 n
-fcoef 0 b0 n
-fcoef 1 b1 n
-fcoef 2 b2 n
-fcoef 3 b3

As previously mentioned, the above model assumes that the slope of the response func-
tion is the same for each of the 3 groups. If we wish to consider a more general model, in

24



which each of the 3 groups has a di¤erent slope, then we would use the following model,
which includes products of the independent variables:

Yi = �0 + �1Xi1 + �2Xi2 + �3Xi3 + �4Xi2Xi1 + �5Xi3Xi1 + "i

The response function for this model consists of 3 linear functions having di¤erent slopes:

E(Y ) = �0 + �1Xi1 for non-smokers
E(Y ) = (�0 + �2) + (�1 + �4)Xi1 for light smokers
E(Y ) = (�0 + �3) + (�1 + �5)Xi1 for heavy smokers

For this model, the predictor variable matrix is:

Xf =

X0 X1 X2 X3 X4 X5266666666666666664

1 0:5 0 0 0 0
1 1:5 0 0 0 0
1 2:5 0 0 0 0
1 3:5 0 0 0 0
1 1:5 1 0 1:5 0
1 2:0 1 0 2:0 0
1 4:2 1 0 4:2 0
1 0:5 1 0 0:5 0
1 2:4 0 1 0 2:4
1 0:8 0 1 0 0:8
1 3:6 0 1 0 3:6

377777777777777775
and the corresponding batch command �le is:

Batch Command File for Example 4

3dRegAna n
-rows 11 n
-cols 5 n
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata
�xydata

0:5 0 0 0 0
1:5 0 0 0 0
2:5 0 0 0 0
3:5 0 0 0 0
1:5 1 0 1:5 0
2:0 1 0 2:0 0
4:2 1 0 4:2 0
0:5 1 0 0:5 0
2:4 0 1 0 2:4
0:8 0 1 0 0:8
3:6 0 1 0 3:6

d338+ tlrc n
h289+ tlrc n
f040+ tlrc n
a202+ tlrc n
c499+ tlrc n
b437+ tlrc n
i746+ tlrc n
g846+ tlrc n
e325+ tlrc n
h820+ tlrc n
g920+ tlrc n

-diskspace n
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-rmsmin 1.0 n
-fdisp 10 n
-model 4 5 : 0 1 2 3 n
-fcoef 0 b0 n
-fcoef 1 b1 n
-fcoef 2 b2 n
-fcoef 3 b3 n
-fcoef 4 b4 n
-fcoef 5 b5

The command -model 4 5 : 0 1 2 3 provides a test of the alternative hypotheses:

Ho : Yi = �0 + �1Xi1 + �2Xi2 + �3Xi3 + "i
Ha : Yi = �0 + �1Xi1 + �2Xi2 + �3Xi3 + �4Xi2Xi1 + �5Xi3Xi1 + "i

That is, when viewed with program afni, only those voxels for which the slopes of the
response functions for the 3 di¤erent groups are signi�cantly di¤erent will light up.
Note that this is only intended as an illustrative example; in practice, the sample size

is too small for estimation of so many parameters.

Example 5. ANOVA with Unequal Sample Sizes The multifactor ANOVA pro-
grams (3dANOVA2 and 3dANOVA3) require equal sample sizes for each combination of
factor levels (i.e., each treatment). However, it may happen that one or more of the treat-
ments have missing observations (e.g., a subject may not show up at the scheduled time,
etc.), or it may be di¢ cult to secure equal numbers of volunteer subjects for each combi-
nation of factor levels. We will consider how to use the regression approach to performing
ANOVA when there are unequal sample sizes. Since this involves the use of indicator vari-
ables, it should be noted that, as a practical matter, the number of levels for each factor
must not be very large.
Suppose a researcher wishes to study di¤erences in neural activation in response to a

particular task arising from two factors: intelligence level, and smoking vs. non-smoking.
Factor A (smoking) is evaluated at 2 levels: non-smoking and smoking. Factor B (intelli-
gence) has 3 levels: low IQ, medium IQ, and high IQ. Volunteers are selected at random,
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and are classi�ed as shown in the following table.

low IQ medium IQ high IQ

Non-smoking Y111 Y121 Y131
Y112 Y122 Y132
Y113 Y123

Y124

Smoking Y211 Y221 Y231
Y212 Y222
Y213

In this table, each Yijik represents an AFNI 3d dataset. Because of the unequal sample
sizes, program 3dANOVA2 is not applicable. However, the analysis can be performed using
linear regression by means of indicator variables (see [1], pp.746-754). Indicator variables
are just predictor variables which take on only the values +1, -1, and 0, as explained below.
The two-factor ANOVA model is given by :

Yijk = �:: + �i + �j + (��)ij + "ijk;

where i = 1; 2; and j = 1; 2; 3;

and subject to the constraints:
P
�i = 0,

P
�j = 0,

P
i(��)ij = 0,

P
j(��)ij = 0.

These constraints are important, since the X matrix must be set up so as to have linearly
independent columns (otherwise, it would not be possible to calculate (XtX)

�1).
In this particular example, we have �2 = ��1, so we require only 2 � 1 = 1 indicator

variable for factor A. This indicator variable, X1, is de�ned below.

X1 =

�
+1 if observation corresponds to non-smoker,
�1 if observation corresponds to smoker.

Since �3 = ��1 � �2, we require only 3 � 1 = 2 indicator variables for factor B. These
indicator variables, X2 and X3, are de�ned:

X2 =

8<:
+1 if observation corresponds to low IQ,
0 if observation corresponds to medium IQ,
�1 if observation corresponds to high IQ,

X3 =

8<:
0 if observation corresponds to low IQ,
+1 if observation corresponds to medium IQ,
�1 if observation corresponds to high IQ,

Also, we require only (2 � 1) � (3 � 1) = 2 indicator variables for AB interaction. These
are obtained as the product of the factor A and factor B indicator variables:

X4 = X1 �X2

X5 = X1 �X3

27



Using these de�nitions of the indicator variables, the full linear regression model can be
written:

Yijk = �:: +

A main e¤ectz }| {
�1Xijk1 +

B main e¤ectz }| {
�1Xijk2 + �2Xijk3

+(��)11Xijk4 + (��)12Xijk5| {z }
AB interaction

+ "ijk;

The data matrices then take the form:

Y =

26666666666666666666666664

Y111
Y112
Y113
Y121
Y122
Y123
Y124
Y131
Y132
Y211
Y212
Y213
Y221
Y222
Y231

37777777777777777777777775

Xf =

X0 X1 X2 X3 X4 X526666666666666666666666664

1 1 1 0 1 0
1 1 1 0 1 0
1 1 1 0 1 0
1 1 0 1 0 1
1 1 0 1 0 1
1 1 0 1 0 1
1 1 0 1 0 1
1 1 �1 �1 �1 �1
1 1 �1 �1 �1 �1
1 �1 1 0 �1 0
1 �1 1 0 �1 0
1 �1 1 0 �1 0
1 �1 0 1 0 �1
1 �1 0 1 0 �1
1 �1 �1 �1 1 1

37777777777777777777777775

� =

26666664
�::
�1
�1
�2

(��)11
(��)12

37777775

Test for Interaction E¤ects
The test for interaction e¤ects becomes, for the above regression model, a test of

Ho : (��)11 = (��)12 = 0

Ha : (��)11 6= 0 or (��)12 6= 0

The reduced model in this case is given by:

Yijk = �:: +

A main e¤ectz }| {
�1Xijk1 +

B main e¤ectz }| {
�1Xijk2 + �2Xijk3 + "ijk:

That is, the reduced model contains variables X0, X1, X2, and X3. Therefore, the test for
interaction e¤ects is accomplished by using the model command:

�model 4 5 : 0 1 2 3

The F -statistics calculated for this model provide a test for presence of interaction between
factors A and B. The complete batch command �le is presented below.

Batch Command File for Example 5
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3dRegAna n
-rows 15 n
-cols 5 n
�xydata 1 1 0 1 0 y111+ tlrc n
�xydata 1 1 0 1 0 y112+ tlrc n
�xydata 1 1 0 1 0 y113+ tlrc n
�xydata 1 0 1 0 1 y121+ tlrc n
�xydata 1 0 1 0 1 y122+ tlrc n
�xydata 1 0 1 0 1 y123+ tlrc n
�xydata 1 0 1 0 1 y124+ tlrc n
�xydata 1 �1 �1 �1 �1 y131+ tlrc n
�xydata 1 �1 �1 �1 �1 y132+ tlrc n
�xydata �1 1 0 �1 0 y211+ tlrc n
�xydata �1 1 0 �1 0 y212+ tlrc n
�xydata �1 1 0 �1 0 y213+ tlrc n
�xydata �1 0 1 0 �1 y221+ tlrc n
�xydata �1 0 1 0 �1 y222+ tlrc n
�xydata �1 �1 �1 1 1 y231+ tlrc n
-diskspace n
-rmsmin 1.0 n
-fdisp 10 n
-model 4 5 : 0 1 2 3 n
-fcoef 4 ab11 n
-fcoef 5 ab12

The output �les are ab11+tlrc.HEAD (and .BRIK) and ab12+tlrc.HEAD (and .BRIK).
The set of voxels which light up when viewing these datasets using afni indicates which
voxels have a signi�cant interaction e¤ect (at the operator speci�ed signi�cance level).
Those voxels which do not show interaction e¤ect can then be tested for presence of factor
A and factor B main e¤ects, as described below.

Test for Factor A Main E¤ect
The test for factor A main e¤ect becomes, for the above regression model, a test of

Ho : �1 = 0

Ha : �1 6= 0

The reduced model in this case is given by:

Yijk = �:: + �1Xijk2 + �2Xijk3| {z }
B main e¤ect

+ (��)11Xijk4 + (��)12Xijk5| {z }
AB interaction

+ "ijk

That is, the reduced model contains variables X0, X2, X3, X4, and X5; the test is to
determine if variable X1 should be added to the model. Therefore, the model command to
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test for factor A main e¤ect is:

�model 1 : 0 2 3 4 5

The F -statistics calculated for this model provide a test for presence of factor A main
e¤ect. The batch command �le is presented below. Note that only the -model and -fcoef
commands are changed from the previous batch command �le.

Batch Command File for Example 5

3dRegAna n
...

same as above
...

-model 1 : 0 2 3 4 5 n
-fcoef 1 alpha1

The output �le is alpha1+tlrc.HEAD (and .BRIK). The set of voxels which light up when
viewing this datasets using afni indicates which voxels have a signi�cant factor A (smoking
vs. non-smoking) e¤ect (at the operator speci�ed signi�cance level).

Test for Factor B Main E¤ect
The test for factor B main e¤ect becomes, for the above regression model, a test of

Ho : �1 = �2 = 0

Ha : �1 6= 0 or �2 6= 0

The reduced model in this case is given by:

Yijk = �:: + �1Xijk1| {z }
A main e¤ect

+ (��)11Xijk4 + (��)12Xijk5| {z }
AB interaction

+ "ijk

That is, the reduced model contains variables X0, X1, X4, and X5; the test is to determine
if variables X2 and X3 should be added to the model. Therefore, the model command to
test for factor B main e¤ect is:

�model 2 3 : 0 1 4 5

The F -statistics calculated for this model provide a test for presence of factor B main
e¤ect. The batch command �le is presented below. Note that only the -model and -fcoef
commands are changed from the previous batch command �le.

Batch Command File for Example 5
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3dRegAna n
...

same as above
...

-model 2 3 : 0 1 4 5 n
-fcoef 2 beta1 n
-fcoef 3 beta2

The output �les are beta1+tlrc.HEAD (and .BRIK) and beta2+tlrc.HEAD (and .BRIK).
The set of voxels which light up when viewing this datasets using afni indicates which voxels
have a signi�cant factor B (intelligence) e¤ect (at the operator speci�ed signi�cance level).
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