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Abstract
Program 3dDeconvolve was developed to provide deconvolution analysis of FMRI

time series data. This has two primary applications: (1) estimation of the system
impulse response function, and (2) multiple linear regression analysis of time series
data. Given the input stimulus function(s), and the measured FMRI signal data,
program 3dDeconvolve �rst estimates the impulse response function(s); the impulse
response function(s) is then convolved with the stimulus time series to yield the
estimated response. Various statistics are calculated to indicate the �goodness� of
the �t.
The capability of �tting multiple stimulus (or reference) waveforms di¤erenti-

ates program 3dDeconvolve from the cross-correlation analysis programs (such as
AFNI �m and 3d�m). Another way that program 3dDeconvolve di¤ers from the
cross-correlation analysis programs is in the model for the output waveform. The
cross-correlation programs model the system response as a scaled version of a �xed
waveform (such as a square wave or a sine wave). Program 3dDeconvolve uses a sum
of scaled and time-delayed versions of the stimulus time series. The data itself de-
termines (within limits) the functional form of the estimated response. In fact, the
shape of the �tted waveform can vary from voxel to voxel. Program 3dDeconvolve
is described in Section 1.
Since program 3dDeconvolve was developed for use in a �batch�processing mode,

it should be used in conjunction with the interactive program plug_deconvolve. See
the documentation for program plug_deconvolve for a description of this interactive
version. The details are contained in Section 2.
Program RSFgen is a simple program for generating random stimulus functions.

This capability may be useful for experimental design, and the evaluation of experi-
mental designs. This program is described in Section 3.
Program 3dConvolve, as the name implies, performs the inverse operation of pro-

gram 3dDeconvolve. That is, program 3dConvolve convolves the input stimulus func-
tions with the given system impulse response functions, in order to predict the output
measured response. This program is described in Section 4.

1



Contents

1 Program 3dDeconvolve 4
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Impulse Response Function . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Convolution Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 F-test for Signi�cance of the Regression . . . . . . . . . . . . . . . . 10
1.2.6 Coe¢ cient of Multiple Determination . . . . . . . . . . . . . . . . . 12
1.2.7 t-test for Signi�cance of Individual Parameters . . . . . . . . . . . . 12
1.2.8 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.9 Partial F-statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.10 Coe¢ cient of Partial Determination . . . . . . . . . . . . . . . . . . 15

1.2.11 General Linear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.12 Concatenation of Runs . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.13 Censoring of Individual Time Points . . . . . . . . . . . . . . . . . 18
1.2.14 Time Related Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.1 Evaluation of the Experimental Design . . . . . . . . . . . . . . . . 33
1.4.2 Estimation of the System Impulse Response Function . . . . . . . . 36
1.4.3 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 43
1.4.4 General Linear Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.4.5 Multiple Linear Regression Approach to ANOVA . . . . . . . . . . 56
1.4.6 Concatenation of Runs . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.4.7 Censoring of Individual Time Points . . . . . . . . . . . . . . . . . 64
1.4.8 Sub-TR Input Stimulus Functions . . . . . . . . . . . . . . . . . . . 66

2 Program plug_deconvolve 71
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Program RSFgen 76
3.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 Event Related Designs . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Random Block Designs . . . . . . . . . . . . . . . . . . . . . . . . . 80

2



3.3.3 Stimulus Label Permutation Designs . . . . . . . . . . . . . . . . . 82
3.3.4 Markov Chain Designs . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Evaluation of the Experimental Design (continued) . . . . . . . . . . . . . 88
3.4.1 Parameter Estimation Accuracy . . . . . . . . . . . . . . . . . . . . 89
3.4.2 Statistical Power Calculations . . . . . . . . . . . . . . . . . . . . . 93

4 Program 3dConvolve 97
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 References 109

3



1 Program 3dDeconvolve

1.1 Purpose

Program 3dDeconvolve was developed to provide deconvolution analysis of FMRI time
series data. This has two primary applications: (1) estimation of the system impulse
response function, and (2) multiple linear regression analysis of time series data. Given
the input stimulus function(s), and the measured FMRI signal data, program 3dDeconvolve
�rst estimates the impulse response function(s); the impulse response function(s) is then
convolved with the stimulus time series to yield the estimated response. Various statistics
are calculated to indicate the �goodness�of the �t.
The capability of �tting multiple stimulus (or reference) waveforms di¤erentiates pro-

gram 3dDeconvolve from the cross-correlation analysis programs (such as AFNI �m and
3d�m). Another way that program 3dDeconvolve di¤ers from the cross-correlation analysis
programs is in the model for the output waveform. The cross-correlation programs model
the system response as a scaled version of a �xed waveform (such as a square wave or a
sine wave). Program 3dDeconvolve uses a sum of scaled and time-delayed versions of the
stimulus time series. The data itself determines (within limits) the functional form of the
estimated response. In fact, the shape of the �tted waveform can vary from voxel to voxel.
The input to program 3dDeconvolve consists of an AFNI 3d+time data set, along with

one or more input stimulus time series. Output consists of the estimated system impulse
response function, along with the statistical signi�cance of the �t of this impulse response
function to the original FMRI data, for each voxel in the dataset. In addition to the
regression coe¢ cients, the program calculates the F-statistic and R2 for signi�cance of
the multiple regression, as well as t-statistics for each of the impulse response function
parameters. In the case of multiple input stimuli, the program calculates the partial F-
statistics and partial R2 for signi�cance of each individual stimulus.
The user has the option of performing one or more general linear tests on the model

parameters; e.g., a within-run test for di¤erences in response to di¤erent stimuli. The
general linear test is de�ned by the user in the form of a matrix, whose rows represent the
multiple linear constraints on the model parameters. The program calculates the speci�ed
linear combinations, as well as the F-statistic for signi�cance of the general linear test.
An alternative input option is the -input1D command, which can be used for performing

the deconvolution analysis on a single measured FMRI time series. Also, see the -nodata
option, which allows the user to evaluate an experimental design prior to collecting data.
Speci�cally, the experimental design can be tested for multicollinearity. Also, the relative
accuracies of di¤erent hypothetical experimental designs can be evaluated.
Other output options include -�tts, which writes the full model time series �t for each

voxel to a 3d+time dataset. Also, see option -errts, which writes the residual errors
to a 3d+time dataset. Analysis of the residuals may indicate where the full model is
inadequate, or needs to be improved. Also, this option can be used to detrend data by
removing polynomial functions, linear combinations of stimulus functions, etc.
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1.2 Theory

1.2.1 Impulse Response Function

The paradigm for almost all FMRI experiments consists of measuring the hemodynamic
consequences of the neural response to a speci�c time-varying input stimulus condition.
Letting f(t) represent the time course of the stimulus condition, and y(t) represent the
measured FMRI signal for a particular voxel, the experiment can be represented diagram-
matically by:

f(t) �! System �! y(t)

The system itself may be quite complex; in some cases it may be useful to think of the
system as decomposed into simpler subsystems:

f(t) �! Subsystem 1 �! Subsystem 2 �! Subsystem 3 �! y(t)

where the output from one subsystem is the input to the next subsystem. For example,
suppose that f(t) represents a drug injection. Then subsystem 1 could represent the e¤ect
of the circulatory system upon drug concentration in the blood. The neuronal response
to drug concentration is then represented by subsystem 2. The e¤ect of neuron activation
upon blood oxygen level, and hence upon the FMRI signal, is represented by subsystem 3.
Each of these subsystems could be further decomposed into sub-subsystems, etc.
We cannot observe directly the internal workings of the system. However, we are able

to observe the response of the system to speci�c inputs. Under certain conditions, this is
su¢ cient to characterize the response of the system to an arbitrary input.
In the following, we will make certain assumptions about the nature of the system.

First, we will assume that the system is linear. That is, if input f(t) produces response
y(t),

f(t) �! System �! y(t)

and input g(t) produces response z(t),

g(t) �! System �! z(t)

then for arbitrary constants a and b, we have:

af(t) + bg(t) �! System �! ay(t) + bz(t)

In other words, the response to a linear combination of the inputs is the same linear
combination of the responses to the respective inputs.
Another assumption that we will make about the nature of the system is that it is time

invariant. That is, if the input is delayed by some time t0, then the response is simply
delayed by t0:

f(t) �! System �! y(t)

f(t� t0) �! System �! y(t� t0)

If the system under consideration has both these properties, then we say that the system
is linear time invariant.
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The response of a linear time invariant system to an arbitrary input can be easily
determined from its response to an impulse function (or Dirac delta function). An impulse
function, �(t), is a theoretical construct, having in�nite height and zero width,

�(t) =

�
+1; t = 0
0; t 6= 0

such that the area under its curve is unity:

1 =

Z +"

�"
�(�)d� ; " > 0:

The impulse function is de�ned mathematically by the following integral equation:

f(t) =

Z +1

�1
f(�)�(t� �)d�

where it is assumed that f(t) is continuous at t = � .
Now, consider using the impulse function as the input to a system. Of course, such a

function cannot be physically applied to a system. But we can hypothesize that the system
output will be a function h(t), called the impulse response function.

�(t) �! System �! h(t)

In the following, we will use the operator T to represent the mapping between the input
to the system, and the output response of the system, e.g.,

h(t) = T f�(t)g

1.2.2 Convolution Integral

(This section is based upon Ref. [1]). Since we seldom (actually, never) apply an impulse
function to a system, why bother trying to estimate the impulse response function? The
answer is that the impulse response function h(t) can be used to describe the system
response to an arbitrary input f(t). Let y(t) be the system output corresponding to input
f(t):

y(t) = T ff(t)g
Substituting the de�ning property for the impulse function, we have:

y(t) = T

�Z +1

�1
f(�)�(t� �)d�

�
Replacing the integral by summation:

y(t) = T

(
lim
�t!0

+1X
n=�1

f(n�t)�(t� n�t)�t
)
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Since the system is linear, the operator T can be moved inside the summation:

y(t) = lim
�t!0

+1X
n=�1

f(n�t)T f�(t� n�t)g�t

Using the de�nition of the impulse response function, and since the system is time invariant,
we have:

y(t) = lim
�t!0

+1X
n=�1

f(n�t)h(t� n�t)�t

Finally, replacing summation by integration, we get:

y(t) =

Z +1

�1
f(�)h(t� �)d�

This is the convolution integral, and is denoted:Z +1

�1
f(�)h(t� �)d� � f(t)
 h(t)

If h(t) is the impulse response for a system which is composed of a cascade of subsystems,
as illustrated above, then the system impulse response is obtained by convolving the impulse
responses of the subsystems, i.e.,

h(t) = h1(t)
 h2(t)
 h3(t)

so the output can be represented by:

y(t) = f(t)
 h1(t)
 h2(t)
 h3(t)

Physical systems are causal, i.e., the output at time t0 is determined by the inputs at
times t � t0, and not by future inputs (i.e., inputs at times t > t0). Therefore, for causal
systems, h(t) = 0 for t < 0; hence, the convolution integral can be written:

y(t) =

Z t

�1
f(�)h(t� �)d�

If we further assume that the input is zero prior to time t = 0, i.e., f(t) = 0 for t < 0, then
the convolution integral becomes:

y(t) =

Z t

0

f(�)h(t� �)d�

1.2.3 Numerical Solution

The output is measured at discrete times. In the following, we will approximate the con-
volution integral by summation over discrete time:

y(n�t) =

nX
m=0

f(m�t)h(n�t�m�t)�t:
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We will let �t � 1, and switch to the more convenient subscript notation:

yn =

nX
m=0

fmhn�m

=
nX

m=0

fn�mhm:

Usually it is the case that the impulse response function decreases to zero with increasing
time. We will assume that the impulse response function is essentially zero for time lags
greater than p. In this case, the above summation becomes:

yn =

pX
m=0

fn�mhm; n � p:

Note that �lag� refers to times into the past; that is, hm represents the in�uence of the
stimulus at time point n�m on the data at time point n.
Of course, the measurement process is not perfect. If we assume that the measure-

ments include additive, uncorrelated, Gaussian noise, then we get the sequence of random
variables:

Zn =

pX
m=0

hmfn�m + "n; n � p

where "n
iid� N(0; �2). For FMRI data, it is often the case that the measurement can be

modeled by a constant plus linear trend plus noise, in addition to the signal:

Zn = yn + �0 + �1n+ "n

= �0 + �1n+ h0fn + h1fn�1 � � �+ hpfn�p + "n,
for n = p; p+ 1; : : : ; N � 1:

Using the matrix notation

Z =

26664
Zp
Zp+1
...

ZN�1

37775 ; X =

26664
1 p fp � � � f0
1 p+ 1 fp+1 � � � f1
...

...
...

...
...

1 N � 1 fN�1 � � � fN�p�1

37775 ; � =

2666664
�0
�1
h0
...
hp

3777775 ; " =

26664
"p
"p+1
...

"N�1

37775 :

the above equation can be written:

Z = X� + ":

The linear regression problem is then to �nd an estimate b of the vector of unknown
parameters

b = �̂;
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which provides a good ��t�to the data. In this �t to the model, the time series data is
then estimated by:

Ẑ = Xb

The usual criterion for estimating b is to minimize the error sum of squares between the
�t and the data:

SSE = Q(b) =

N�1X
i=0

�
Zi � Ẑi

�2
=

�
Z� Ẑ

�t �
Z� Ẑ

�
It is easy to show that

b =
�
XtX

��1
XtZ

is the least squares estimate of �.
Since b contains the estimated impulse response parameters,

b =

2666664
�̂0
�̂1bh0
...bhp

3777775 ;

we see that solving for the estimated impulse response function reduces to simple linear
algebra.
Program 3dDeconvolve calculates the estimated impulse response function at each voxel

location, and appends these values as sub-bricks of an AFNI �bucket�dataset. Also, if
requested by the user, program 3dDeconvolve saves the estimated impulse response function
for each voxel into an AFNI 3d+time dataset. In this case, the dataset time series has
length p+ 1. See the Examples in Section 1.4.2.

1.2.4 Multicollinearity

Note that the above formula for calculating the estimated parameter vector b requires
calculation of the matrix inverse: (XtX)

�1. This might not be possible, due to the struc-
ture of the X matrix. This problem is referred to as the multicollinearity problem. The
multicollinearity problem is NOT a limitation of program 3dDeconvolve; rather, it is a
mathematical limitation.
Consider this example: Let f(k) = time series for a single stimulus function. Suppose

that f(k) is periodic; say that f(k) is �on�for one TR, and �o¤�for 4 TR. Since f(k) has
period 5 TR, it is obvious that we cannot estimate the impulse response function (IRF) for
time lags 0 through 5. This is because the input stimulus, with a time lag of 0, is identical
to the input stimulus with a time lag of 5, f(k) � f(k� 5). Therefore, it is not possible to
determine the individual contributions of these factors in explaining the output.
(An analogy is this: Suppose that a researcher is doing multiple regression analysis.

The dependent variable is subject�s weight. There are 2 independent variables: subject�s
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height, measured in feet, and subject�s height, measured in meters. Since the independent
variables are perfectly correlated, the problem cannot be solved. More accurately, there
are in�nitely many solutions.)
Multicollinearity can arise more subtly. Suppose, in the above example, that we reduce

the maximum time lag for the estimated IRF from 5 TR to 4 TR. Then,

f(k) = f 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 : : :g
f(k � 1) = f 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 : : :g
f(k � 2) = f 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 : : :g
f(k � 3) = f 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 : : :g
f(k � 4) = f 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 : : :g

Sum = f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : : :g

i.e.,
f(k) + f(k � 1) + f(k � 2) + f(k � 3) + f(k � 4) � 1:

We see that the sum of f at time lags 0, 1, 2, 3, and 4 is equal to a constant. This means
that there is ambiguity as to the source of an observed response: is it due to a constant
o¤set, or is it due to the combined response to stimulus f at time lags 0 through 4?
As described above, time delayed versions of the input stimulus function become columns

of the X matrix. For the above example, these columns are linearly dependent, and thus
the problem is not solvable. Mathematically, the XtX matrix is not invertible.
Some general comments: Periodicity of the stimulus function is often responsible for

multicollinearity. If the data has already been collected, the only solution is to reduce the
length of the estimated IRF, until multicollinearity is no longer a problem. However, if the
experiment is in the design phase, it should be possible to avoid multicollinearity from the
outset. When practical, randomization of the stimulus function is recommended. Unless
the �random�stimulus function is quite unusual, this should help avoid multicollinearity.
This has the additional bene�t of reducing the likelihood of confounding of the stimulus
function with natural biological processes (e.g., respiration). Also, an unpredictable stim-
ulus function helps to avoid �anticipatory�e¤ects. The sample program RSFgen may be
used to generate random stimulus functions (see Section 3).
Therefore, before conducting an experiment, it is recommended that you �rst check

whether the columns of the experimental design matrix are linearly dependent (or almost
linearly dependent). This can be done using the -nodata option, described in Section 1.3.
Also, see the Examples in Section 1.4.1.

1.2.5 F-test for Signi�cance of the Regression

Determining whether the time series for a particular voxel corresponds to a given signal
waveform can be expressed in terms of a statistical hypothesis test. The null hypothesis is:

Ho : time series is �noise�

and the alternative hypothesis is:

Ha : time series is �signal + noise�.
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Suppose that �noise� is modeled by a constant plus linear trend, plus independent
Gaussian random variates. And suppose the �signal�waveform is represented by the con-
volution of the impulse response function h(t) with the input stimulus function f(t). The
observed �signal�is then represented by the sum of the signal and the noise. The hypothe-
ses can then be expressed as:

Ho : Zn = 
0 + 
1n+ "n

Ha : Zn = �0 + �1n+ h0fn + h1fn�1 + � � �+ hpfn�p + "n
Here, the alternative hypothesis includes the noise model in addition to the �pure�signal
waveform. Note that we explicitly use di¤erent symbols for the coe¢ cients of the same
terms in the noise model as compared with the signal+noise model, i.e., �0 and 
0, �1 and

1. This is to emphasize the fact that it is not (in general) true that �0 = 
0 and �1 = 
1.
A test of the null hypothesis is made by �rst determining the parameters which yield the

least squares �t for the noise model (also called the �baseline�model) and the parameters
which yield the least squares �t for the signal plus noise model (also called the �full�model).
Let SSE(B) be the residual sum of squares obtained from �tting the baseline model:

SSE(B) =
X
n

(Zn � (
̂0 + 
̂1n))
2

and let SSE(F ) be the residual sum of squares obtained from �tting the full model:

SSE(F ) =
X
n

�
Zn �

�b�0 + b�1n+ bh0fn + bh1fn�1 + � � �+ bhpfn�p��2
We have reason to reject the null hypothesis if the error sum of squares from �tting the
full model (SSE(F )) is much less than the error sum of squares from �tting the baseline
model (SSE(B)). However, if SSE(F ) is only slightly smaller than SSE(B), then we do
not have reason to reject the null hypothesis. Consider the test statistic F � :

F � =
MS(Regression)
MS(Error)

=

SSE(B)� SSE(F )
dfB � dfF
SSE(F )

dfF

where dfB is the number of degrees of freedom for the baseline model, and dfF is the
number of degrees of freedom for the full model. Speci�cally, we have (assuming that the
noise model contains the two parameters for constant plus linear trend):

dfB = N
0 � 2;

dfF = N
0 � 2� (p+ 1);

so dfB � dfF = p+ 1:

where N 0 = N � p is the number of usable data points.
By the above reasoning, we see that a large value for F � indicates that signal is present,

whereas a small value for F � suggests that only noise is present. The statistic F � has the
F (dfB � dfF ; dfF ) distribution under the null hypothesis (Ref. [2]).
Program 3dDeconvolve calculates the F � statistic for each voxel, and (if the -fout option

is used) appends these values as one of the sub-bricks of an AFNI �bucket�dataset.
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1.2.6 Coe¢ cient of Multiple Determination

The coe¢ cient of multiple determination, R2, can be used as an indicator for how well the
full model �ts the data. We de�ne R2:

R2 � 1� SSE(F )
SSE(B)

where SSE(F ) and SSE(B) are de�ned above. Roughly speaking, R2 is the proportion
of the variation in the data (about the baseline) that is explained by the full regression
model. Note that, for every voxel, 0 � R2 � 1. (R2 is a generalization of the square of the
correlation coe¢ cient computed in the �m programs).
Program 3dDeconvolve calculates R2 for each voxel, and (if the -rout option is used)

appends these values as one of the sub-bricks of an AFNI �bucket�dataset.

1.2.7 t-test for Signi�cance of Individual Parameters

When comparing di¤erent impulse response functions, it is useful to know the signi�cance
of the individual terms that constitute the impulse response function. This may help in de-
ciding whether di¤erent impulse response functions are truly di¤erent, or merely re�ect the
in�uence of measurement noise. Therefore, program 3dDeconvolve provides the t-statistics
for the individual terms in the impulse response function.
For the linear regression model, the variance-covariance matrix for the regression coef-

�cients is given by:
s2(b) =MSE �

�
XtX

��1
Then, for large sample size N , de�ne the statistic t� :

t�[hk] =
hk
s(hk)

where s(hk) is the square root of the corresponding diagonal element of the s2(b) matrix.
Under the null hypothesis, t� has the t(N 0� p� 3) = t(N � 2p� 3) distribution (Ref. [2]).
Program 3dDeconvolve calculates the t� statistic for each point in the impulse response

function, at each voxel location, and (if the -tout option is used) appends these values
as sub-bricks of an AFNI �bucket� dataset for each parameter. Also, if requested by
the user (see option -sresp), program 3dDeconvolve saves the array of standard deviations
fs(hk); k = 0; :::; pg for each voxel into an AFNI 3d+time dataset. In this case, the dataset
time series has length p+ 1.
As mentioned above, the sample standard deviation s(hk) of the estimate for parameter

hk is obtained as the square root of the corresponding diagonal element of the s2(b) matrix.
The s2(b) matrix is calculated by multiplying the scalar MSE (the mean square error,
which estimates the measurement error variance) by the matrix (XtX)

�1. Now, assuming
that the measurement error variance is a constant (for a given voxel), we see that s2(b) is
a function of X alone. In other words, the accuracy of the estimate for parameter hk is
determined by the structure of the experimental design matrixX. But the structure ofX is
determined by the input stimulus function(s) f(t). Therefore, we see that the experimental
design directly in�uences the accuracy of the parameter estimates.
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The signi�cance of this is: we can numerically evaluate the relative accuracy of di¤erent
hypothetical experimental designs prior to collecting data. Knowing the input stimulus
function(s) f(t), the matrix X can be assembled, and (XtX)

�1 computed. Setting the
unknown scalar MSE to 1, the normalized standard deviation s(hk) can be calculated,
as described above. This procedure can be repeated for di¤erent hypothetical stimulus
functions, thus allowing a comparison of alternative experimental designs prior to data
collection. See the Examples in Section 1.4.1.

1.2.8 Multiple Linear Regression

Thus far, we have considered only a single input stimulus function. However, the extension
to multiple input stimuli is straightforward. Suppose that the system response y(t) is a
linear combination of the responses to input stimuli u(t), v(t), and w(t):

y(t) = 
uu(t) + 
vv(t) + 
ww(t)

Then the measured response, including linear drift and additive noise, and with the mea-
surements occurring at discrete times n, is given by:

Zn = �0 + �1n+ 
uun + 
vvn + 
wwn + "n

where "(t) iid� N(0; �2). This assumes zero time delay between the input stimulus and
the measured response. However, there may be some time delay, and the amount of time
delay may be di¤erent for di¤erent voxels. We will use the same approach as was used in
estimating the impulse response function, i.e., the output will be modeled by the sum of
lagged versions of the input functions. For example, if we consider time lags of 0, 1, and 2
time units for each of the input stimuli, then the measured response can be modeled thus:

Zn = �0 + �1n+ 
u;0un + 
u;1un�1 + 
u;2un�2

+
v;0vn + 
v;1vn�1 + 
v;2vn�2

+
w;0wn + 
w;1wn�1 + 
w;2wn�2 + "n

This multiple linear regression problem can be written in matrix form as:

Z = X� + ":

where

Z =

26664
Z2
Z3
...
ZN

37775 ; X =

26664
1 2 u2 u1 u0 v2 v1 v0 w2 w1 w0
1 3 u3 u2 u1 v3 v2 v1 w3 w2 w1
...

...
...

...
...

...
...

...
...

...
...

1 N uN uN�1 uN�2 vN vN�1 vN�2 wN wN�1 wN�2

37775 ;
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� =

266666666666666664

�0
�1

u;0

u;1

u;2

v;0

v;1

v;2

w;0

w;1

w;2

377777777777777775
; " =

26664
"2
"3
...
"N

37775 :

Calculation of the least squares estimate for the vector of regression coe¢ cients, the F-test
for signi�cance of the regression, and the t-tests for signi�cance of the individual parameters,
proceed just as described above for the impulse response function. See the Examples in
Section 1.4.3.

1.2.9 Partial F-statistics

It will usually be the case that, when multiple input stimuli are being studied, the investi-
gator will wish to determine the signi�cance of each individual stimulus in explaining the
variation in the data. The F-statistic for the regression, described above, can only be used
for testing if all of the stimuli combined are statistically signi�cant, but does not indicate
whether an individual stimulus is signi�cant. The t-test, described above, tests for the sig-
ni�cance of individual parameters. If several time lags are used for modeling the response
to an individual stimulus, then more than one parameter is associated with that stimulus;
therefore, the t-test does not indicate the signi�cance of that stimulus.
In order to test for the signi�cance of an individual stimulus, the partial F-statistic is

calculated:

partial F � =

SSE(R)� SSE(F )
dfR � dfF
SSE(F )

dfF

Here, SSE(F ) is the error sum of squares from �tting the full model (i.e., the model with
all parameters included), and SSE(R) is the error sum of squares after �tting the reduced
model (i.e., the same model except that those parameters corresponding to the stimulus
in question are excluded). For example, suppose we wish to calculate the partial F � for
the input stimulus v(t). Then the error sum of squares for the full model and the reduced
model are calculated as follows:

SSE(F ) = SSE(�0; �1; 
u;0; 
u;1; 
u;2; 
v;0; 
v;1; 
v;2; 
w;0; 
w;1; 
w;2)

SSE(R) = SSE(�0; �1; 
u;0; 
u;1; 
u;2; 
w;0; 
w;1; 
w;2)

In this particular case, letting N 0 � the number of usable data points, we have: dfF =
N 0 � 11 and dfR = N 0 � 8, hence dfR � dfF = 3 (which is the number of time lags, or
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parameters, used for modeling the response to input stimulus v(t)). The statistic F � has
the F (dfR � dfF ; dfF ) distribution under the null hypothesis (Ref. [2]).
Program 3dDeconvolve calculates the partial F � statistic for each input stimulus for

each voxel, and (if the -fout option is used) appends these values as sub-bricks of an AFNI
�bucket�dataset.

1.2.10 Coe¢ cient of Partial Determination

Recall that the coe¢ cient of multiple determination, R2, indicates how well the full model
�ts the data. The coe¢ cient of partial determination, or partial R2, measures the marginal
contribution of a single stimulus function, or of a single GLT (see General Linear Test,
described below). We therefore de�ne the partial R2 thus:

partial R2 � 1� SSE(F )
SSE(R)

where SSE(F ) is the error sum of squares from �tting the full model (i.e., the model with
all parameters included), and SSE(R) is the error sum of squares after �tting the reduced
model (i.e., the same model except that those parameters corresponding to the stimulus in
question are excluded). Or, for a GLT, SSE(R) represents the error sum of squares after
�tting the model, subject to the multiple linear constraints imposed on the parameters by
the GLT.
Roughly speaking, the partial R2 is the proportional reduction of the variation in the

data that is explained by adding the stimulus function, given that all other stimulus func-
tions are already included in the model. Note that, for every voxel, 0 � partial R2 � 1.
Program 3dDeconvolve calculates the partial R2 for each stimulus function and for each

general linear test, for every voxel, and (if the -rout option is used) appends these values
as sub-bricks of an AFNI �bucket�dataset.

1.2.11 General Linear Test

As a generalization of the above partial F -test, we will consider the test of a null hypothesis
which involves s linear constraints on the model parameters.

Ho : C� = 0

where C is an s�P matrix, and P = total number of parameters in the full model. It can
be shown (see Ref. [2]) that the least squares estimate for � which satis�es the above set
of linear constraints is given by:

bR = bF �
�
XtX

��1
Ct
�
C
�
XtX

��1
Ct
��1

CbF

where bF = least squares estimate of � under the full model, and bR = least squares
estimate of � under the reduced model. The error sum of squares for this reduced model
is then:

SSE(R) = (Z�XbR)
t(Z�XbR)
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Finally, the test statistic for the general linear test (GLT) is:

F � =

SSE(R)� SSE(F )
dfR � dfF
SSE(F )

dfF

which has the F (dfR � dfF ; dfF ) distribution under the null hypothesis (Ref. [2]), where
dfR � dfF = s.
Writing the s� P matrix C in terms of row vectors:

C =

26664
ct1
ct2
...
cts

37775
we can estimate C� by:

CbF =

26664
ct1bF
ct2bF
...

ctsbF

37775 �
26664
L1
L2
...
Ls

37775
where L1, L2, : : :, Ls are the s linear combinations of the parameter vector bF speci�ed by
the GLT.
Program 3dDeconvolve calculates the s linear combinations L1, L2, : : :, Ls, and the GLT

F � statistic, for each operator speci�ed GLT, and for each voxel, and appends these values
as sub-bricks of an AFNI �bucket�dataset. (See the Examples in Section 1.4.4.)

1.2.12 Concatenation of Runs

Many users choose to concatenate runs prior to time series analysis. This is a very del-
icate operation, due to the implicit time dependence across runs. That is, consecutive
image volumes are assumed to have been acquired at consecutive points in time; but for
concatenated runs, this is not the case. In order to facilitate analysis of concatenated runs,
program 3dDeconvolve has been modi�ed to allow the user to indicate the volume indices,
of a concatenated dataset, at which the di¤erent runs begin. Internally, the program makes
allowance for the fact that an input stimulus from one run should not e¤ect the measured
response for the following run.
Another change that is required for processing of concatenated runs is the addition

of separate baseline parameters for each run. That is, if the baseline is modeled by a
constant plus linear trend, then a separate constant and slope are estimated for each run.
This would be necessary even if program 3dTcat had been used to remove the linear trend
from each run prior to concatenation. The reason is that the stimulus functions are seldom
orthogonal to a constant plus linear trend. Hence, removing the linear trends, in isolation,
does not yield the same result as the complete least squares solution.
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As a consequence, if the baseline model is to represent a constant o¤set plus linear trend
(i.e., 2 parameters) for each run, and if the concatenated dataset contains r runs, then the
baseline model contains a total of 2r parameters.
Suppose that the input dataset is a concatenation of 3 runs; each run has length N ; the

single input stimulus function f is present at time lags 0 through p. Since the individual
runs are modeled by:

Zn = �1;0 + �1;1n+ h0fn + h1fn�1 � � �+ hpfn�p + "n, n = p; p+ 1; : : : ; N � 1, for Run #1
Zn = �2;0 + �2;1n+ h0fn + h1fn�1 � � �+ hpfn�p + "n, n = p; p+ 1; : : : ; N � 1, for Run #2
Zn = �3;0 + �3;1n+ h0fn + h1fn�1 � � �+ hpfn�p + "n, n = p; p+ 1; : : : ; N � 1, for Run #3

the single concatenated run can be modeled by:

Zn =
�
�1;0 + �1;1n

�
X1 +

�
�2;0 + �2;1(n�N)

�
X2 +

�
�3;0 + �3;1(n� 2N)

�
X3

+h0fn + h1fn�1 � � �+ hpfn�p + "n,
n = p; p+ 1; : : : ; N � 1,N + p;N + p+ 1; : : : ; 2N � 1,2N + p; 2N + p+ 1; : : : ; 3N � 1,

where

X1 =

�
1 if time point is from Run #1
0 otherwise

X2 =

�
1 if time point is from Run #2
0 otherwise

X3 =

�
1 if time point is from Run #3
0 otherwise

In this notation, �i;j is the coe¢ cient of t
j for the ith run.

Therefore, the matrix representation of the full model is:

Z = X� + ":

where

Z =

2666666666666666666664

Zp
Zp+1
...

ZN�1
ZN+p
ZN+p+1
...

Z2N�1
Z2N+p
Z2N+p+1

...
Z3N�1

3777777777777777777775

; X =

26666666666666666666664

1 p 0 0 0 0 fp � � � f0
1 p+ 1 0 0 0 0 fp+1 � � � f1
...

...
...

...
...

...
...

...
...

1 N � 1 0 0 0 0 fN�1 � � � fN�p�1
0 0 1 p 0 0 fN+p � � � fN
0 0 1 p+ 1 0 0 fN+p+1 � � � fN+1
...

...
...

...
...

...
...

...
...

0 0 1 N � 1 0 0 f2N�1 � � � f2N�p�1
0 0 0 0 1 p f2N+p � � � f2N

0 0 0 0 1 p+ 1 f2N+p+1
... f2N+1

...
...

...
...

...
...

...
...

...
0 0 0 0 1 N � 1 f3N�1 � � � f3N�p�1

37777777777777777777775

;

�T =
�
�1;0 �1;1 �2;0 �2;1 �3;0 �3;1 h0 � � � hp

�
:
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Implementation: Program 3dDeconvolve allows the user to enter the name of a �le
which simply contains a short (column) listing of the volume indices for the starting point
of each concatenated run. All other details are handled internally. (See the description
of the -concat option in Section 1.3, and the Examples in Section 1.4.6.)

1.2.13 Censoring of Individual Time Points

Occasionally, a user may wish to remove one or more time points from the analysis (e.g.,
wild points due to large measurement noise). In AFNI �m / 3d�m+, this is accomplished
by placing �99999� at each time point in the ideal time series that is to be excluded.
A similar approach would not work for program 3dDeconvolve, due to the time-lagged
dependence on the stimulus functions. Therefore, a separate �censor��le can now be used
to indicate which data points are to be excluded from the analysis, without e¤ecting the
temporal representation of the input stim functions. The censor �le consists of a column
of all 1�s, except for 0�s at those time points to be censored. (See the description of the
-censor option in Section 1.3, and the Examples in Section 1.4.7)

1.2.14 Time Related Issues

As described in Section 1.2.3, for the deconvolution analysis, the time axis is quantized in
steps of TR. This is reasonable, since the measured data is acquired at intervals of 1 TR for
each voxel. However, di¤erent slices in the imaging volume are usually acquired at di¤erent
relative times. In order to accurately compare IRF�s across slices, either graphically, or
by the use of program 3dStatClust, it is necessary to take account of the di¤erent slice
acquisition times.
Consider again the discrete time convolution equation:

y(n�t) =
nX

m=0

f(m�t)h(n�t�m�t)�t:

This equation relates the output y at the current time n�t to the input f at current and
past timesm�t through the impulse response function h. Now, suppose that y is measured
not at the times n�t (n = 0; 1; 2; :::), but at n�t+r�t, where r is a constant (�1

2
� r � 1

2
).

In this case, the above equation becomes:

y(n�t+ r�t) =

nX
m=0

f(m�t)h(n�t�m�t+ r�t)�t:

Letting k � n�m, the estimated impulse response function coe¢ cients eh are actually:
eh(k�t) = h(k�t+ r�t):

Hence, the desired (non-time-shifted) h coe¢ cients are obtained by:

h(k�t) = eh(k�t� r�t):
18



Therefore, if we take a slice acquired at time o¤set 1
2
TR as the zero reference point,

then for slices acquired earlier (i.e., �1
2
� r < 0), the estimated IRF should be shifted to

the left by r � TR; whereas for slices acquired later (i.e., 0 � r < 1
2
), the estimated IRF

should be shifted to the right by r � TR.
The -tshift option has been added to program 3dDeconvolve, in order to compensate for

relative di¤erences in slice acquisition times. The program uses cubic spline interpolation
to time shift (interpolate) the estimated impulse response functions. The new time scale
will be shifted relative to the old time scale by an amount depending on the relative slice
acquisition times. Note that this e¤ects only the 3d+time output dataset generated by
using the -iresp option. In particular, the -tshift option does not change the estimated
multiple regression coe¢ cients and corresponding statistics stored in the bucket dataset.
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1.3 Usage

1.3.1 Syntax

The syntax for execution of program 3dDeconvolve is as follows:

3dDeconvolve [-input fname j -input1D dname j -nodata [NT [TR]] ]
[-nosvd ] [-nocond ] [-xjpeg �lename] [-mask mname j -automask]
[-censor cname] [-concat rname] [-n�rst fnum] [-nlast lnum]
[-polort pnum] [-dmbase j -nodmbase] [�legendre j nolegendre]
[-rmsmin r] [-xout] [-fdisp fval] [-progress n] [-basis_normall bnvalue]
-num_stimts num [-stim_�le k sname j -stim_times k tname rtype]
[-stim_�le k �sname[j] �] [-stim_base k] [-slice_base k sanme]
[-stim_label k slabel] [-stim_minlag k m] [-stim_maxlag k n]
[-stim_nptr k p]-num_glt g [-glt s gltname] [-glt_label k glabel ]
[-gltsym s gltname] [-iresp k ipre�x] [-tshift] [-sresp k spre�x]
[-�tts fpre�x] [-errts epre�x][-fout] [-rout] [-tout] [-vout]
[-nobout] [-nocout] [-full_�rst] [-xsave ] [-noxsave] [-jobs J ]
[-quiet] [-xrestore �lename.xsave] [-bucket bpre�x] [-cbucket cpre�x ]

The di¤erent command line options are explained below.

1.3.2 Options

-input fname
The -input command speci�es that fname is the �lename of the AFNI 3d+time data

set to be used as input for the deconvolution program. The -input command is mandatory
except when either the -nodata command or the -input1D command is used in its place. It
allows input of multiple 3D+time datasets, as in

-input fred+orig ethel+orig lucy+orig ricky+orig

Each command line argument after -input that does NOT start with a �-�character is
taken to be a new dataset. These datasets will be catenated together in time (internally) to
form one big dataset. Regressors are still required to have the full length of the catenated
imaging runs; the program will NOT catenate �les for the -input1D, -stim_�le, or -censor
options.If this capability is used, the -concat option will be ignored, and the program will
use time breakpoints corresponding to the start of each dataset from the command line.

-input1D dname
The -input1D command speci�es that dname is the �lename of the AFNI .1D time series

data �le to be used as input for the deconvolution program. That is, instead of a 3d+time
dataset, the input consists of only a single FMRI time series as the measured data. This
option allows analysis of, e.g., individual time series obtained from selected voxels, or time
series obtained as the average over an ROI.
If this option is used, most output is directed to the screen. Commands which would

otherwise generate 3d+time datasets, such as -iresp, -sresp, -�tts, and -errts, will instead

20



create individual .1D time series output �les. With -input1D, the -bucket command is
ignored.

-nodata [NT [TR]] The optional -nodata command allows the user to evaluate the ex-
perimental design without entering measurement data. This replaces the -input command.
The user must specify the input stimulus functions. Also, the length of the 3d+time data
set must be speci�ed using the -nlast command. When the -nodata option is used, all
output will go to the screen.
The -nodata option works with the -stim_times option. However, since -stim_times

needs to know the number of time points (NT) and the time spacing (TR), these values
have to be provided after the -nodata option with -stim_times. For example: -nodata 114
2.5 indicates 114 points in time with a spacing of 2.5 s.
As explained in Section 1.2.3, the input stimulus functions are used to set up the

experimental design matrix X. The program will then attempt to calculate the (XtX)
�1

matrix. If the program is unable to calculate the inverse matrix, the program prints the
following error message:

3dDeconvolve Error: Improper X matrix (cannot invert X�X)

This error message results if there is multicollinearity in the experimental design (see Section
1.2.4). Otherwise, the program will print out the �normalized� standard deviations for
each of the stimulus function coe¢ cients, where the normalized s(hk) = square root of the
corresponding diagonal element of the (XtX)

�1 matrix (see Section 1.2.7).
See Section 1.4.1 for illustrations of the use of this command.

-nosvd The option -nosvd command disables the default scheme of Singluar Value De-
composition (SVD) for solving normal equations of the regression model, and switich the
numerical solver to old-fashioned Gaussian Elimination. Unlike Gaussian elemination, all-
zero regressors are tolerated with SVD with a zero coe¢ cient in the output; identical
regressors are also tolerated with SVD, but their coe¢ cents are equally spilt across those
idential regressors.

-nocond The option -nocond command disables the default option of computating and
outputting the condition number of the design matrix.Condition number is the ratio of the
largest to the smallest singular value of the design matrix. The order of its magnitude (e.g.,
10p) roughly indicates the loss of accuracy (e.g., up to p decimal places) and the stability
of numerical compuation due to roundo¤ errors. Large condition number usually means
that the design matrix is ill-conditioned for the numerical solver. If -nosvd is activated, the
condition number is squared for Gaussian elimination algorithm.

-xjpeg The option -xjpeg saves an image in a �le �lename in JPEG format. Each column
of the image corresponds to a regressor scaled within the range of that column (white =
minimum, black = maximum).Environment variable AFNI_XJPEG_COLOR determines
the colors of the lines drawn between the columns. The color format is "rgbi:rf/gf/bf",
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where each value rf,gf,bf is a number between 0.0 and 1.0 (inclusive); for example, yellow
would be "rgbi:1.0/1.0/0.0". As a special case, if this value is the string "none" or "NONE",
then these lines will not be drawn.
Environment variable AFNI_XJPEG_IMXY determines the size of the image saved

when via the -xjpeg option to 3dDeconvolve. It should be in the format AxB, where �A�
is the number of pixels the image is to be wide (across the matrix rows) and �B�is the
number of pixels high (down the columns). The default is 768x1024.

-mask mname
The optional -mask command speci�es that mname is the �lename of the AFNI 3d

dataset to be used for �masking �the input data. That is, if a voxel in the mask dataset
has value zero, then the corresponding voxel in the 3d+time input dataset will be ignored
for computational purposes. All output corresponding to that particular voxel will be set
to zero. If the mask dataset represents the brain, i.e., if the mask contains 1�s only at
locations inside the brain, and 0�s at locations outside the brain, this will greatly improve
the program execution speed. The -mask command provides an alternative to the -rmsmin
command described below.
Of course, the mask dataset must have the same voxel dimensions as the input 3d+time

dataset.

-automask As an alternative to -mask, the optional -automask builds a mask automati-
cally from the time series of the input.

-censor cname
The optional -censor command is used to specify that cname is a .1D �le, equal in length

to that of the input 3d+time dataset, consisting of 1�s and 0�s. Data points corresponding
to 0�s in �le cname are to be excluded from the analysis. See Section 1.4.7 for illustrations
of the use of this command.

-concat rname
The optional -concat command speci�es that rname is the �lename of the AFNI .1D

time series data �le containing a list of the starting points for each individual run within a
concatenated dataset. See Section 1.4.6 for illustrations of the use of this command.

-n�rst fnum
The optional -n�rst command speci�es that fnum is the number of the �rst image to

be used in the analysis. (The �rst image in the dataset is numbered 0.) The default
value is fnum = maximum of the maximum time lags, as speci�ed below. Note: For
concatenated datasets, fnum applies to each individual run within the dataset.

-nlast lnum
The optional -nlast command speci�es that lnum is the number of the last image to be

used in the analysis. (The �rst image in the dataset is numbered 0). The default value is
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lnum = number of the last image in the dataset. Note: For concatenated datasets, l num
applies to each individual run within the dataset.

-polort pnum The optional -polort command speci�es that pnum (pnum = 0; 1; 2; ...) is
the degree of the polynomial in the baseline model (corresponding to the null hypothesis).
Polynomial baseline functions default to Legendre polynomials, which are more pleasantly
behaved than the older power baseline functions. For each block of contiguous data, the
time range from �rst to last is scaled to the interval [-1,1]. The standard Legendre poly-
nomials Pn(x) are then entered as baseline regressors, for n=0,1,... The default value for
pnum is 1 (corresponding to the baseline model: Zn = 
0 + 
1n + "n; i.e., the signal is a
constant plus linear trend plus noise).
Note: The command �-polort -1�can be used to specify no baseline model parameters;

i.e., the baseline model is: Zn = 0 + "n.

-dmbase The optional -dmbase command explicitly zero-mean all regressors of no interest
including drifting e¤ects (-polort > 0) and other regressors speci�ed under -stim_base.

-nodmbase The optional -nodmbase command turns o¤ the default zero-meaning process
for all regressors of no interest including drifting e¤ects and other regressors speci�ed under
-stim_base.

-legendre The optional -legendre command explicitly sets up the default Legendre poly-
nomial �tting for the baseline and drifting e¤ect. If the old power functions are preferred,
turn on the -nolegendre option.

-nolegendre The optional -nolegendre command turns o¤ the default Legendre polyno-
mial �tting for the baseline and drifting e¤ect. If the old power functions are preferred, turn
on the -nolegendre option; this should only be the case if the baseline parameter estimates
are for some purpose.

-rmsmin r
The optional -rmsmin command is used to set the minimum rms error r required in order

to reject the baseline (noise) model. In other words, the full model will not be calculated
for those voxels whose time series, when �tted with the baseline model, has error rms < r.
This is used primarily to speed program execution by screening out voxels which lie outside
the brain. The user should choose a value for r which is smaller than the measurement
error for voxels inside the brain. The default value is r = 0.
Note: The -mask command, described above, might be a better alternative for speeding

program execution.

-xout
The optional -xout command is used to write the experimental design matrix X and

(XtX)
�1 to the screen This may help the user to understand what the program is doing.
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Note that this option e¤ects screen output only, and does not alter the content of the
output dataset(s).

-fdisp f
The optional -fdisp command is used to control output to the user�s terminal during

program execution. For each voxel in the data set, if the regression F�statistic is greater
than or equal to f , then the estimated baseline and impulse response parameters are written
to the screen; otherwise, nothing is written to the screen for that particular voxel. Note
that the -fdisp command e¤ects screen output only, and has absolutely no e¤ect on the
data �le output generated by the program. This option is disabled by default.

-progress n
The optional -progress command is similar to the above -fdisp command, except that the

screen output is generated every n voxels, regardless of the value of the F�statistic. Note
that the -progress command e¤ects screen output only, and has absolutely no e¤ect on the
data �le output generated by the program. This option is disabled by default.

-num_stimts num
The mandatory -num_stimts is used to indicate that num input stimulus time series will

be used. Note: the -num_stimts command must precede the following commands.

-stim_�le k sname
The -stim_�le command speci�es that sname is the �lename of the .1D time series

representing the kth input stimulus function. 3dDeconvolve checks for duplicate -stim_�le
names, and duplicate matrix columns. Only warning messages are printed �these are not
fatal errors (at least, if -nosvd is not on). For multi-column .1D �les, this command has
the alternative format:

-stim_�le k �sname[j]�
In this case, the -stim_�le command speci�es that the kth input stimulus function is

contained in column j of �le sname. Note: The column indexing begins with 0; i.e., the
�rst column corresponds to j = 0, etc. Also note that the square brackets around the
column index must be enclosed within quotation marks.

-basis_normall bnvalue
The basis functions de�ned under -stim_times are not normalized in any particular way.

The -basis_normall option can be used to specify that each basis function be scaled so
that its peak absolute value is a constant. For example -basis_normall 1 will scale each
function to have amplitude 1. Note that this scaling is actually done on a very �ne grid
over the entire domain of t values for the function, and so the exact peak value may not
be reached on any given point in the actual FMRI time series. Note that it is the basis
function that is normalized, not the convolution of the basis function with the stimulus
timing! The -basis_normall option must be given before any -stim_times options to which
the normalization is applied, and bnvalue must be > 0!

24



-stim_times k tname rtype
This option allows the user to directly input stimulus timing, and generate a response

model.

k is the stimulus index (from 1 to the -num_stimts value).
tname is the name of the �le that contains the stimulus times (in units of seconds, as

in the TR of the -input �le). There are two formats for this �le: (1) A single column of
numbers, in which case each time is relative to the start of the �rst imaging run ("global
times"). (2) If there are �R�runs catenated together (either directly on the command line,
or as represented in the -concat option), the second format is to give the times within each
run separately. In this format, the input �le tname would have R rows, on per run; the
times for each run take up one row. For example, with R=2:

12.3 19.8 23.7 29.2 39.8 52.7 66.6
21.8 32.7 41.9 55.5

These times will be converted to global times by the program, by adding the time o¤set
for each imaging run.The times are relative to the start of the data time series as input to
3dDeconvolve. If the �rst few points of each imaging run have been cut o¤, then the actual
stimulus times must be adjusted correspondingly (e.g., if 2 time points were excised with
TR=2.5, then the actual stimulus times should be reduced by 5.0 before being input to
3dDeconvolve).
When using the multi-row input style, a particular class of stimulus does not occur

at all in a given imaging run. To encode this, the corresponding row of the timing �le
should consist of a single �*�character; for example, if there are 4 imaging runs but the kth
stimulus only occurs in runs 2 and 4, then the tname �le would look something like this:

*
3.2 7.9 18.2 21.3
*
8.3 17.5 22.2

rtype speci�es the type of response model that is to follow each stimulus. The following
formats for rtype are recognized:
(1) �GAM�: The response function hG(t; b; c) = ( t

bc
)beb�

t
c for the Cohen parameters

b=8.6, c=0.547. This function peaks at the value 1 at t = bc, and is the same as the
output of waver -GAM.
(2) �GAM(b,c)�: Same response function as above, but where you give the b and c

values explicitly. The GAM response models have 1 regression parameter per voxel (the
amplitude of the response).
(3) �SPMG2�: The SPM gamma variate regression model, which has 2 regression pa-

rameters per voxel. The basis functions are hSPM;1(t) = hG(t; 4; 1) � 1
6
hG(t; 15; 1) and

hSPM;2(t) =
d
dt
hSPM;1(t)

(4) �TENT(b,c,n)�: A tent function deconvolution model, ranging between times s+ b
and s + c after each stimulus time s, with n basis functions (and n regression parameters
per voxel). A �tent� function is just the colloquial term for a �linear B-spline�. That is

25



tent(x) = max(0; 1�jxj). A tent function model for the hemodynamic response function is
the same as modeling the HRF as a continuous piecewise linear function. Here, the input
n is the number of straight-line pieces.
(5) �SIN(b,c,n)�: A sin() function deconvolution model, ranging between times s + b

and s + c after each stimulus time s, with n basis functions (and n regression parameters
per voxel). The qth basis function, for q = 1::n, is hSIN;q(t) = sin(q t�b

c�b)
(6) �POLY(b,c,n)�: A polynomial function deconvolution model, ranging between times

s+b and s+c after each stimulus time s, with n basis functions (and n regression parameters
per voxel). The qth basis function, for q=1..n, is hPOLY;q(t) = Pq(2 t�bc�b � 1), where Pq(x) is
the qth Legendre polynomial.
(7) �BLOCK(d,p)�: A block stimulus of duration d starting at each stimulus time. The

basis block response function is the convolution of a gamma variate response function with
a top hat function: H(t) =

R min(t;d)
0

h(t � s)dt where h(t) = ( t
4
)4e4�t; h(t) peaks at t = 4

with h(4) = 1, whereas H(t) peaks at t = d
1�exp(�d=4) . Note that the peak value of H(t)

depends on d ; call this peak value Hpeak(d). �BLOCK(d)�means that the response function
to a stimulus at time s is H(t � s) for t = s::s + d + 15. �BLOCK(d,p)�means that the
response function to a stimulus at time s is p � H(t�s)

Hpeak(d)
for t = s::s + d + 15. That is, the

response is rescaled so that the peak value of the entire block is p rather than Hpeak(d).
For most purposes, the best value would be p = 1. �BLOCK� is a 1 parameter model (the
amplitude).
(8) �EXPR(b,c) exp1 exp2 ...�: A set of user-de�ned basis functions, ranging between

times s+ b and s+ c after each stimulus time s. The expressions are given using the syntax
of 3dcalc, and can use the symbolic variables:

�t�= time from stimulus;
�x�= t scaled to range from 0 to 1 over the b..c interval;
�z�= t scaled to range from -1 to 1 over the b..c interval.

An example, which is equivalent to �SIN(0,35,3)�, is �EXPR(0,35) sin(PI*x) sin(2*PI*x)
sin(3*PI*x)�. Expressions are separated by blanks, and must not contain whitespace them-
selves. An expression must use at least one of the symbols �t�, �x�, or �z�, unless the entire
expression is the single character "1".
The basis functions de�ned above are not normalized in any particular way. The -

basis_normall bnvalue option can be used to specify that each basis function be scaled so
that its peak absolute value is a constant.

-stim_base k
The optional -stim_base command is used to indicate that the kth input stimulus function

is to be included in the baseline model (corresponding to the null hypothesis). This option
is disabled by default; i.e., the kth input stimulus function is not included in the baseline
model.

-slice_base k sname
The optional -slice_base command speci�es the kth stimulus time series from �le sname,

26



and indicates that this regressor belongs to part of the baseline and that this regressor is
di¤erent for each slice in the input 3D+time dataset. The sname �le should have exactly
nz columns of input, where nz=number of slices, or it should have exactly 1 column, in
which case this input is the same as using -stim_�le k sname and -stim_base k.

-stim_label k slabel
The optional -stim_label command is used to specify the string slabel for labeling the

output corresponding to the kth input stimulus function.

-stim_minlag k m
The optional -stim_minlag command speci�es the minimum time lag m for estimation of

the impulse response function corresponding to the kth input stimulus. The default value
is m = 0.

-stim_maxlag k n
The optional -stim_maxlag command speci�es the maximum time lag n for estimation of

the impulse response function corresponding to the kth input stimulus. The default value
is n = 0. Note that for each input stimulus, it is required that: min lag � max lag.

-stim_nptr k p
The optional -stim_nptr command speci�es that there are p (p = 1; 2; 3; :::) time points

in the kth input stimulus for each TR. The default value is p = 1. If the input 3d+time
dataset contains N points, then the kth input stimulus must contain at least p�N points.
If p > 1, then the user must align all input slices to 0 time o¤set beforehand (see program
3dTshift). Note: The IRF time limits speci�ed with -stim_minlag and -stim_maxlag are
in multiples of TR=p. Therefore, the commands:

-stim_minlag k m
-stim_maxlag k n
-stim_nptr k p

indicate that the kth IRF extends from m� TR=p to n� TR=p.

-num_glt g
The -num_glt command is used to indicate that g general linear tests will be used. The

-num_glt command is optional except when g > 10. Note: The -num_glt command must
precede the following -glt commands.

-glt s gltname
The optional -glt command is used to conduct a general linear test. The parameter

s speci�es the number of linear combinations (or linear constraints) in the general linear
test. The matrix which determines the general linear test must be contained in �le gltname.
NOte that the matrix must contain s rows, each row specifying a linear constraint on the
model parameters, and P columns, each column corresponding to one of the P parameters
in the full model. Matrix inputs for the "-glt" option can use a notation like "30@0" to
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indicate that 30 0s in a row are to be placed on the line. For example, if you have 10 runs
catenated together, and you used "-polort 2", then there are 30 baseline parameters to skip
(usually) when specifying each GLT row; a sample matrix �le with 34 entries per row is
below:

30@0 1 -1 0 0
30@0 0 0 1 -1

See the Examples in Section 1.4.4 for illustrations of the use of this command.

-glt_label k glabel
The optional -glt_label command is used to specify the string glabel for labeling the

output corresponding to the kth general linear test.

-gltsym gltname
The optional -gltsym command can be used to describe the rows of a GLT matrix using

a symbolic notation. Each stimulus is symbolized by its -stim_label option. Each line
in the �gltname��le corresponds to a row in the GLT matrix. On each line should be a
set of stimulus symbols, which can take the following forms (using the label �Stim�as the
examplar):

Stim = means put +1 in the matrix row for each lag of Stim
+Stim = same as above
-Stim = means put -1 in the matrix for for each lag of Stim
Stim[2..7] = means put +1 in the matrix for lags 2..7 of Stim
3*Stim[2..7] = means put +3 in the matrix for lags 2..7 of Stim
Stim[[2..4]] = means put +1 in the matrix for lags 2..4 of Stim in 3 successive rows of

the matrix, as in

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

whereas Stim[2..4] would yield one matrix row

0 0 1 1 1 0 0 0

There can be no spaces or �*�characters in the stimulus symbols; each set of stimulus
symbols on a row should be separated by one or more spaces. For example, the two multi-lag
regressors entered with the options below

-stim_label 1 Ear -stim_minlag 1 0 -stim_maxlag 1 5 n
-stim_label 2 Wax -stim_minlag 2 2 -stim_maxlag 2 7
could have a GLT matrix row speci�ed by
+Ear[2..5] -Wax[4..7]

which would translate into a matrix row like
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{zeros for the baseline} 0 0 1 1 1 1 0 0 -1 -1 -1 -1

With -gltsym, it is not necessary to specify the number of rows on the command line
�the program will determine that from the �le. Comment lines can be embedded in the
�le �these are lines that start with the characters "#" or "//". If the polynomial baseline
parameters are desired to access for some bizarre reason, the symbolic name "Ort" can
be used for such a purpose; otherwise, the GLT matrix elements corresponding to these
parameters will all be set to 0, as in the example above. A GLT can be expressed directly
on the command line with an option of the form

-gltsym �SYM: +Ear[2..5] -Wax[4..7]�

where the �SYM:�that starts the string indicates that the rest of the string should be
used to de�ne the 1 row matrix. It is important that this string be enclosed in forward
single quotes, as shown. If you want to have multiple rows speci�ed, use the �n�character
to mark the end of each row, as in

-gltsym �SYM: +Ear[2..5] n -Wax[4..7]�

The "-glt_label" option can be used with -gltsym, as with -glt. The matrices generated
by -gltsym can be printed to the screen by setting environment variable AFNI_GLTSYM_PRINT
to YES.

-iresp k ipre�x
The optional -iresp command instructs program 3dDeconvolve to save the estimated im-

pulse response function corresponding to the kth input stimulus. That is, each impulse
response function for each voxel is saved as a time series of length p + 1, and stored into
an AFNI 3d+time dataset. The output dataset has pre�x �lename ipre�x.
If -iresp is used in conjunction with the -input1D command, then the single estimated

impulse response function time series will be written to �le ipre�x.1D. Note: This will
automatically overwrite a pre-existing ipre�x.1D �le.

-TR_times dt
If -iresp option is used to output the hemodynamic (impulse) response function corre-

sponding to a -stim_times option, this function will be sampled at the rate given by the
-TR_times dt option. The default value is the TR of the input dataset, but it can be set
at a higher time resolution. (The same remarks apply to the -sresp option.)

-tshift
Use cubic spline interpolation to time shift the estimated impulse response function, in

order to correct for di¤erences in slice acquisition times. (See Section 1.2.14 for further
discussion.) Note that this option e¤ects only the 3d+time output dataset generated by
the -iresp option.
Note: It is very important that the slice acquisition time o¤sets, which are stored in

the .HEAD �les, be correct. The -tshift option uses these values to determine how much
to shift the impulse response functions for each slice. The time o¤sets are listed under the
label TAXIS_OFFSETS in the header �les, and should be inspected by the user.
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-sresp k spre�x
The optional -sresp command instructs program 3dDeconvolve to save the array of stan-

dard deviations for the impulse response function corresponding to the kth input stimulus.
That is, the standard deviations for the time points of the impulse response function are
made into a time series of length p + 1, and stored into an AFNI 3d+time dataset. The
output dataset has pre�x �lename spre�x.
If -sresp is used in conjunction with the -input1D command, then the single array of stan-

dard deviations will be written to �le spre�x.1D. Note: This will automatically overwrite
a pre-existing spre�x.1D �le.

-�tts fpre�x
The optional -�tts command instructs program 3dDeconvolve to save the full model �t

to the input time series data for each voxel. The �tted time series are stored into an AFNI
3d+time dataset. The output dataset has pre�x �lename fpre�x.
If -�tts is used in conjunction with the -input1D command, then the single �tted time

series will be written to �le fpre�x.1D. Note: This will automatically overwrite a pre-
existing fpre�x.1D �le.

-errts epre�x
The optional -errts command instructs program 3dDeconvolve to save the residual errors

(i.e., error = data - full model �t) into an AFNI 3d+time dataset. The output dataset has
pre�x �lename epre�x.
If -errts is used in conjunction with the -input1D command, then the single residual

error time series will be written to �le epre�x.1D. Note: This will automatically overwrite
a pre-existing epre�x.1D �le.

-xsave
In combination with the old "-bucket bpre�x" option, the new -xsave option saves the X

matrix (and some other information) into �le "bpre�x.xsave". If some extra GLTs might
need to be run later, use the "-xrestore" option �this is usually much faster than running
the whole analysis over from scratch.

-noxsave
This default option disables the functionality to save design matrix.

-jobs J This option allows running 3dDeconvolve with J jobs (sub-processes). On a
multi-CPU machine, this can speed the program up considerably. On a single CPU
machine, using this option is not suggested. J should be a number from 1 up to the
number of CPU sharing memory on the system. J=1 is normal (single process) opera-
tion. The maximum allowed value of J is 32. For more information on parallelizing, see
http://afni.nimh.nih.gov/afni/doc/misc/afni_parallelize/ and http://afni.nimh.nih.gov/afni/doc/misc/3dDeconvolveOnFreeBSD/
. Option -mask can be used to get more speed; cf. 3dAutomask.
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-quiet Unless the -quiet option is turned on, 3dDeconvolve prints a "progress meter"
while it runs. When it is done, this will look like

++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.

where each digit is printed when 2% of the voxels are done.

-xrestore �lename.xsave The "-xrestore �lename.xsave" option reads the -xsave �le
and carries out extra GLTs after the �rst 3dDeconvolve run. When using -xrestore, the
only other options that have e¤ect are "-glt", "-glt_label", "-gltsym", "-num_glt", "-fout",
"-tout", "-rout", "-quiet", and "-bucket". All other options on the command line will be
ignored (silently). The original time series dataset (from "-input") is named in the -xsave
�le, and must be present for -xrestore to work. If the parameter estimates were saved in
the original -bucket or -cbucket dataset, they will also be read; otherwise, the estimates
will be re-computed from the voxel time series as needed. The new output sub_bricks from
the new -glt options will be stored as follows:

no "-bucket" option given in the -xrestore run ==> will be stored at end of original
-bucket dataset
"-bucket bbb" option given in the -xrestore run ==> will be stored in dataset with

pre�x "bbb", which will be created if necessary; if "bbb" already exists, new sub-bricks
will be appended to this dataset

-bucket bpre�x
The -bucket command is used to create a single AFNI �bucket� type dataset having

multiple sub-bricks. The output is written to the �le with the user speci�ed pre�x �lename
bpre�x. Each of the individual sub-bricks can then be accessed for display within program
afni. The purpose of this command is to simplify �le management, since most of the output
results for a particular problem can now be contained within a single AFNI bucket dataset.
See Examples 1.4.2.5, 1.4.3.6, 1.4.4.6, and 1.4.6.5 for illustrations of the format of the bucket
dataset.

-cbucket cpre�x The -cbucket command saves ONLY the estimated parameters (AKA
regression coe¢ cients) for each voxel into a dataset with the new "-cbucket cpre�x" option.
This may be useful if some calculations will be performed with these estimates; alternatively
they can be extracted them from the various statistics that are stored in the output of the
"-bucket bpre�x" option.

The following commands control the contents of the output bucket dataset:
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-fout Flag to output the partial model, full model, and GLT F -statistics
-rout Flag to output the partial model, full model, and GLT R2

-tout Flag to output the t-statistic for each regression parameter
and for each GLT linear combination

-vout Flag to output the sample variance (MSE) map
-nobout Flag to suppress output of the baseline coe¢ cients

(and associated statistics)
-nocout Flag to suppress output of the regression coe¢ cients

(and associated statistics)
-full_�rst Flag to specify that the full model statistics will

appear �rst in the bucket dataset output

Note: The -nobout option di¤ers from the -nocout option in that the -nobout option
only eliminnates output corresponding to the baseline model; the -nocout option eliminates
output corresponding to all regression parameters (including the baseline). Therefore, the
-nocout option should be used if the user is only interested in output pertaining to the GLT
linear combinations. The -nobout option may be useful when analyzing datasets formed by
concatenation of many runs, in which case there would be many sub-bricks for the baseline
parameters, which may not be of interest to the user.
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1.4 Examples

1.4.1 Evaluation of the Experimental Design

In the following Examples, we consider evaluation of the experimental design prior to
collecting data. This is done by using the -nodata option in place of the -input command.

Example 1.4.1.1 Evaluation of a Block Design
Suppose that we wish to evaluate a �block� type design, with a repeating stimulus

pattern of 4 �O¤�TR, followed by 4 �On�TR, as indicated below.

f(t) = f 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 g

Save the above f(t), one row at a time, as a single column of 0�s and 1�s into �le
Block.1D. Suppose that we wish to estimate the system IRF for 0-4 TR�s. Consider the
following script:

Program 3dDeconvolve Command Line for Example 1.4.1.1

3dDeconvolve n
-nodata n
-nlast 59 n
-polort 0 n
-num_stimts 1 n
-stim_file 1 Block.1D n
-stim_label 1 ��Block�� n
-stim_maxlag 1 4

The -nodata command is used to specify that there is no input data (i.e., no measure-
ment data). This indicates that the program is only to evaluate the experimental design.
There is one input stimulus function (-num_stimts 1), which is speci�ed by the contents
of �le Block.1D (-stim_�le 1 Block.1D). The maximum duration for the estimated IRF is
4 TR (-stim_maxlag 1 4). The program creates the experimental design matrix X from
time lagged versions of the input stimulus functions, as explained in Section 1.2.3.
Try executing the above script. The program will attempt to calculate the (XtX)

�1

matrix. In this particular case, the program is unable to calculate the inverse matrix;
therefore, the program prints the following error message:

3dDeconvolve Error: Improper X matrix (cannot invert X�X)

This error message results from multicollinearity in the experimental design. See Section
1.2.4 for a discussion of multicollinearity and how to avoid it. Can you explain why this
design su¤ers from multicollinearity? Since the stimulus function has a period of 8 TR,
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does it surprise you that the problem is not solvable for a maximum time lag of only 4 TR?
If you cannot explain the result, add the -xout command option to the above script, and
repeat the execution. This time, the program prints out the experimental design matrix
X. The X matrix has 6 columns: column #0 contains all 1�s; columns #1 through #5
contain time-lagged versions of the stimulus function (corresponding to 0-4 TR). What is
the result if you add column #1 and column #5 (one row at a time)?
If you can write a linear combination (with some coe¢ cients non-zero) of the columns

of X that is equal to a column of zeros, then the columns of X are said to be linearly
dependent. In the current example, we have:

1 �C0 � 1 �C1 � 1 �C5 = 0

where Ci = ith column of X:
Now, try executing the above script, but reduce maxlag to 3 (i.e., use the command

-stim_maxlag 1 3 in place of the -stim_maxlag 1 4 command). Does this resolve the
multicollinearity problem? You should see the following printout on the screen:

Program 3dDeconvolve Screen Output for Example 1.4.1.1

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002

(X�X) inverse matrix:
0.0820 -0.0656 0.0000 -0.0000 -0.0656
-0.0656 0.1382 -0.0714 -0.0000 0.0667
0.0000 -0.0714 0.1429 -0.0714 -0.0000
-0.0000 -0.0000 -0.0714 0.1429 -0.0714
-0.0656 0.0667 0.0000 -0.0714 0.1382

Stimulus: Block
h[0] norm. std. dev. = 0.3717
h[1] norm. std. dev. = 0.3780
h[2] norm. std. dev. = 0.3780
h[3] norm. std. dev. = 0.3717

If the program is able to evaluate the (XtX)
�1 matrix, this matrix is printed to the

screen. As mentioned in Section 1.2.7, the variance-covariance matrix for the regression
coe¢ cients is given by:

s2(b) =MSE �
�
XtX

��1
where MSE = sample variance. Since there is no input measurement data, MSE is
unknown. However, if MSE is normalized to a value of 1, we see that (XtX)

�1 is the
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(normalized) variance-covariance matrix. By taking the square roots of the correspond-
ing diagonal elements, we obtain the (normalized) standard deviations of the estimated
impulse response coe¢ cients. These values are also printed to the screen (labeled norm.
std.dev.). Note that the above procedure can be repeated using di¤erent stimulus functions.
This allows a comparative analysis of the IRF coe¢ cient estimation accuracy for di¤erent
experimental designs, under the assumption that MSE will be constant for a given voxel.
We have seen that, using the above experimental design, it is not possible to estimate

the system IRF for a maxlag of 4; however, it is possible to estimate the IRF for a maxlag
of 3 (or less). Question: If it is required that the �On�period and the �O¤�period be
equal, can you devise a block type design that allows estimation of the IRF for a maxlag
of 4 (or greater)? Verify your answer using 3dDeconvolve with the -nodata option.

Example 1.4.1.2 Evaluation of a Random Design
In place of the above �block�type design, we will now investigate the use of a �random�

design. Toss a coin 60 times; for each coin toss, record a 1 if �heads�occurs, and record
a 0 if �tails�occurs. The record of the coin tosses might look something like this:

f(t) = f 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1
1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 g

Save your record of coin tosses f(t) as a single column of 0�s and 1�s into �le Random.1D.
Now, execute the following script:

Program 3dDeconvolve Command Line for Example 1.4.1.2

3dDeconvolve n
-nodata n
-nlast 59 n
-polort 0 n
-num_stimts 1 n
-stim_file 1 Random.1D n
-stim_label 1 ��Random�� n
-stim_maxlag 1 4

Do you obtain a result similar to the following?

Program 3dDeconvolve Screen Output for Example 1.4.1.2

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002
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(X�X) inverse matrix:
0.1451 -0.0378 -0.0481 -0.0544 -0.0518 -0.0497
-0.0378 0.0722 0.0026 0.0047 0.0003 -0.0044
-0.0481 0.0026 0.0729 0.0042 0.0087 0.0039
-0.0544 0.0047 0.0042 0.0745 0.0071 0.0115
-0.0518 0.0003 0.0087 0.0071 0.0738 0.0070
-0.0497 -0.0044 0.0039 0.0115 0.0070 0.0745

Stimulus: Random
h[0] norm. std. dev. = 0.2686
h[1] norm. std. dev. = 0.2700
h[2] norm. std. dev. = 0.2730
h[3] norm. std. dev. = 0.2717
h[4] norm. std. dev. = 0.2730

Repeat the analysis using maxlag = 8, 12, 16, ... . At what point does multicollinearity
occur? What can you say about the norm. std. dev. values as the maxlag is increased?

Repeat the above analysis using a di¤erent sequence of coin tosses to generate the
random binary sequence stimulus function. How do the parameter estimation accuracies
compare with the �rst random binary sequence?

Extra Credit: Set maxlag = 0, and execute the script. Does the output from 3dDe-
convolve indicate that the norm. std. dev. is approximately 0.2582? Can you provide a
mathematical justi�cation for this result? Of course, this result applies only for a random
binary sequence of length N=60. What result would you expect for N = 32? For N =
128? Use 3dDeconvolve to verify your predictions. What is the functional relationship
between parameter estimation accuracy and N for a binary random process, with maxlag
= 0?

Extra Extra Credit: So far, we have only considered random binary sequences with
Prob(1) = Prob(0) = 1

2
. Letting p = Prob(1), investigate how the parameter estimation

accuracy varies when you change p. For example, using a single die, or some other random-
ization method, generate a random binary sequence having p = 1

3
. For maxlag = 0, use

3dDeconvolve to calculate the norm. std. dev. for your random binary sequence. Derive
the theoretical value for the accuracy of the parameter estimate as a function of p and N .

For a continuation of this discussion concerning experimental design, and consideration
of statistical power estimation, see Sections 3.3 and 3.4.

1.4.2 Estimation of the System Impulse Response Function

In this set of Examples, we consider application of program 3dDeconvolve for estimation of
the system impulse response function (IRF).
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Example 1.4.2.1 Estimation of IRF from Non-Overlapping Responses; No
Measurement Noise
First, we will consider the case where the input stimuli are spaced su¢ ciently far apart

in time that the hemodynamic responses to the individual stimuli do no overlap. To further
simplify things, we will assume that there is no measurement noise.
Let the 0-4 point IRF be:

h(t) =
�
0 5 10 5 2

	
Let the 20 point stimulus function be:

f(t) =
�
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

	
Save f(t) as a single column of numbers in �le f.1D. To represent the system response,
convolve the stimulus function with the IRF. The result is:

y(t) = f(t)
 h(t)
=

�
0 0 0 5 10 5 2 0 0 5 10 5 2 0 0 5 10 5 2 0

	
If we model the measured response by adding a constant (100) plus slope (1), we get:

z(t) = b0 + b1t+ y(t)

= 100 + 1 � t+ y(t)

=
f 100 101 102 108 114 110 108 107 108 114
120 116 114 113 114 120 126 122 120 119 g

Save the above, as a single column of numbers, into �le z.1D. Now, to estimate the IRF,
execute the following script:

Program 3dDeconvolve Command Line for Example 1.4.2.1

3dDeconvolve n
-input1D z.1D -num_stimts 1 n
-stim_file 1 f.1D -stim_label 1 ��f�� -stim_maxlag 1 4

The program output is as shown below:

Program 3dDeconvolve Screen Output for Example 1.4.2.1

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002

Baseline:
t^0 coef = 100.0000 t^0 t-st = 1000.0000 p-value = 0.0000e+00
t^1 coef = 1.0000 t^1 t-st = 1000.0000 p-value = 0.0000e+00
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Stimulus: f
h[0] coef = 0.0000 h[0] t-st = 0.0000 p-value = 1.0000e+00
h[1] coef = 5.0000 h[1] t-st = 1000.0000 p-value = 0.0000e+00
h[2] coef = 10.0000 h[2] t-st = 1000.0000 p-value = 0.0000e+00
h[3] coef = 5.0000 h[3] t-st = 1000.0000 p-value = 0.0000e+00
h[4] coef = 2.0000 h[4] t-st = 1000.0000 p-value = 0.0000e+00

R^2 = 1.0000 F[5,9] = 1000.0000 p-value = 0.0000e+00

Full Model:
MSE = 0.0000
R^2 = 1.0000 F[5,9] = 1000.0000 p-value = 0.0000e+00

Note that the t-stats and F-stats are limited to a maximum value of 1000.0. Also, note
that the estimated full model parameter vector is exactly correct:

bt =
�
b0 b1 h[0] h[1] h[2] h[3] h[4]

	
=

�
100:00 1:00 0:00 5:00 10:00 5:00 2:00

	
which is not surprising, since no noise was present in the �measurement�.

Example 1.4.2.2 Estimation of IRF fromNon-Overlapping Responses; Additive
Noise
To simulate the e¤ect of measurement error, add white Gaussian noise to the above

data. For example, adding values from a table of N(�; �2) = N(0; 4) random variates
(from Ref.[3]) to the above z(t), we obtain:

zn(t) = z(t) + "(t)
= f 99:78 100:46 101:30 113:51 111:60 109:01 107:84 106:42 106:11 114:85

117:55 113:18 114:58 111:93 115:01 121:21 128:23 125:22 123:75 120:28 g

Save your �response+noise�data into �le zn.1D. You can plot the �data�using the com-
mand: 1dplot zn.1D. Looking at the plot, can you visualize the shape of the IRF?
Now, execute the script from the previous Example, except replace -input1D z.1D with

-input1D zn.1D. The program output is as shown below:

Program 3dDeconvolve Screen Output for Example 1.4.2.2

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002

Baseline:
t^0 coef = 95.9670 t^0 t-st = 69.1079 p-value = 1.4053e-13
t^1 coef = 1.3007 t^1 t-st = 15.5897 p-value = 8.0672e-08
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Stimulus: f
h[0] coef = 0.2848 h[0] t-st = 0.2062 p-value = 8.4121e-01
h[1] coef = 6.4541 h[1] t-st = 4.6989 p-value = 1.1219e-03
h[2] coef = 10.1522 h[2] t-st = 8.1118 p-value = 1.9809e-05
h[3] coef = 5.5282 h[3] t-st = 4.4670 p-value = 1.5614e-03
h[4] coef = 3.8141 h[4] t-st = 3.1032 p-value = 1.2658e-02

R^2 = 0.9075 F[5,9] = 17.6576 p-value = 2.0485e-04

Full Model:
MSE = 2.2556
R^2 = 0.9075 F[5,9] = 17.6576 p-value = 2.0485e-04

Note that, since there is only one input stimulus function, the Partial R^2 and Partial F
values (listed under Stimulus: f) are identical to the Full Model R^2 and F-stat, respectively.
Also, note that the estimated full model parameter vector is now:

bt =
�
95:97 1:30 0:28 6:45 10:15 5:53 3:81

	
Due to the measurement noise, the estimated full model parameter vector is not exactly
equal to the �true�parameter vector.

Example 1.4.2.3 Estimation of IRF from Overlapping Responses; No Mea-
surement Noise
In the previous Examples, the input impulses were spaced su¢ ciently far apart in time

that the system responses to the individual stimuli did not overlap. What happens when
the system responses do overlap? Consider the following stimulus function:

g(t) =
�
1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0

	
Save g(t) as a single column of numbers in �le g.1D. The stimulus function g(t) contains
10 impulses. Assuming that the system is linear, the response to the sequence of impulses
should be equal to the sum of the responses to the individual impulses. Thus, the system
response y(t) = g(t)
h(t) can be calculated by adding up the individual impulse response
functions:

y(t) =

0 5 10 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 5 10 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 10 5 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 10 5 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 10 5 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 10 5 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 5 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 5 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 5 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 5
� � � � � � � � � � � � � � � � � � � �
0 5 15 15 7 7 15 20 17 7 7 10 5 7 10 10 17 20 17 7
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Now, model the measured data as a constant (100) plus slope (1) plus the system response,
e.g.:

w(t) = b0 + b1t+ y(t) = 100 + 1 � t+ y(t)

=
f 100 106 117 118 111 112 121 127 125 116
117 121 117 120 124 125 133 137 135 126 g

and store this as a single column of numbers into �le w.1D. You can plot the �data�using
the command: 1dplot w.1D. Looking at the plot, can you visualize the shape of the IRF?
Execute the following script, which uses the g(t) stimulus function, and the w(t) �data�.

Program 3dDeconvolve Command Line for Example 1.4.2.3

3dDeconvolve n
-input1D w.1D -num_stimts 1 n
-stim_file 1 g.1D -stim_label 1 ��g�� -stim_maxlag 1 4

Since no noise is present, the program output should agree with the �true�parameter
vector:

bt =
�
100:00 1:00 0:00 5:00 10:00 5:00 2:00

	
Example 1.4.2.4 Estimation of IRF from Overlapping Responses; Additive
Noise
Again simulate the e¤ect of measurement error, by adding white Gaussian noise to the

above data. So, adding random values (say from a table of N(�; �2) = N(0; 4) random
variates (see Ref.[3])) to the above w(t), you obtain something that looks like:

wn(t) = w(t) + "(t)
= f 99:78 105:46 116:30 123:51 108:60 111:01 120:84 126:42 123:11 116:85

114:55 118:18 117:58 118:93 125:01 126:21 135:23 140:22 138:75 127:28 g

Save your �response+noise� data into �le wn.1D. You can plot the �data� using the
command: 1dplot wn.1D. Looking at the plot, can you visualize the shape of the IRF?
Now, execute the script from the previous Example, except replace -input1D w.1D with

-input1D wn.1D. The program output, for the above data, is as shown below:

Program 3dDeconvolve Screen Output for Example 1.4.2.4

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002
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Baseline:
t^0 coef = 92.6567 t^0 t-st = 77.2499 p-value = 5.1655e-14
t^1 coef = 1.3345 t^1 t-st = 23.6341 p-value = 2.0731e-09

Stimulus: g
h[0] coef = 1.9530 h[0] t-st = 3.5183 p-value = 6.5325e-03
h[1] coef = 6.0968 h[1] t-st = 11.2205 p-value = 1.3615e-06
h[2] coef = 11.5062 h[2] t-st = 19.8937 p-value = 9.5163e-09
h[3] coef = 6.6768 h[3] t-st = 11.9295 p-value = 8.0960e-07
h[4] coef = 2.6870 h[4] t-st = 4.7401 p-value = 1.0587e-03

R^2 = 0.9835 F[5,9] = 107.3899 p-value = 9.6139e-08

Full Model:
MSE = 0.9618
R^2 = 0.9835 F[5,9] = 107.3899 p-value = 9.6139e-08

Note that, since there is only one input stimulus function, the Partial R^2 and Partial F

values (listed under Stimulus: g) are identical to the Full Model R^2 and F-stat, respectively.
Also, note that the estimated full model parameter vector is now:

bt =
�
92:66 1:33 1:95 6:10 11:51 6:68 2:69

	
Due to the measurement noise, the estimated full model parameter vector is not exactly
equal to the �true�parameter vector.

Example 1.4.2.5 Estimation of IRF; 3d+time Dataset
A researcher wants to estimate the system impulse response function for a particular

type of visual stimulus. The magnitude of the input stimulus function, as a function of
time, is recorded in �le Visual.1D. The measured FMRI data is contained in the 3d+time
dataset Paula+orig (.HEAD and .BRIK). In order to estimate the impulse response function,
at each voxel location, Program 3dDeconvolve can be executed with the following batch
commands:

Program 3dDeconvolve Batch Command File for Example 1.4.2.5

3dDeconvolve n
-input Paula+orig n
-polort 1 -rmsmin 1.0 -progress 1000 n
-num_stimts 1 n
-stim_file 1 Visual.1D -stim_label 1 Visual n
-stim_minlag 1 0 -stim_maxlag 1 10 n
-iresp 1 Paula.irf n
-fitts Paula.fit n
-fout -rout -tout -bucket Paula.bucket
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The �rst batch command speci�es that the input 3d+time dataset is to be read from �le
Paula+orig (.HEAD and .BRIK). The command -polort 1 indicates that the baseline model
should include a constant o¤set plus linear drift terms (this is the default condition). The
command -rmsmin 1.0 is used to screen out voxels showing little variation (this can be
used to exclude voxels located outside the brain). The command -progress 1000 is used to
specify that, during execution of the program, screen output is generated for every 1000th
voxel.
The number of input stimulus �les is speci�ed with the command -num_stimts 1. The

name of the stimulus time series �le is entered with the command -stim_�le 1 Visual.1D.
The command -stim_label 1 Visual indicates that the stimulus function will be identi�ed
with the label �Visual� in the program output.
The next two commands, -stim_minlag 1 0 and -stim_maxlag 1 10 specify that the

impulse response function is to be estimated for time lags between 0 and 10 (i.e., for � =
0 TR, 1 TR, 2 TR, : : :, 10 TR).
The remaining commands specify the program output. The command -iresp 1 Paula.irf

generates the 3d+time dataset Paula.irf+orig (.HEAD and .BRIK), which contains the es-
timated impulse response function for each voxel. The command -�tts Paula.�t generates
the 3d+time dataset Paula.�t+orig (.HEAD and .BRIK), which contains the full model
�tted time series for each voxel. The -fout, -rout, and -tout commands indicate that
the F-statistics, R2, and t-statistics are to be included in the bucket dataset output. Fi-
nally, the command -bucket Paula.bucket is used to generate the �bucket� type dataset
Paula.bucket+orig (.HEAD and .BRIK) containing the parameter estimates, corresponding
t-statistics, and the F-statistic and R2 for signi�cance of the regression.
After program 3dDeconvolve has �nished execution, program afni can be used to view

the output �les. The format for the bucket dataset Paula.bucket is illustrated below.

Brick # Label Contents
0 Base t^0 Coef least squares est. of b0(constant term)
1 Base t^0 t-st t-statistic for b0 = b0=s(b0)
2 Base t^1 Coef least squares est. of b1(linear trend)
3 Base t^1 t-st t-statistic for b1 = b1=s(b1)
4 Visual[0] Coef least squares est. of h0 (impulse response at time lag 0)
5 Visual[0] t-st t-statistic for h0 = h0=s(h0)
...

...
...

24 Visual[10] Coef least squares est of h10 (impulse response at time lag 10)
25 Visual[10] t-st t-statistic for h10=h10/s(h10)
26 Visual R^2 R^2 for signi�cance of the Visual stimulus
27 Visual F-stat F-statistic for signi�cance of Visual stimulus
28 Full R^2 Coe¢ cient of multiple determination R2

29 Full F-stat F-statistic for signi�cance of the overall regression

Note that the output of this program can be used as input to other programs, such as
3dANOVA, for comparing results across subjects, runs, experimental conditions, etc. For
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this purpose, it would be desirable to reduce the above output to a single number per voxel.
One possible way to accomplish this is to use the -glt options, as illustrated in Section 1.4.4.

1.4.3 Multiple Linear Regression

In this section, we consider the multiple linear regression problem. Actually, we have
already performed multiple linear regression when calculating the impulse response function
for multiple time lags. However, we will use �multiple linear regression� to refer more
speci�cally to those experiments involving �multiple stimulus functions�.
Another point about the notation: InAFNI �m / 3d�m+, a distinction is made between

�ort�functions and �ideal�functions. That is, the �ideal�function is the input for which
we are interested in determining the system response; the �ort�functions represent inputs
that are not of inherent interest, and which only make it more di¢ cult to determine the
true system response. However, in 3dDeconvolve, no such distinction is made; in fact,
both types of functions are treated equally and are referred to as �stimulus� functions.
Statistics are calculated for all stimulus functions, and it is only the user�s interpretation
of the results which serves to distinguish between �ort�and �ideal�.

Example 1.4.3.1 Analysis of Extracted time series
In this and the following Example, we analyze a time series extracted from a 3d+time

dataset. We will use the v2:time+orig sample dataset which is included with the AFNI
distribution. Of course, feel free to use your own 3d+time dataset.
First, use afni to display the v2:time+orig dataset. Display the time series graphs,

and use the Write Center option from the graphing menu to write out the time series
corresponding to the voxel with coordinates (29,29,8). The time series corresponding to
this particular voxel is then written to �le 029_029_008.1D. You can examine the contents
of this �le with a text editor, or use

1dplot 029_029_008.1D

to display a graph of this particular time series.
Also included with the AFNI distribution is �le cos7.00.1D. This contains regularly-

spaced values of the cosine function. We will use this as the input stimulus function.

Program 3dDeconvolve Command Line for Example 1.4.3.1

3dDeconvolve n
-input1D 029_029_008.1D n
-nfirst 6 n
-polort 1
-num_stimts 1 n
-stim_file 1 cos7.00.1D -stim_label 1 ��Cosine�� -stim_maxlag 1 1 n
-fitts myFit
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A couple of observations about the above script. The -n�rst 6 command indicates
that the �rst 6 data points are to be discarded. This is necessitated by the nature of the
cos7.00.1D �le. If you inspect this �le, you will see that the �rst 4 values are 100000.
This code is used to tell programs afni �m / 3d�m+ to discard the �rst 4 data points. As
explained earlier, program 3dDeconvolve does not use this code for discarding data points
(instead, it uses as separate �censor��le). However, since 3dDeconvolve uses time-lagged
versions of the input stimulus function, it is necessary to discard not only the �rst 4 points,
but some additional points as well, to keep the �100000�values from contaminating the
results.

Note that the -stim_maxlag 1 1 command indicates that only two time lags, 0 and 1,
are considered. However, this is su¢ cient to accurately model all responses of the form:

y(t) = A cos(!(t� �))

(Can you prove this claim?)
The command -�tts myFit causes the �tted time series to be written to �le myFit.1D.

You can plot the input time series and the �tted time series in separate graph windows
with the following commands (suppressing the �rst 6 points):

1dplot -ignore 6 029_029_008.1D
1dplot -ignore 6 myFit.1D

However, if you wish to plot the �tted time series on top of the FMRI time series data,
the following commands can be used to combine the two time series into a single �le (e.g.,
Overlay.1D) for plotting:

Script for Plotting Fitted Data on top of Actual Data

1dcat 029_029_008.1D myFit.1D > Overlay.1D
1dplot -ignore 6 -one Overlay.1D

You should see the �tted time series (in red) plotted on top of the original time series (in
black). This result is similar to that which you will obtain in Example 2.3.1 (q.v.) using
the Deconvolution plugin.

Example 1.4.3.2 Multiple Linear Regression using Estimated Motion Parame-
ters

In this Example, we repeat the above analysis, but will include in the baseline model
the estimated motion parameters. The reason for doing so is to account for variation in the
measured response due to subject motion. This should help both to reduce false positives
(by subtracting out the e¤ect of stimulus correlated motion) and to increase true positives
(by reducing the measurement noise estimate).
The �rst step is to estimate the subject motion. This can be done using program

3dvolreg, e.g.:
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3dvolreg -base 34 -1Dfile v2.motion.1D v2:time+orig

This will write to �le v2.motion.1D the estimated motion parameters: roll, pitch, yaw,
dS. dL, and dP, as 6 columns of numbers. Now, these separate columns can be entered as
individual stimulus functions, as indicated below:

Program 3dDeconvolve Command Line for Example 1.4.3.2

3dDeconvolve n
-input1D 029_029_008.1D n
-nfirst 6 n
-polort 1
-num_stimts 7 n
-stim_file 1 cos7.00.1D -stim_label 1 Cosine -stim_maxlag 1 1 n
-stim_file 2 �v2.motion.1D[0]� -stim_base 2 -stim_label 2 Roll n
-stim_file 3 �v2.motion.1D[1]� -stim_base 3 -stim_label 3 Pitch n
-stim_file 4 �v2.motion.1D[2]� -stim_base 4 -stim_label 4 Yaw n
-stim_file 5 �v2.motion.1D[3]� -stim_base 5 -stim_label 5 dS n
-stim_file 6 �v2.motion.1D[4]� -stim_base 6 -stim_label 6 dL n
-stim_file 7 �v2.motion.1D[5]� -stim_base 7 -stim_label 7 dP

If you execute the above script, you should see a result similar to that of: Deconvolution
Plugin Screen Output for Example 2.3.2 (q.v.).
From the output, we see that the p-value for the Cosine stimulus is 9.2*10�8, which is the

same as the p-value for the Full Model. This is because the -stim_base command was used
to indicate that each of the motion parameter stimulus functions belongs to the Baseline
Model. Therefore, the p-value for the Full Model does not include the contributions of the
estimated motion parameters in explaining the response, since this is not relevant to the
matter being investigated.
From the previous Example, the p-value for the Cosine stimulus, without motion pa-

rameters in the model, was 3.1*10�6. Therefore, at least in this example, inclusion of
the motion parameters has greatly increased the statistical signi�cance of the result (i.e.,
reduced the p-value). This can be explained by looking at the sample error variance
(MSE). Without the motion parameters, MSE = 76:60; with the motion parameters,
MSE = 46:99. That is, by including the motion parameters in the baseline model, varia-
tion in the measured response due to motion is subtracted out; this reduces the estimate
for the error variance, and hence increases the statistical signi�cance of the Cosine stimulus
in explaining the response.

Exercise: Add the -�tts command to the above command line in order to generate the
�tted time series. Plot the �tted time series on top of the actual data, as was done in
Example 1.4.3.1.
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Exercise 1.4.3.3 Comparison of Multiple Regression and Cross Correlation
Repeat Examples 1.4.3.1 and 1.4.3.2, but change the script �les to process the entire

3d+time dataset. Using afni, compare the distribution of �active�voxels found by program
3dDeconvolve, with and without the estimated motion parameter inputs. Be sure to
threshold using the partial F-statistic for the Cosine stimulus function. (Question: Why
not use the full F-statistic for thresholding?)
Repeat the above analysis using program 3d�m+. In this case, use the cosall.1D �le

as the �ideal� function input. Process the 3d+time dataset, with and without using
v2.motion.1D as the �ort� function input. Use afni to compare the 3d�m+ output ob-
tained with and without the motion parameters. Also, compare the 3dDeconvolve output
parametric maps with the 3d�m+ parametric maps.
What general conclusions do you reach?

Example 1.4.3.4 Multiple Experimental Input Stimuli; No Noise
A researcher wants to perform a multiple linear regression on FMRI time series data

to distinguish di¤erent regions of neural activation based upon di¤erences in linguistic
processing. In this experiment, the subject is shown a sequence of �words�that fall into
one of three categories: 1) �Random�: the letters which make up the �word�are selected
at random, but with the same marginal probabilities as occur in English language text;
2) �Markov�: the letters which make up the �word�are chosen with the same 1st order
Markov probabilities that are found in English; and 3) �English�: actual English words.
Letting

X = No input
R = Random input
M = Markov input
E = English input

the sequence of experimental inputs is given by:

X R M E X M X E R X R E M X X X M E R X

In this example, there are three separate stimulus time series functions, corresponding to
the times of presentation for the three di¤erent word categories.

r(t)
m(t)
e(t)

=
=
=

f
f
f

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0

g
g
g

Store these rows as single columns into �les Random.1D, Markov.1D, and English.1D, re-
spectively.
Since the researcher is not interested in the impulse response function per se, but is

interested in decomposing the output as a linear function of the di¤erent input stimuli,
only a few time lags will be used for estimating each individual input stimulus response.
These time lags are used to allow for di¤ering rates of response to the stimulus in di¤erent
voxels.
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Let the 0-2 point IRF�s be:

hR(t)
hM(t)
hE(t)

=
=
=

f
f
f

2 7 5
1 4 6
3 9 2

g
g
g

Verify that the result of convolving these IRF�s with the individual stimulus functions,
and adding the results, is the following:

y(t) = r(t)
 hR(t) +m(t)
 hM(t) + e(t)
 hE(t)
= f 0 2 8 12 15 3 4 9 11 9 7 10 15 6 6 0 1 7 17 9 g

Now, model the measured data as a constant (100) plus slope (1) plus the system
response, e.g.:

z(t) = b0 + b1t+ y(t) = 100 + 1 � t+ y(t)

=
f 100 103 110 115 119 108 110 116 119 118
117 121 127 119 120 115 117 124 135 128 g

and store this as a single column of numbers into �le Ling.1D.
The parameter vector to be estimated has the following form:

bt =
�
b0 b1 hR[0] hR[1] hR[2] hM [0] hM [1] hM [2] hE[0] hE[1] hE[2]

	
A sample batch command �le for executing Program 3dDeconvolve for this example is

presented below.

Program 3dDeconvolve Command Line for Example 1.4.3.4

3dDeconvolve n
-input1D Ling.1D n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_label 1 ��Random�� -stim_maxlag 1 2 n
-stim_file 2 Markov.1D -stim_label 2 ��Markov�� -stim_maxlag 2 2 n
-stim_file 3 English.1D -stim_label 3 ��English�� -stim_maxlag 3 2

Since there is no �noise�, the estimated full model parameter vector is exactly correct:

bt =
�
100:0 1:0 2:0 7:0 5:0 1:0 4:0 6:0 3:0 9:0 2:0

	
Example 1.4.3.5 Multiple Experimental Input Stimuli; Additive Noise
Again simulate the e¤ect of measurement error, by adding white Gaussian noise to the

above data. So, adding random values (say from a table of N(�; �2) = N(0; 1) random
variates (see Ref.[3])) to the above z(t), you obtain something that looks like:
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zn(t) = z(t) + "(t)
= f 100:46 103:14 112:46 114:68 118:93 108:30 109:71 117:30 119:24 117:04

117:06 118:47 126:47 118:81 120:54 113:44 117:19 122:81 135:02 128:52 g

Save your �response+noise�data into �le LingNoise.1D.
Now, execute the script from the previous example, except replace -input1D Ling.1D

with -input1D LingNoise.1D. The program output, for the above data, is as shown below:

Program 3dDeconvolve Screen Output for Example 1.4.3.5

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 29 Jan 2002

Baseline:
t^0 coef = 99.3593 t^0 t-st = 95.0398 p-value = 3.7617e-12
t^1 coef = 0.9435 t^1 t-st = 18.5667 p-value = 3.2618e-07

Stimulus: Random
h[0] coef = 3.4230 h[0] t-st = 3.6685 p-value = 7.9804e-03
h[1] coef = 7.7680 h[1] t-st = 9.1181 p-value = 3.9187e-05
h[2] coef = 5.0313 h[2] t-st = 6.3798 p-value = 3.7442e-04

R^2 = 0.9392 F[3,7] = 36.0613 p-value = 1.2574e-04

Stimulus: Markov
h[0] coef = 2.7658 h[0] t-st = 3.2833 p-value = 1.3427e-02
h[1] coef = 5.0166 h[1] t-st = 5.4020 p-value = 1.0064e-03
h[2] coef = 8.0361 h[2] t-st = 8.8991 p-value = 4.5900e-05

R^2 = 0.9214 F[3,7] = 27.3355 p-value = 3.0773e-04

Stimulus: English
h[0] coef = 2.2758 h[0] t-st = 2.9019 p-value = 2.2925e-02
h[1] coef = 7.9706 h[1] t-st = 10.2192 p-value = 1.8541e-05
h[2] coef = 2.1289 h[2] t-st = 2.8398 p-value = 2.5051e-02

R^2 = 0.9383 F[3,7] = 35.4904 p-value = 1.3246e-04

Full Model:
MSE = 1.0943
R^2 = 0.9802 F[9,7] = 38.4744 p-value = 3.8639e-05

Example 1.4.3.6 Multiple Experimental Input Stimuli; 3d+time Dataset
We complete the previous example by displaying the batch command �le necessary for

processing an entire 3d+time dataset. Here, it is assumed the the input data is contained
in �le Monica+orig.
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Program 3dDeconvolve Batch Command File for Example 1.4.3.6

3dDeconvolve n
-input Monica+orig n
-polort 1 -rmsmin 1.0 -progress 1000 n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_file 2 Markov.1D -stim_file 3 English.1D n
-stim_label 1 Random -stim_label 2 Markov -stim_label 3 English n
-stim_minlag 1 2 -stim_minlag 2 2 -stim_minlag 3 2 n
-stim_maxlag 1 5 -stim_maxlag 2 5 -stim_maxlag 3 5 n
-fout -bucket Monica.bucket n
-errts Monica.err

The �rst batch command speci�es that the input 3d+time dataset is to be read from
�le Monica+orig (.HEAD and .BRIK). The command -polort 1 indicates that the baseline
model should include a constant o¤set plus linear drift terms (this is the default condition).
The command -rmsmin 1.0 is used to screen out voxels showing little variation (this can be
used to exclude voxels located outside the brain). Alternatively, one could use the -mask
mname command. The command -progress 1000 is used to specify that, during execution
of the program, screen output is generated for every 1000th voxel.
The number of input stimulus �les is speci�ed with the command -num_stimts 3. The

names of the three stimulus time series �les are speci�ed with the commands -stim_�le 1
Random.1D, -stim_�le 2 Markov.1D, and -stim_�le 3 English.1D. The following three
-stim_label commands indicate that the stimulus functions will be identi�ed with the labels
Random, Markov, and English, respectively, in the program output.
The following -stim_minlag and -stim_maxlag commands specify that the system re-

sponse to the di¤erent input stimuli is to be modeled by time delayed versions of the input
stimulus functions, for time lags 2, 3, 4, and 5 (i.e., for � = 2 TR, 3 TR, 4 TR, and 5 TR).
The command -bucket Monica.bucket is used to generate the �bucket� type dataset

Monica.bucket+orig (.HEAD and .BRIK) containing the parameter estimates, partial F-
statistics, and the F-statistic for signi�cance of the regression. Note that the content of
the bucket dataset is speci�ed by the -fout command Finally, the command -errts Monica.err
indicates that the residual errors from �tting the full model to the time series data should
be written to the 3d+time dataset Monica.err+orig.
After program 3dDeconvolve has �nished execution, program afni can be used to view

the output �les. The format for the bucket dataset is illustrated below.
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Brick Label Brick Label
0 Base t^0 Coef 9 Markov[4] Coef
1 Base t^1 Coef 10 Markov[5] Coef
2 Random[2] Coef 11 Markov F-stat
3 Random[3] Coef 12 English[2] Coef
4 Random[4] Coef 13 English[3] Coef
5 Random[5] Coef 14 English[4] Coef
6 Random F-stat 15 English[5] Coef
7 Markov[2] Coef 16 English F-stat
8 Markov[3] Coef 17 Full F-stat

1.4.4 General Linear Tests

We continue consideration of Example 1.4.3.5. Recall that the full model parameter vector
was represented by:

bt =
�
b0 b1 hR[0] hR[1] hR[2] hM [0] hM [1] hM [2] hE[0] hE[1] hE[2]

	
Example 1.4.4.1 Test of a single regression parameter
Suppose that we wish to test whether there is a signi�cant response to input stimulus m(t)
at time lag 1 (TR). As a test of hypotheses, this can be expressed as:

Ho : hM [1] = 0
vs. Ha : hM [1] 6= 0

In matrix terms, the null hypothesis is speci�ed by Ho : C� = 0, where

C =
�
0 0 0 0 0 0 1 0 0 0 0

�
:

Since the null hypothesis involves only s = 1 linear constraint, matrix C is actually a row
vector. Parameter hM [1] is the 7th parameter in the list of parameters for the full model,
so matrix C consists of all 0�s, except for a single 1 in the 7th position.
Store the above matrix (as a row) into �le glt1.mat, and execute the following script:

Program 3dDeconvolve Command Line for Example 1.4.4.1

3dDeconvolve n
-input1D LingNoise.1D n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_label 1 ��Random�� -stim_maxlag 1 2 n
-stim_file 2 Markov.1D -stim_label 2 ��Markov�� -stim_maxlag 2 2 n
-stim_file 3 English.1D -stim_label 3 ��English�� -stim_maxlag 3 2 n
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-glt 1 glt1.mat -glt_label 1 ��h[1] Markov��

The output is the same as for Example 1.4.3.5, but with the additional GLT output:

General Linear Test: h[1] Markov
LC[0] coef = 5.0166 LC[0] t-st = 5.4020 p-value = 1.0064e-03

R^2 = 0.8065 F[1,7] = 29.1811 p-value = 1.0064e-03

It is important to note that LC[0] = 5:0166 is equal to hM [1], the estimated lag-1
coe¢ cient for the Markov stimulus. Also, note that F [1; 7] = 29:1811 is the square of the
calculated t�stat for hM [1]. (Can you explain why?)
Note: This example is for illustrative purposes only. Since the above test is equivalent

to the t�test for signi�cance of an individual parameter, this GLT is unnecessary.

Example 1.4.4.2 Test of a single stimulus function
The previous example showed how the GLT can be used to test for signi�cance of a single
stimulus at a single time lag. To test for signi�cance of a single stimulus at multiple time
lags, e.g., signi�cance of hM(t), one would perform the test:

Ho : hM [0] = hM [1] = hM [2] = 0
vs. Ha : not all hM [i] = 0; i = 0; 1; 2:

In matrix terms, the null hypothesis is speci�ed by Ho : C� = 0, where

C =

24 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

35
The C matrix contains a single 1 in each column corresponding to the m(t) input stimulus.
Note that the C matrix has 3 rows, since the GLT involves s = 3 linear constraints on the
parameters.
Store the above matrix as 3 rows into �le glt2.mat, and execute the script from the

previous example, except replace the -glt command line with:

�glt 3 glt2:mat � glt_label 1 "Markov"
The output is the same as for Example 1.4.3.5, but with the additional GLT output:

General Linear Test: Markov
LC[0] coef = 2.7658 LC[0] t-st = 3.2833 p-value = 1.3427e-02
LC[1] coef = 5.0166 LC[1] t-st = 5.4020 p-value = 1.0064e-03
LC[2] coef = 8.0361 LC[2] t-st = 8.8991 p-value = 4.5900e-05

R^2 = 0.9214 F[3,7] = 27.3355 p-value = 3.0773e-04

Compare the above output for the GLT with the output for the �Markov�stimulus.
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Note: This example is for illustrative purposes only. Since the above test is equivalent
to the partial F�test for signi�cance of an individual stimulus, this GLT is unnecessary.

Example 1.4.4.3 Comparison of two di¤erent regression parameters
Suppose we wish to test whether the response to stimulus r(t) at time lag 1 is equal to the
response to stimulus e(t) at time lag 1. As a test of hypotheses, this can be stated:

Ho : hR[1] = hE[1]
vs. Ha : hR[1] = hE[1]

or
Ho : hR[1]� hE[1] = 0

vs. Ha : hR[1]� hE[1] 6= 0
In matrix terms, the null hypothesis is speci�ed by Ho : C� = 0, where

C =
�
0 0 0 1 0 0 0 0 0 �1 0

�
Note how the elements of theCmatrix correspond to the coe¢ cients of the linear constraint
which corresponds to the null hypothesis.
Store the above matrix as 1 row into �le glt3.mat, and execute the script for the previous

example, except replace the -glt command line with:

�glt 1 glt3:mat � glt_label 1 "Difference"
The output is the same as for Example 1.4.3.5, but with the additional GLT output:

General Linear Test: Difference
LC[0] coef = -0.2026 LC[0] t-st = -0.1775 p-value = 8.6417e-01

R^2 = 0.0045 F[1,7] = 0.0315 p-value = 8.6417e-01

Verify that LC[0] = hR[1]� hE[1].

Example 1.4.4.4 Comparison of two di¤erent impulse response functions
To test whether the response to stimulus r(t) and to stimulus e(t) are equal at all time
lags, i.e., to test

Ho : hR[i] = hE[i]; i = 0; 1; 2
vs. Ha : not all hR[i] = hE[i]:

The null hypothesis can also be written:

Ho :

8<:
hR[0]� hE[0] = 0, and
hR[1]� hE[1] = 0, and
hR[2]� hE[2] = 0

so we would use the following GLT matrix:

C =

24 0 0 1 0 0 0 0 0 �1 0 0
0 0 0 1 0 0 0 0 0 �1 0
0 0 0 0 1 0 0 0 0 0 �1

35
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Store the above matrix as 3 rows into �le glt4.mat, and execute the script for the previous
example, except replace the -glt command line with:

�glt 3 glt4:mat � glt_label 1 "Random� English"
The output is the same as for Example 1.4.3.5, but with the additional GLT output:

General Linear Test: Random-English
LC[0] coef = 1.1473 LC[0] t-st = 1.0466 p-value = 3.3008e-01
LC[1] coef = -0.2026 LC[1] t-st = -0.1775 p-value = 8.6417e-01
LC[2] coef = 2.9024 LC[2] t-st = 2.8088 p-value = 2.6191e-02

R^2 = 0.6514 F[3,7] = 4.3598 p-value = 4.9681e-02

Verify that LC[0] = hR[0]� hE[0], LC[1] = hR[1]� hE[1], and LC[2] = hR[2]� hE[2].

Example 1.4.4.5 Comparison of two di¤erent impulse response magnitudes
The previous example shows how to test whether the responses to two di¤erent stimuli di¤er
at any time lag. Of more direct interest may be whether the responses di¤er in �magnitude�.
Here, we will use �area under the curve�as an indication of response magnitude, and will
approximate �area under the curve�by summing the impulse response function parameters
over all time lags. In this case, the hypotheses under consideration are:

Ho : hR[0] + hR[1] + hR[2] = hE[0] + hE[1] + hE[2]
vs. Ha : hR[0] + hR[1] + hR[2] 6= hE[0] + hE[1] + hE[2]

In matrix terms, the null hypothesis is speci�ed by Ho : C� = 0, where

C =
�
0 0 1 1 1 0 0 0 �1 �1 �1

�
Note that this GLT involves only 1 linear constraint, whereas the GLT in the previous
example used 3 linear constraints.
Store the above matrix as 1 row into �le glt5.mat, and execute the script for the previous

example, except replace the -glt command line with:

�glt 1 glt5:mat � glt_label 1 "Random� English"
The output is the same as for Example 1.4.3.5, but with the additional GLT output:

General Linear Test: Random-English
LC[0] coef = 3.8471 LC[0] t-st = 1.5420 p-value = 1.6697e-01

R^2 = 0.2536 F[1,7] = 2.3779 p-value = 1.6697e-01

Verify that LC[0] = hR[0] + hR[1] + hR[2]� hE[0]� hE[1]� hE[2].

Example 1.4.4.6 Calculation of GLT for a 3d+time dataset
In this example, we consider 3 di¤erent experimental conditions (A, B, and C). For each

of the 3 conditions, the IRF is to be estimated at 5 time points (0 TR through 4 TR). The
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individual impulse response functions are then to be compared with each other (A - B and
A - C).
The full parameter vector has 17 elements:

�t = (�0; �1; 
a;0; 
a;1; 
a;2; 
a;3; 
a;4; 
b;0; 
b;1; 
b;2; 
b;3; 
b;4; 
c;0; 
c;1; 
c;2; 
c;3; 
c;4)

and the null hypotheses are speci�ed by:

Ho;1 :

8>>>><>>>>:

a;0 = 
b;0,

a;1 = 
b;1,

a;2 = 
b;2,

a;3 = 
b;3,

a;4 = 
b;4,

and Ho;2 :

8>>>><>>>>:

a;0 = 
c;0,

a;1 = 
c;1,

a;2 = 
c;2,

a;3 = 
c;3,

a;4 = 
c;4,

In this case, there are 2 GLT�s. Each GLT is determined by a matrix (with s = 5 rows and
P = 17 columns), which must be stored in the user speci�ed �les:

Contents of �le Di¤AB.mat:
0 0 1 0 0 0 0 �1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 �1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 �1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 �1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 �1 0 0 0 0 0

Contents of �le Di¤AC.mat:
0 0 1 0 0 0 0 0 0 0 0 0 �1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 �1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 �1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 �1

The following batch command �le can be used to conduct the general linear tests
(GLT�s) for testing these two hypotheses.

Program 3dDeconvolve Batch Command File for Example 1.4.4.6

3dDeconvolve n
-input Subj307+orig n
-polort 1 -rmsmin 1.0 -progress 1000 n
-num_stimts 3 n
-stim_file 1 CondA.1D -stim_label 1 CondA -stim_maxlag 1 4 n
-stim_file 2 CondB.1D -stim_label 2 CondB -stim_maxlag 2 4 n
-stim_file 3 CondC.1D -stim_label 3 CondC -stim_maxlag 3 4 n
-glt 5 DiffAB.mat -glt_label 1 ��A-B�� n
-glt 5 DiffAC.mat -glt_label 2 ��A-C�� n
-fout -bucket Subj307.buck
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After program 3dDeconvolve has �nished execution, program afni can be used to view
the output �les. The format for the bucket dataset Subj307.buck+orig is illustrated below.

Brick Label Brick Label
0 Base t^0 Coef 17 CondC[3] Coef
1 Base t^1 Coef 18 CondC[4] Coef
2 CondA[0] Coef 19 CondC F-stat
3 CondA[1] Coef 20 A-B LC[0]
4 CondA[2] Coef 21 A-B LC[1]
5 CondA[3] Coef 22 A-B LC[2]
6 CondA[4] Coef 23 A-B LC[3]
7 CondA F-stat 24 A-B LC[4]
8 CondB[0] Coef 25 A-B F-stat
9 CondB[1] Coef 26 A-C LC[0]
10 CondB[2] Coef 27 A-C LC[1]
11 CondB[3] Coef 28 A-C LC[2]
12 CondB[4] Coef 29 A-C LC[3]
13 CondB F-stat 30 A-C LC[4]
14 CondC[0] Coef 31 A-C F-stat
15 CondC[1] Coef 32 Full F-stat
16 CondC[2] Coef

Note that the above GLT�s test whether the IRF�s di¤er at any time lag s, 0 � s � 4.
To test whether the �area under the curve�is di¤erent, one could use the following modi�ed
test:

Program 3dDeconvolve Batch Command File for Example 1.4.4.6

3dDeconvolve n
...

(same as above)
...

-glt 1 DiffAB2.mat n
-glt 1 DiffAC2.mat

where the matrices which de�ne these GLT�s each contain a single row (s = 1):

Contents of �le Di¤AB2.mat:
0 0 1 1 1 1 1 �1 �1 �1 �1 �1 0 0 0 0 0

Contents of �le Di¤AC2.mat:
0 0 1 1 1 1 1 0 0 0 0 0 �1 �1 �1 �1 �1

55



One advantage of this approach is that the measure of the magnitude of each di¤erence
has been reduced to a single sub-brick, either A-B LC[0], or A-C LC[0]. This simpli�es
subsequent statistical analysis.

1.4.5 Multiple Linear Regression Approach to ANOVA

The following examples illustrate how multiple linear regression can be used to perform an
ANOVA type analysis.
Previous versions of program 3dDeconvolve would always include an intercept (b0) (i.e.,

constant) term. However, the current version of the program allows the user to specify
that no baseline parameters are to be included in the model (i.e., not even a constant
term). This simpli�es implementation of an ANOVA cell means model, as indicated by
the following example..

Example 1.4.5.1 Cell means ANOVA model
As an illustration of using 3dDeconvolve to solve a pure ANOVA type problem, we will

consider the �Castle Bakery�example from Ref.[2]. In that example, there are 2 factors:
Factor A, at 3 levels; and Factor B, at 2 levels. Letting

AiBj =

�
1 if Factor A is at level i and Factor B is at level j
0 otherwise

then the cell means model would be given by:

Y = aA1B1 + bA1B2 + cA2B1 + dA2B2 + eA3B1 + fA3B2

The data for this experiment are presented in the following table:

Y A1B1 A1B2 A2B1 A2B2 A3B1 A3B2
47 1 0 0 0 0 0
43 1 0 0 0 0 0
46 0 1 0 0 0 0
40 0 1 0 0 0 0
62 0 0 1 0 0 0
68 0 0 1 0 0 0
67 0 0 0 1 0 0
71 0 0 0 1 0 0
41 0 0 0 0 1 0
39 0 0 0 0 1 0
42 0 0 0 0 0 1
46 0 0 0 0 0 1

The data from the above table, without the column headings, should be entered into �le
Castle.data.1D. Note that the �rst column contains the measured data, and the following
6 columns contain the indicator variables A1B1,...,A3B2.
To perform the ANOVA analysis, the indicator variables are entered as stim functions,

as in the above equation. Do this, by executing the following script:
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Program 3dDeconvolve Command Line for Example 1.4.5.1

3dDeconvolve n
-input1D �Castle.data.1D[0]� n
-nfirst 0 n
-polort -1 n
-num_stimts 6 n
-stim_file 1 �Castle.data.1D[1]� -stim_label 1 A1B1 n
-stim_file 2 �Castle.data.1D[2]� -stim_label 2 A1B2 n
-stim_file 3 �Castle.data.1D[3]� -stim_label 3 A2B1 n
-stim_file 4 �Castle.data.1D[4]� -stim_label 4 A2B2 n
-stim_file 5 �Castle.data.1D[5]� -stim_label 5 A3B1 n
-stim_file 6 �Castle.data.1D[6]� -stim_label 6 A3B2

This generates the following output:

Program 3dDeconvolve Screen Output for Example 1.4.5.2

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sep 1998
Latest Revision: 27 Feb 2002

Results for Voxel #0:

Baseline:

Stimulus: A1B1
h[0] coef = 45.0000 h[0] t-st = 19.7974 p-value = 1.0773e-06

R^2 = 0.9849 F[1,6] = 391.9355 p-value = 1.0773e-06

Stimulus: A1B2
h[0] coef = 43.0000 h[0] t-st = 18.9175 p-value = 1.4098e-06

R^2 = 0.9835 F[1,6] = 357.8710 p-value = 1.4098e-06

Stimulus: A2B1
h[0] coef = 65.0000 h[0] t-st = 28.5962 p-value = 1.2109e-07

R^2 = 0.9927 F[1,6] = 817.7419 p-value = 1.2109e-07

Stimulus: A2B2
h[0] coef = 69.0000 h[0] t-st = 30.3560 p-value = 8.4809e-08

R^2 = 0.9935 F[1,6] = 921.4839 p-value = 8.4809e-08
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Stimulus: A3B1
h[0] coef = 40.0000 h[0] t-st = 17.5977 p-value = 2.1612e-06

R^2 = 0.9810 F[1,6] = 309.6774 p-value = 2.1612e-06

Stimulus: A3B2
h[0] coef = 44.0000 h[0] t-st = 19.3574 p-value = 1.2306e-06

R^2 = 0.9842 F[1,6] = 374.7097 p-value = 1.2306e-06

Full Model
MSE = 10.3333
R^2 = 0.9981 F[6,6] = 528.9032 p-value = 6.7016e-08

Compare these results with the textbook values for the individual cell means.

Example 1.4.5.2 Tests for Main E¤ects and Interactions
We continue the previous example by testing for the presence of main e¤ects and inter-

actions.
Recall that the cell means model for this example is given by:

Y = aA1B1 + bA1B2 + cA2B1 + dA2B2 + eA3B1 + fA3B2

Therefore, the null hypothesis of the test for Factor A main e¤ect is:

a+ b = c+ d () a+ b� c� d = 0
a+ b = e+ f () a+ b� e� f = 0

Since the parameter vector � is:

�t =
�
a b c d e f

�
the test for Factor A main e¤ect can be represented by the following GLT matrix:

C =

�
1 1 �1 �1 0 0
1 1 0 0 �1 �1

�
Store this matrix as 2 rows of ASCII numbers into �le Castle.matA.
The null hypothesis of the test for Factor B main e¤ect is:

a+ c+ e = b+ d+ f () a� b+ c� d+ e� f = 0

So, the test for Factor B main e¤ect can be represented by the following GLT matrix:

C =
�
1 �1 1 �1 1 �1

�
Store this matrix as 1 row of ASCII numbers into �le Castle.matB.
Finally, the null hypothesis of the test for A�B interaction is:

a+ d = b+ c () a� b� c+ d = 0
a+ f = b+ e () a� b� e+ f = 0
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So, the test for A�B interaction can be represented by the following GLT matrix:

C =

�
1 �1 �1 1 0 0
1 �1 0 0 �1 1

�
Store this matrix as 2 rows of ASCII numbers into �le Castle.matAB.
That�s all you will need to execute the following script:

Program 3dDeconvolve Command Line for Example 1.4.5.2

3dDeconvolve n
-input1D �Castle.data.1D[0]� n
-nfirst 0 n
-polort -1 n
-num_stimts 6 n
-stim_file 1 �Castle.data.1D[1]� -stim_label 1 A1B1 n
-stim_file 2 �Castle.data.1D[2]� -stim_label 2 A1B2 n
-stim_file 3 �Castle.data.1D[3]� -stim_label 3 A2B1 n
-stim_file 4 �Castle.data.1D[4]� -stim_label 4 A2B2 n
-stim_file 5 �Castle.data.1D[5]� -stim_label 5 A3B1 n
-stim_file 6 �Castle.data.1D[6]� -stim_label 6 A3B2 n
-glt 2 Castle.matA -glt_label 1 �Factor A� n
-glt 1 Castle.matB -glt_label 2 �Factor B� n
-glt 2 Castle.matAB -glt_label 3 �AB Interaction�

This generates the following output:

Program 3dDeconvolve Screen Output for Example 1.4.5.2

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sep 1998
Latest Revision: 27 Feb 2002

Results for Voxel #0:

(same as above)

General Linear Test: Factor A
LC[0] coef = -46.0000 LC[0] t-st = -10.1187 p-value = 5.4150e-05
LC[1] coef = 4.0000 LC[1] t-st = 0.8799 p-value = 4.1277e-01

R^2 = 0.9614 F[2,6] = 74.7097 p-value = 5.7536e-05
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General Linear Test: Factor B
LC[0] coef = -6.0000 LC[0] t-st = -1.0776 p-value = 3.2261e-01

R^2 = 0.1622 F[1,6] = 1.1613 p-value = 3.2261e-01

General Linear Test: AB Interaction
LC[0] coef = 6.0000 LC[0] t-st = 1.3198 p-value = 2.3501e-01
LC[1] coef = 6.0000 LC[1] t-st = 1.3198 p-value = 2.3501e-01

R^2 = 0.2791 F[2,6] = 1.1613 p-value = 3.7470e-01

Compare these results with the textbook values. Compare the calculated F -statistics
and p-values for factor main e¤ects and interactions.

1.4.6 Concatenation of Runs

Example 1.4.6.1
Let the 0-3 point IRF be:

h(t) =
�
0 10 20 10

	
Let the stimulus function be:

f(t) =
�
0 0 0 1 0 0 0 0 0 0

	
Save f(t) as a single column of numbers in �le f.1D. Convolving the stimulus function with
the IRF, we get:

f(t)
 h(t) =
�
0 0 0 0 10 20 10 0 0 0

	
If we model the measured response by adding a constant (100) plus slope (1),

y(t) =
�
100 101 102 103 114 125 116 107 108 109

	
Save y(t) as a single column of numbers in �le y.1D. Now, execute the following script:

3dDeconvolve n
-input1D y.1D n
-num_stimts 1 n
-stim_file 1 f.1D -stim_label 1 �f� -stim_maxlag 1 3

Verify that this yields the correct values for h(t).

Example 1.4.6.2
Now, concatenate the stimulus function with itself:

cat f.1D f.1D > fcat.1D
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and do the same with the measured data:

cat y.1D y.1D > ycat.1D

Be sure to remove any blank lines that may be present in �les fcat.1D and ycat.1D. Now,
analyze the concatenated datasets using 3dDeconvolve:

3dDeconvolve n
-input1D ycat.1D n
-num_stimts 1 n
-stim_file 1 fcat.1D -stim_label 1 �fcat� -stim_maxlag 1 3

Note that this yields the following estimate for the IRF:

h(t) =
�
�2:2619 8:6447 19:5513 10:4579

	
Considering the fact that there is no noise present, can you explain why the estimate is

so poor? Hint: What is the underlying model for the data?

Example 1.4.6.3
From the previous Example, we see that it is necessary to account for the fact that the

separate runs have separate baselines (constant plus slope). One approach is to remove
the linear trend from each run separately, prior to concatenation. To determine the linear
trend, run 3dDeconvolve using y.1D as input, but without any stim functions (i.e., just use
the baseline model = constant plus linear slope.). This can be done as follows:

3dDeconvolve -input1D y.1D -num_stimts 0

This yields b0 = 102:9091 and b1 = 1:2424. (Note: b0 6= 100 and b1 6= 1. Why?)
Now, remove the linear trend from the original data:

yrlt(t) = y(t)� b0 � b1 � t
=

�
�2:9091 �3:1515 �3:3939 �3:6363 6:1213

15:8789 5:6365 �4:6059 �4:8483 �5:0907
	

Store this as a single column in �le yrlt.1D. Now, concatenate the detrended time series:

cat yrlt.1D yrlt.1D > yrltcat.1D

As before, make sure that any blank lines are removed. Now, apply 3dDeconvolve to
the detrended, concatenated data:

3dDeconvolve n
-input1D yrltcat.1D n
-num_stimts 1 n
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-stim_file 1 fcat.1D -stim_label 1 �fcat� -stim_maxlag 1 3

This yields:
h(t) =

�
0:5483 10:3285 20:1088 9:8890

	
This answer is much better than the previous answer (which did not use trend removal).
However, the answer is still not perfect, even though no noise is present. Why? (An-
swer: The stimulus function is not orthogonal to a constant plus linear trend. Therefore,
removing the linear trends prior to estimating the model parameters is not equivalent to
estimating the linear trends and the model parameters simultaneously.)

Example 1.4.6.4
Here, we will use the -concat option to specify that the dataset is composed of con-

catenated runs, and to indicate where the individual runs begin. The program will then
include separate linear trends for each run as the baseline model component of the full
model. For the present case, there are 2 runs, which begin at index numbers 0 and 10.
Therefore, save

0
10

as �le runs.1D, and execute the following script:

3dDeconvolve n
-input1D ycat.1D n
-concat runs.1D n
-num_stimts 1 n
-stim_file 1 fcat.1D -stim_label 1 �fcat� -stim_maxlag 1 3

Verify that this yields the correct result:

h(t) =
�
0 10 20 10

	
Example 1.4.6.5 Using -concat with a 3d+time dataset
In Example 1.4.4.6, we calculated GLT�s for a 3d+time dataset. We will continue with

that example, only now we will assume that the input dataset is actually a concatenation
of 4 runs, each of length 125 TR. In order to use the -concat option, it is �rst necessary to
create a �le containing the index numbers of the concatenated runs, e.g.,

0
125
250
375

Save this as �le cat.1D.
Recall that in Example 1.4.4.6, we considered 3 di¤erent experimental conditions (A, B,

and C). As before, for each of the 3 conditions, the IRF is to be estimated at 5 time points
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(0 TR through 4 TR). The individual impulse response functions are then to be compared
with each other (A - B and A - C).
However, unlike the previous example, the full parameter vector now has 23 elements:

�t = (�1;0; �1;1; �2;0; �2;1; �3;0; �3;1; �4;0; �4;1; 
a;0; 
a;1; 
a;2; 
a;3; 
a;4;


b;0; 
b;1; 
b;2; 
b;3; 
b;4; 
c;0; 
c;1; 
c;2; 
c;3; 
c;4)

Note that �0 and �1 are estimated independently for each of the 4 runs, accounting for 8
of the parameters. Suppose that the null hypotheses are speci�ed by:

Ho;1 : 
a;0 + 
a;1 + 
a;2 + 
a;3 + 
a;4 = 
b;0 + 
b;1 + 
b;2 + 
b;3 + 
b;4

and
Ho;2 : 
a;0 + 
a;1 + 
a;2 + 
a;3 + 
a;4 = 
c;0 + 
c;1 + 
c;2 + 
c;3 + 
c;4

So, there are 2 GLT�s. Each GLT is determined by a matrix (with s = 1 row and P = 23
columns), which must be stored in the user speci�ed �les Di¤AB3.mat and Di¤AC3.mat:

Contents of �le Di¤AB3.mat:
0 0 0 0 0 0 0 0 1 1 1 1 1 �1 �1 �1 �1 �1 0 0 0 0 0

Contents of �le Di¤AC3.mat:
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 �1 �1 �1 �1 �1

Note that the �rst 8 elements in each row (corresponding to the �0�s and �1�s) are set
to zero. The following batch command �le can be used to conduct the general linear tests
(GLT�s) for testing these two hypotheses, for the concatenated dataset.

Program 3dDeconvolve Batch Command File for Example 1.4.6.5

3dDeconvolve n
-input Subj307+orig -concat cat.1D n
-polort 1 -rmsmin 1.0 -progress 1000 n
-num_stimts 3 n
-stim_file 1 CondA.1D -stim_label 1 CondA -stim_maxlag 1 4 n
-stim_file 2 CondB.1D -stim_label 2 CondB -stim_maxlag 2 4 n
-stim_file 3 CondC.1D -stim_label 3 CondC -stim_maxlag 3 4 n
-glt 1 DiffAB3.mat -glt_label 1 ��A-B�� n
-glt 1 DiffAC3.mat -glt_label 2 ��A-C�� n
-fout -bucket Subj307.buck

After program 3dDeconvolve has �nished execution, program afni can be used to view
the output �les. The format for the bucket dataset Subj307.buck+orig is illustrated below.
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Brick Label Brick Label
0 Run #1 t^0 Coef 16 CondB[2] Coef
1 Run #1 t^1 Coef 17 CondB[3] Coef
2 Run #2 t^0 Coef 18 CondB[4] Coef
3 Run #2 t^1 Coef 19 CondB F-stat
4 Run #3 t^0 Coef 20 CondC[0] Coef
5 Run #3 t^1 Coef 21 CondC[1] Coef
6 Run #4 t^0 Coef 22 CondC[2] Coef
7 Run #4 t^1 Coef 23 CondC[3] Coef
8 CondA[0] Coef 24 CondC[4] Coef
9 CondA[1] Coef 25 CondC F-stat
10 CondA[2] Coef 26 A-B LC[0]
11 CondA[3] Coef 27 A-B F-stat
12 CondA[4] Coef 28 A-C LC[0]
13 CondA F-stat 29 A-C F-stat
14 CondB[0] Coef 30 Full F-stat
15 CondB[1] Coef

Note that the �rst 8 sub-bricks contain the estimated baseline parameters.

1.4.7 Censoring of Individual Time Points

Due to large measurement error, or for other reasons, the user may wish to remove indi-
vidual time points from the measurement data. However, because of the time-dependent
nature of the system response model used by program 3dDeconvolve, it is not correct to
simply remove time points from a 3d+time dataset (and delete the corresponding time
points from the input stimulus functions). For this reason, the -censor command should be
used instead. This command allows for removal of individual time points from the analy-
sis, while preserving the correct time dependencies. This is illustrated by the following
examples.

Example 1.4.7.1 Deleting Time Points
Recall that in Example 1.4.2.3, since no noise was present, the program output gave

the exactly correct parameter vector:

bt =
�
100:00 1:00 0:00 5:00 10:00 5:00 2:00

	
Suppose that we now delete one of the �measurements�, along with the corresponding time
point of the stimulus function. For example, if we delete the 9th time point, we have the
input stimulus function:

gp(t) =
�
1 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0

	
and the noisy measurement data:
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wp(t) = f 100 106 117 118 111 112 121 127 116
117 121 117 120 124 125 133 137 135 126 g

Save the above as columns into �les gp.1D and wp.1D. Now, execute the following script,
which uses the gp(t) stimulus function, and the wp(t) �data�.

Program 3dDeconvolve Command Line for Example 1.4.7.1

3dDeconvolve n
-input1D wp.1D -num_stimts 1 n
-stim_file 1 gp.1D -stim_label 1 ��gp�� -stim_maxlag 1 4

The output estimated full model parameter vector is not correct:

bt =
�
102:08 1:25 �1:04 4:71 7:71 2:31 �0:81

	
even though there is no noise present, and even though there is su¢ cient redundancy in
the data to yield the correct answer.

Example 1.4.7.2 Censoring Time Points
The correct way to remove one or more time points is to use the -censor command

option in program 3dDeconvolve. For example, to eliminate the 9th data point, use

c(t) =
�
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

	
Save this as a column into �le c.1D. Note that this array consists of all 1�s, except for a 0
at the time point to be �censored�. Also, note that the arrray has the same length as the
original input data. Execute the following script, which, in addition to the censor array
c(t), also uses the original g(t) stimulus function:

g(t) =
�
1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0

	
and the original w(t) �data�:

w(t) = f 100 106 117 118 111 112 121 127 125 116
117 121 117 120 124 125 133 137 135 126 g

Program 3dDeconvolve Command Line for Example 1.4.7.2

3dDeconvolve n
-input1D w.1D -num_stimts 1 n
-censor c.1D n
-stim_file 1 g.1D -stim_label 1 ��g�� -stim_maxlag 1 4
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This again yields the correct answer, this time using only 19 of the 20 data points:

bt =
�
100:00 1:00 0:00 5:00 10:00 5:00 2:00

	
Exercise 1.4.7.3
Can you explain the di¤erence in the above results? Why did simple deletion of a

time point produce the wrong answer? (Hint: Repeat the above examples, but add the
-xout command. Examine and compare the experimental design matrices for these two
examples.)

1.4.8 Sub-TR Input Stimulus Functions

In all of the previous examples, it was assumed that the input stimulus functions could
change state only at multiples of the TR time unit. In this section, we consider a stimulus
function that is allowed to change at a sub-multiple of TR. Note that the following examples
make use of program RSFgen, which will be described later in Section 3, and program
3dConvolve, which will be described in Section 4.

Example 1.4.8.1 NPTR = 1
To establish a baseline for comparison, we will generate �data�and an input stimulus

function which are sampled at the same rate (i.e., 1/TR). The following command line
will generate a random binary stimulus function of length 200 time points.

Program RSFgen Command Line for Example 1.4.8.1

RSFgen -nt 200 -num_stimts 1 -nreps 1 100 n
-one_file -prefix myRandBin

The above command line generates the following 200 point random binary sequence, which
is stored in �le myRandBin.1D:

f(t) = f 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 : : :g

The model that we will use for the measured data is:

y(n) = b0 + b1n+ f(n)
 h(n)
= b0 + b1n+ h0f(n) + h1f(n� 1) + � � �+ h5f(n� 5)

where the baseline parameters b and the IRF h are given by:

bt =
�
b0 b1

�
ht =

�
h0 h1 h2 h3 h4 h5

�
=
�
100:0 0:1

�
=
�
0:0 2:0 4:0 5:0 3:0 1:0

�
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In order to create the �data�, we will convolve the stimulus function f(t) with the IRF
h(t), and add the baseline. First, store the baseline parameter vector b as a column in
�le myBase.1D, and store the IRF vector h as a column in �le myIRF.1D. Now, create the
data with the following command line:

Program 3dConvolve Command Line for Example 1.4.8.1

3dConvolve n
-input1D n
-nfirst 0 -nlast 199 -polort 1 n
-base_file myBase.1D n
-num_stimts 1 n
-stim_file 1 myRandBin.1D -stim_maxlag 1 5 n
-iresp 1 myIRF.1D n
-output myData

The output �le, mydata.1D, contains the data vector y, which is displayed below. Plot
the stimulus function f(t) and the time series �data�y(t) using program 1dplot. Now, use
program 3dDeconvolve to analyze the �data�:

Program 3dDeconvolve Command Line for Example 1.4.8.1

3dDeconvolve n
-input1D myData.1D n
-nfirst 0 -nlast 199 -polort 1 n
-num_stimts 1 n
-stim_file 1 myRandBin.1D -stim_maxlag 1 5 n
-xout

The -xout command causes the design matrix X to be written to the screen. The design
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matrix X, and the data vector y, are displayed below.

X = [x0 x1 x2 x3 x4 x5 x6 x7] =

2666666666666666666666666666664

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 4 1 1 0 0 0 0
1 5 1 1 1 0 0 0
1 6 0 1 1 1 0 0
1 7 1 0 1 1 1 0
1 8 1 1 0 1 1 1
1 9 1 1 1 0 1 1
1 10 1 1 1 1 0 1
1 11 0 1 1 1 1 0
1 12 0 0 1 1 1 1
1 13 1 0 0 1 1 1
1 14 0 1 0 0 1 1
1 15 1 0 1 0 0 1
...

...
...
...
...
...
...
...

3777777777777777777777777777775

; y =

2666666666666666666666666666664

100:0
100:1
100:2
100:3
102:4
106:5
111:6
112:7
111:8
110:9
113:0
115:1
114:2
110:3
107:4
106:5
...

3777777777777777777777777777775
Verify that the columns of X consist of time delayed version of f , as listed below:

x0[k] = 1 x1[k] = k x2[k] = f [k] x3[k] = f [k � 1]
x4[k] = f [k � 2] x5[k] = f [k � 3] x6[k] = f [k � 4] x7[k] = f [k � 5]

Since the �data�contains no noise, verify that the 3dDeconvolve output estimated parame-
ter vector is exactly correct:�

bt ht
�
=
�
100:00 0:10 0:00 2:00 4:00 5:00 3:00 1:00

�
Example 1.4.8.2 NPTR = 2
For direct comparison with the previous example, we will generate data that corresponds

to a sub-sampling of the input data. That is, we will e¤ectively double the TR by discarding
every 2nd data point from the above y(t) time series. This can be done manually, which
is somewhat tedious, or we can use the following command line to accomplish the same
thing. Note that the IRF coe¢ cient �le, myIRF.1D, is the same as before. However, due
to the new TR, the new baseline parameter �le, myBase2.1D, must be modi�ed slightly
from before, i.e.:

bt =
�
100:0 0:2

�
Now, execute the following:

Program 3dConvolve Command Line for Example 1.4.8.2
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3dConvolve n
-input1D n
-nfirst 0 -nlast 99 -polort 1 n
-base_file myBase2.1D n
-num_stimts 1 n
-stim_file 1 myRandBin.1D -stim_maxlag 1 5 n
-stim_nptr 1 2 n
-iresp 1 myIRF.1D n
-output myData2

Verify that the output �le myData2.1D, which is displayed below as vector y, contains
the 100 time point sub-sampled data. Use program 1dplot to plot both the original and
the sub-sampled data, and compare. Since the TR has been doubled, this means that the
original input stimulus function f(t) is sampled at a rate of 2

TR
relative to the new TR.

The model that we will use for the measured data with the new TR is:

y(n) = b0 + b1n+ f(2n)
 h(n)
= b0 + b1n+ h0f(2n) + h1f(2n� 1) + � � �+ h5f(2n� 5)

Therefore, in order to analyze this data, it is necessary to use the -stim_nptr 1 2 command,
as indicated below.

Program 3dDeconvolve Command Line for Example 1.4.8.2

3dDeconvolve n
-input1D myData2.1D n
-nfirst 0 -nlast 99 -polort 1 n
-num_stimts 1 n
-stim_file 1 myRandBin.1D -stim_maxlag 1 5 n
-stim_nptr 1 2 n
-xout

As before, the -xout command is used to write the X matrix to the screen. Compare
this X matrix (displayed below) with the previous X matrix.
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X = [x0 x1 x2 x3 x4 x5 x6 x7] =

2666666666666666666666666666664

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2 1 1 0 0 0 0
1 3 0 1 1 1 0 0
1 4 1 1 0 1 1 1
1 5 1 1 1 1 0 1
1 6 0 0 1 1 1 1
1 7 0 1 0 0 1 1
1 8 1 1 0 1 0 0
1 9 1 1 1 1 0 1
1 10 1 1 1 1 1 1
1 11 0 0 1 1 1 1
1 12 1 1 0 0 1 1
1 13 0 0 1 1 0 0
1 14 1 1 0 0 1 1
1 15 0 0 1 1 0 0
...

...
...
...
...
...
...
...

3777777777777777777777777777775

; y =

2666666666666666666666666666664

100:0
100:2
102:4
111:6
111:8
113:0
114:2
107:4
108:6
113:8
117:0
115:2
108:4
111:6
108:8
112:0
...

3777777777777777777777777777775
Verify that the columns of the current X matrix are given by:

x0[k] = 1 x1[k] = k x2[k] = f [2k] x3[k] = f [2k � 1]
x4[k] = f [2k � 2] x5[k] = f [2k � 3] x6[k] = f [2k � 4] x7[k] = f [2k � 5]

As before, since no noise is present, verify that the output parameter vector is exactly
correct.

Exercise 1.4.8.3
Repeat Example 1.4.8.1, but use a TR that is 3 times longer than the original TR. This

will require using the command -stim_nptr 1 3. Can you predict the contents of the X
matrix?

Exercise 1.4.8.4
The previous examples used input data with no noise. Try adding noise to the input

data, and compare the parameter estimates with the �no noise�results. For example, add
the command -sigma 1.0 to the script for program 3dConvolve.
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2 Program plug_deconvolve

2.1 Purpose

Program plug_deconvolve is an AFNI �plug-in� which displays either the �tted output
waveform (on top of the actual time series data), or the residuals from �tting the out-
put waveform, or the estimated impulse response function waveform, for voxels of inter-
est. Program plug_deconvolve is the interactive version of the batch command program
3dDeconvolve. The reader is strongly advised to consult the documentation for program
3dDeconvolve �rst.

2.2 Usage

To use plug_deconvolve, �rst one must be running afni. Display the Image and Graph for
Axial, Sagittal, or Coronal views, for the measured FMRI 3d+time dataset. Choose De�ne
Datamode. This will popup the datamode menu. From the last line of the menu, choose
Plugins. This presents a menu of the di¤erent AFNI plugins that are available. Choose
Deconvolution.
This opens the Deconvolution popup control box. At the top are four control buttons:

Quit, to close the popup without using the plugin; Run + Keep, to run the plugin and keep
the popup window open; Run + Close, to run the plugin and close the popup window; and
Help, to popup a help window. Below this, there is the Control option line, the Concat
option line, the Censor option line, followed by 20 StimFnc option lines, and, �nally, 20 GLT
Mat option lines.
On the Control option line, there are four option choosers: Base, NFirst, NLast, and IRF.

The Base option lets the user specify the baseline (polynomial) model: None, Const, Linear,
Quadrtc, Cubic, Quartic, or Quintic. That is, the baseline is modeled by either �0�, or �a�, or
�a+ bt�, or �a+ bt+ ct2�, or etc. The NFirst box allows the user to specify the initial time
series data point to include when performing the deconvolution analysis. The default value
NFirst = -1 has the special meaning: �Set NFirst to the maximum of the MaxLag�s�, as
de�ned below. The third number chooser on the Control option line is labeled NLast. This
option allows the user to specify the number of the last image to use in the analysis. The
last option on the Control option line is IRF. When plotting the impulse response function,
and when there are multiple stimulus functions, this option allows the user to select, by
means of the attached Label, which impulse response function is to be plotted.
This is followed by the Concat option line. This option is used to specify that the input

3d+time dataset is a concatenation of runs. The File input is used to select the name of
the .1D �le containing the list of volume indices of starting points for the individual runs.
For a multi-column .1D �le, the Col # option lets the user specify which column contains
the list of concatenated run indices. The optional Label input lets the user attach a name
to the concatenation input. See Section 1.2.12 for more details about concatenation of
runs.
Next is the Censor option line. This option is used to specify that certain time points

are to be removed from the analysis. The File input is used to select the name of the .1D
�le containing a column of 1�s (for time points which are used) and 0�s (for time points
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which are excluded). For a multi-column .1D �le, the Col # option lets the user specify
which column contains the list of points to be censored. The optional Label input lets the
user attach a name to the censor input. See Section 1.2.13 for more details about censoring
of data points.
Below the Censor option line are 20 StimFnc option lines. As the name implies, the

StimFnc option line allows the user to select the time series data �le which represents the
input stimulus function. There are seven options on each StimFnc option line. The �rst
option, Label, allows the user to enter a short character string for identi�cation of that
particular stimulus. This is particularly useful for labeling the program output when there
are multiple stimuli. The second option, File, lets the user specify the name of the .1D time
series �le which represents the stimulus function. The third option, Col #, allows the user
to specify the column of the .1D time series �le to use for the stimulus function. This
option allows the program to access multi-column .1D �les. The fourth and �fth options
allow the user to specify the minimum and maximum time lags,MinLag andMaxLag, for the
estimated impulse response function. The sixth option, NPTR, allows the user to specify
the number of time points p per TR for this stimulus. The default value is p = 1. Note
that the minimum and maximum time lags are speci�ed in units of TR=p. The seventh
option, Base, allows the user to specify whether this stimulus function should be included
as part of the baseline model, for calculation of the full model regression statistics.
Below the Stimulus option lines there are 20 GLT Matrix option lines. The user may

optionally assign a Label for the GLT output. For each GLT to be computed, the user
must specify the number of Rows (i.e., number of linear constraints) in the matrix, and the
name of the File which contains the matrix.

2.3 Examples

Example 2.3.1
We will assume that the current subdirectory contains the AFNI 3d+time dataset of

interest, which we will take to be v2:time+orig, plus the bucket dataset �le v2:bucket+orig,
which last was created by program 3dDeconvolve. To start the program, type afni. First,
from the main menu, click on Switch Anatomy. From the Anatomy submenu, choose v2:time.
Then, from the main menu, click on Axial (or Sagittal, or Coronal) Image. Once the image is
displayed, it can be resized or moved to another (more convenient) location. Next, click on
Switch Function. From the pop-up menu, choose v2:bucket [fbuc], which contains the AFNI
statistical parametric maps which were generated by program 3dDeconvolve. Click on Set
to select this option. For the Func sub-brick choose the Cosine[0] Coef., and for the Thr
sub-brick, choose the Cosine F-stat (partial F-statistic for signi�cance of the Cosine stimulus
function). Next, click on De�ne Function. Adjust the F-statistic probability threshold using
the vertical bar. Now, click on See Function. In the axial (or sagittal, or coronal) image
view, those voxels whose �t to the data for the Cosine stimulus function within the multiple
linear regression is signi�cant at the speci�ed probability threshold will light up. The color
coding for those voxels which light up indicates the sign and magnitude of the least squares
estimate for the lag-0 Cosine stimulus function coe¢ cient (in this case). (Note that any
parameter subbrick can be selected as the Func subbrick for color coding, and any statistical
subbrick can be selected as the Thr subbrick for thresholding).
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To view the observed time series at a particular location, use the mouse to change the
placement of the crosshairs within the image. To see the corresponding time series for
voxels indicated by the crosshairs, click on Axial (or Sagittal, or Coronal) Graph. The time
series plots for a 3�3 grid of voxels pops up. The x-, y-, and z-coordinates of the center
voxel are displayed in the Graph window. Use the crosshairs to move to: x=29, y=29,
z=8. The time series can be vertically rescaled by using the �+�, �-�, and �a�keys.
To initialize the deconvolution program, �rst click on De�ne Datamode. From the popup

box, click on Plugins. This pops up a list of the di¤erent plugin programs that are available.
From this list, choose Deconvolution. This pops up the Deconvolution Function control box.
For the Base, choose Linear. Important: For NFirst, choose 6.
Press the button next to the �rst StimFnc option line. For the �rst stimulus Label, enter

Cosine. For the File, choose the time series �le name cos7.00.1D. For MinLag, choose 0, and
for MaxLag, choose 1. Now, press Run + Keep. The program will then write to the text
window the following information:

Program: plug_deconvolve
Author: B. Douglas Ward
Initial Release: 09 Sept 1998
Latest Revision: 29 Jan 2002

Controls:
Baseline = Linear
NFirst = 6

NLast = 32767
IRF label =

Concatenation: Label = Column = 0
Run #1 Initial Point = 0

Stimulus: Label = Cosine Column = 0 Min.Lag = 0 Max.Lag = 1 NPTR = 1

Check to make sure that the option choices listed agree with the choices that you
intended to make.
To overlay a plot of the deconvolution estimate of the signal + noise time series on top

of the observed time series, do the following: Click on Opt, and select Double Plot. Then,
click on Opt again, and select Tran 1D, and select DC_Fit. The resulting plot should be
similar to that which was obtained in Example 1.4.3.1.
For each voxel whose time series is displayed, the program writes relevant statistical

information into the text window. To view the multiple linear regression parameters for a
particular voxel, move the cursor into the box containing the time series for that voxel, and
press the right-most button on the mouse (i.e., Button 3). This pops-up a display window
with the information corresponding to that voxel, as depicted below:
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Deconvolution Plugin Screen Output for Example 2.3.1

Ignore = 0
x voxel = 29
y voxel = 29
z voxel = 8
min = 800
max = 934
mean = 841.353
sigma = 15.68226
Median = 841.5
MAD = 7.5

Baseline:
t^0 coef = 835.2533 t^0 t-st = 329.9855 p-value = 1.1980e-06
t^1 coef = 0.1494 t^1 t-st = 2.3987 p-value = 1.9689e-02

Stimulus: Cosine
h[0] coef = 0.0074 h[0] t-st = 3.2738 p-value = 1.7917e-03
h[1] coef = 0.0019 h[1] t-st = 0.8550 p-value = 3.9605e-01

R^2 = 0.3546 F[2,58] = 15.9330 p-value = 3.0559e-06

Full Model:
MSE = 76.6046
R^2 = 0.3546 F[2,58] = 15.9330 p-value = 3.0559e-06

Example 2.3.2
We continue the previous example, but will now enter the estimated motion parameters

as additional stimulus functions. We will assume that the estimated motion parameters
are contained in �le v2.motion.1D (see Example 1.4.3.2). The six columns of this �le will
be entered as additional stimulus functions.
Since we are going to enter 6 more input stimuli, press the button next to StimFnc

option on 6 separate lines. This is in addition to the previous StimFnc option line, which is
left unchanged. For the stimulus Label�s, enter Roll, Pitch, Yaw, dS, dL, and dP. For the File,
choose the time series �le name v2.motion.1D, on each of the 6 lines. Leave MinLag and
MaxLag at their default values (0). Since the motion parameters are part of the baseline
model (corresponding to the null hypothesis), set Base to True for each of these 6 stimulus
functions. Now, press Run + Keep. Note that this only initializes the control parameters,
but does not cause the program to perform the calculations for this new model. To do
this, you must place the cursor in the center box, and press the left-most button on the
mouse (i.e., Button 1). The program will then calculate and display the �t for the new
model for each voxel in the graph. Now, move the cursor into the center box and press
the right-most button on the mouse (i.e., Button 3). This pops-up a display window with
the information corresponding to that voxel, as depicted below:
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Deconvolution Plugin Screen Output for Example 2.3.2

...
etc.
...

Baseline:
t^0 coef = 820.7942 t^0 t-st = 181.1599 p-value = 1.6640e-74
t^1 coef = 0.3943 t^1 t-st = 3.2174 p-value = 2.2281e-03

Stimulus: Cosine
h[0] coef = 0.0054 h[0] t-st = 2.6237 p-value = 1.1390e-02
h[1] coef = 0.0040 h[1] t-st = 2.0555 p-value = 4.4864e-02

R^2 = 0.4637 F[2,52] = 22.4770 p-value = 9.2337e-08

Baseline: Roll
h[0] coef = 132.4883 h[0] t-st = 2.0368 p-value = 4.6778e-02

R^2 = 0.0739 F[1,52] = 4.1485 p-value = 4.6778e-02

Baseline: Pitch
h[0] coef = -18.0019 h[0] t-st = -0.4593 p-value = 6.4796e-01

R^2 = 0.0040 F[1,52] = 0.2109 p-value = 6.4796e-01

Baseline: Yaw
h[0] coef = -87.6356 h[0] t-st = -2.9877 p-value = 4.2826e-03

R^2 = 0.1465 F[1,52] = 8.9261 p-value = 4.2826e-03

Baseline: dS
h[0] coef = 24.2552 h[0] t-st = 2.7178 p-value = 8.9066e-03

R^2 = 0.1244 F[1,52] = 7.3865 p-value = 8.9066e-03

Baseline: dL
h[0] coef = 18.3589 h[0] t-st = 0.4066 p-value = 6.8597e-01

R^2 = 0.0032 F[1,52] = 0.1653 p-value = 6.8597e-01

Baseline: dP
h[0] coef = -29.6341 h[0] t-st = -0.6048 p-value = 5.4791e-01

R^2 = 0.0070 F[1,52] = 0.3658 p-value = 5.4791e-01

Full Model:
MSE = 46.9907
R^2 = 0.4637 F[2,52] = 22.4770 p-value = 9.2337e-08

Both from the graphical display of the �tted curve, as well as from the displayed sta-
tistical values, it is obvious that including the motion parameters has yielded a better �t
to the data.
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3 Program RSFgen

3.1 Purpose

Program RSFgen is a simple program for generating random stimulus functions. In addition
to specifying the total number of time points and the number of stimulus functions, the
user can input the number of repetitions for each stimulus function, and the block length
(i.e., stimulus duration) for each stimulus function. The program randomly chooses the
�on� times for each of the stimuli within the time allotted. Alternatively, the user can
specify the Markov chain transition probability matrix for generating the stimulus functions
as a random process. Program output consists of a separate �.1D��le for each stimulus
function, or a single �.1D��le containing a separate column for each stimulus function.
The syntax and user options are described in Section 3.2. Several examples of applica-

tions of program RSFgen are presented in Section 3.3. Note that the output from program
RSFgen can be used as input to program 3dDeconvolve. Speci�cally, the �-nodata�option
within program 3dDeconvolve can be used to evaluate di¤erent alternative experimental
designs created using RSFgen. This is discussed in Section 3.4.

3.2 Usage

3.2.1 Syntax

Syntax for Random Permutation method:
RSFgen -nt n -num_stimts p [-seed s] [-one_�le j -one_col] [-pre�x pname]
n
-nreps 1 r1 ... -nreps p rp [-nblock 1 k1 ] ... [-nblock p kp] [-pseed s]

Syntax for Markov Chain method:
RSFgen -nt n -num_stimts p [-seed s] [-one_�le j -one_col] [-pre�x pname]
n
[-nblock 1 k1 ] ... [-nblock p kp] -markov m�le [-pzero z ]

3.2.2 Options

-nt n n = length of time series.

-num_stimts p p = number of input stimuli or experimental conditions.

-nblock i k k = block length (i.e., stimulus duration) for stimulus i (1 � i � p).
(default: k = 1)

-seed s s = random number seed (optional).
This number can be changed to create di¤erent random sequences.
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-one_�le The stimulus functions should be written as separate columns
into a single .1D �le.

-one_col The stimulus functions should be written as a single column
of decimal integers into a single .1D �le.

-pre�x pname pname = pre�x for p output .1D stimulus functions (optional)
e.g., pname1.1D, pname2.1D, ..., pnamep.1D
Note: If the -one_�le option is used, all p stimulus functions
are output to �le pname.1D.

The following Random Permutation and Markov Chain options are mutually exclusive:

Random Permutation options:
-nreps i r r = number of repetitions for stimulus i (1 � i � p).

-pseed s s = stimulus label permutation random number seed (optional)

Note: Obviously, it is necessary that: n �
Pp

i=1 (r[i] � k[i]) :

Markov Chain options:
-markov m�le mfile = �le containing Markov chain transition probability matrix.

-pzero z z = probability of a zero (i.e., null) state
(default: z = 0)

Warning: This program will overwrite pre-existing .1D �les that have the same name(s).

3.3 Examples

In this section we present several examples of possible applications of program RSFgen.
We begin by using RSFgen to create event-related experimental designs. This is followed
by considering randomized block designs. We then delve into stimulus label permutations.
This section ends with an example of the Markov chain option for generating random
stimulus functions.

3.3.1 Event Related Designs

Program RSFgen can be used to create event-related designs. By an �event-related�
design, we mean an experiment in which the minimum stimulus duration is 1 TR. There
may be one or more than one type of event. A separate stimulus function is generated for
each type of event. The di¤erent events are placed randomly within the time allotted.
In the �rst example, we consider the more common case of mutually exclusive events;

i.e., at most one type of event can occur at any given point in time. The second example
considers the case where the di¤erent event types occur independently; that is, the di¤erent
events can occur simultaneously.
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Example 3.3.1.1 Mutually Exclusive Events
A researcher wishes to conduct an experiment using 6 di¤erent experimental conditions:

A, B, C, D, E, and F. These experimental conditions are mutually exclusive; i.e., at most
one experimental condition can apply at any given time point. The total imaging run
will last 200 TR. Within this 200 TR, conditions A and B are to occur 20 times each,
conditions C and D are to occur 25 times each, and conditions E and F are to occur 30
times each. Each �on� period corresponds to 1 TR. The command line for randomly
generating the 6 stimulus functions is presented below:

Program RSFgen Command Line for Example 3.3.1.1:

RSFgen n
-nt 200 -num_stimts 6 n
-nreps 1 20 -nreps 2 20 -nreps 3 25 n
-nreps 4 25 -nreps 5 30 -nreps 6 30 n
-seed 1234567 -one_file -prefix Stim

The program �rst creates a time series with 0 = �rest�, 1 = �condition A�, 2 = �con-
dition B�, 3 = �condition C�, etc. , with each symbol occurring the speci�ed number of
times. The order of appearance of the stimuli is then randomized by shu­ ing the time
series. Finally, the individual stimulus functions are written to �le Stim.1D, as indicated
below:

Program RSFgen Screen Output for Example 3.3.1.1:

Program: RSFgen
Author: B. Douglas Ward
Date: 14 January 2000

nt = 200
num_stimts = 6
nreps[1] = 20
nreps[2] = 20
nreps[3] = 25
nreps[4] = 25
nreps[5] = 30
nreps[6] = 30
seed = 1234567

Original array:
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Shuffled array:
0 5 6 1 3 5 0 2 1 1 1 6 6 2 6 2 1 5 3 3

3 6 0 4 4 0 0 1 2 5 0 1 2 0 4 6 0 1 6 5

4 0 4 5 5 6 4 3 5 0 0 5 6 2 6 3 6 5 3 6

5 5 6 2 0 0 0 6 3 6 6 4 2 6 4 0 2 6 5 1

1 5 4 6 4 0 3 3 2 5 0 5 3 3 2 6 5 0 1 3

0 1 0 1 0 3 0 0 3 0 1 4 0 5 0 3 2 6 4 5

3 0 2 3 6 0 0 3 4 6 5 0 2 0 4 4 5 6 6 4

6 6 2 4 0 3 6 0 0 2 4 0 0 4 0 6 1 2 0 0

0 2 1 0 4 2 0 2 4 0 3 3 0 4 4 5 3 1 5 6

1 5 5 5 0 5 0 5 3 1 4 5 0 0 0 4 5 1 3 0

The output �le Stim.1D contains 6 columns; each column corresponds to a particular
stimulus, and contains a �1� at each time point where that stimulus occurs, and a �0�
elsewhere, as shown below:

Contents of �le Stim.1D:
Column #0: 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 etc.
Column #1: 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 etc.
Column #2: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 etc.
Column #3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 etc.
Column #4: 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 etc.
Column #5: 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 etc.

Note that the separate stimulus functions can be accessed by program 3dDeconvolve
through the column indices (0,...,5).

Example 3.3.1.2 Overlapping (Independent) Experimental Conditions
In this example, we consider an experiment in which 4 di¤erent conditions (A, B, C,

and D) occur independently of each other, and possibly coincide. In this case, we execute
program RSFgen 4 times, once for each condition. It is very important that each of the
4 runs uses a di¤erent random number seed, in order to create 4 independent sequences.
This is illustrated by the following script:
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Script File for Example 3.3.1.2:

RSFgen -nt 200 -num_stimts 1 -nreps 1 50 -seed 1234561 -prefix StimA
RSFgen -nt 200 -num_stimts 1 -nreps 1 50 -seed 1234562 -prefix StimB
RSFgen -nt 200 -num_stimts 1 -nreps 1 50 -seed 1234563 -prefix StimC
RSFgen -nt 200 -num_stimts 1 -nreps 1 50 -seed 1234564 -prefix StimD

1dtranspose StimA1.1D StimA.1Dt
1dtranspose StimB1.1D StimB.1Dt
1dtranspose StimC1.1D StimC.1Dt
1dtranspose StimD1.1D StimD.1Dt

rm -f Stim*.1D

cat StimA.1Dt StimB.1Dt StimC.1Dt StimD.1Dt > Stim.1Dt

1dtranspose Stim.1Dt Stim.1D

rm -f Stim*.1Dt

Note that the above script, in addition to creating the 4 stim functions, assembles these
stim functions as 4 columns into the single �le Stim.1D. This is not required; however, it
might make things simpler to have all of the stim functions contained in a single �le.
The �le Stim.1D contains 4 columns; each column corresponding to a particular ex-

perimental condition. That is, each column contains a �1�at each time point where that
condition occurs, and a �0�elsewhere, as shown below:

Contents of �le Stim.1D:
Column #0: 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 etc.
Column #1: 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 etc.
Column #2: 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 etc.
Column #3: 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 etc.

Note that at some time points none of the experimental conditions occur; at other time
points, as many as all 4 conditions occur simultaneously.

3.3.2 Random Block Designs

The previous examples assumed that the minimum duration for an experimental condition
was 1 TR. In the following example, we consider an experimental design where the �on�
state for each experimental condition has a �xed length (i.e., the �block�length) that is a
multiple of 1 TR.

Example 3.3.2.1 Mutually Exclusive Random Blocks
In this example, we consider how to use program RSFgen to create a randomized block

design, where the experimental conditions are mutually exclusive. Suppose that there are
3 experimental conditions: A, B, and C. For conditions A, B, and C, each �on�period has
duration 5, 3, and 2 TR, respectively. The entire imaging run will last 200 TR. We will
use r = 10 repetitions for each stimulus.
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Program RSFgen Command Line for Example 3.3.2.1

RSFgen n
-nt 200 -num_stimts 3 n
-nreps 1 10 -nblock 1 5 n
-nreps 2 10 -nblock 2 3 n
-nreps 3 10 -nblock 3 2 n
-seed 1234567 -one_file -prefix RandBlock

Note that the -nblock command was used 3 times in order to specify the duration for
each of the stimulus functions. The following is the screen output generated by the above
commands:

Program RSFgen Screen Output for Example 3.3.2.1

Program: RSFgen
Author: B. Douglas Ward
Date: 14 January 2000

nt = 200
num_stimts = 3
nreps[1] = 10 nblock[1] = 5
nreps[2] = 10 nblock[2] = 3
nreps[3] = 10 nblock[3] = 2
seed = 1234567

Original array:
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Shuffled array:
3 0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 1 0

0 0 2 0 0 2 2 0 3 0 0 0 2 0 0 0 0 2 1 1

0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 1 3 0 0 1 0 0 3 0 3 0 0

0 0 3 2 0 0 0 0 0 0
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Expanded array:
3 3 0 1 1 1 1 1 0 0 0 2 2 2 0 0 0 0 0 0

1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0

0 2 2 2 0 0 2 2 2 2 2 2 0 3 3 0 0 0 2 2

2 0 0 0 0 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 3

3 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1

1 1 1 0 1 1 1 1 1 3 3 0 0 1 1 1 1 1 0 0

3 3 0 3 3 0 0 0 0 3 3 2 2 2 0 0 0 0 0 0

Note that the �Expanded array� is formed by replacing each �1�, �2�, or �3�from the
�Shu­ ed array�with a �11111�, �222�, or �33�, respectively.
The output �le �RandBlock.1D�contains 3 columns, corresponding to the 3 di¤erent

stimulus functions. A �1�appears at each time point where each individual stimulus occurs,
and a �0�elsewhere, as shown below:

Contents of �le RandBlock.1D:
Column #0: 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 etc.
Column #1: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 etc.
Column #2: 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 etc.

Note that the 3 stimulus functions can be referenced by using the column selectors: [0],
[1], and [2]. Also, note that the column selectors must be enclosed by quotes.

Exercise 3.3.2.2 Independent Random Block Design
Using the method of Example 3.3.1.2, repeat the experimental block design of Example

3.3.2.1, but for independent (i.e., overlapping) experimental conditions.

3.3.3 Stimulus Label Permutation Designs

Normally, one would use the -seed s option to create di¤erent random experimental designs.
That is, di¤erent values for the random seed s will create di¤erent random permutations
of the sequence of stimulus events within the experimental design. However, there are
some cases where one might wish to preserve the temporal locations of events, while at the
same time performing a random permutation of the stimulus labels. This �randomization-
within-a-randomization� can be accomplished with the -pseed s option. The following
examples should help clarify the di¤erence between the -seed and -pseed options.
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Example 3.3.3.1 Initial Random Block Design
First, we consider a random block design, with 3 experimental conditions: A, B, and C.

Each condition is to occur 10 times, with a block length of 5 TR. This design is created
with the following command line, using random number seed option -seed 1234567:

Program RSFgen Command Line for Example 3.3.3.1

RSFgen n
-nt 200 -num_stimts 3 -seed 1234567n
-nreps 1 10 -nblock 1 5 n
-nreps 2 10 -nblock 2 5 n
-nreps 3 10 -nblock 3 5 n
-one_file -prefix RB1

Just the �nal, expanded array, is reproduced below:

Program RSFgen Screen Output for Example 3.3.3.1

Expanded array:
0 0 1 1 1 1 1 0 3 3 3 3 3 0 0 0 0 0 2 2

2 2 2 0 0 0 1 1 1 1 1 0 0 3 3 3 3 3 0 0

3 3 3 3 3 0 1 1 1 1 1 0 0 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 3 3 3 3 3 0 0 0 0 0 0 0

0 0 2 2 2 2 2 0 0 0 3 3 3 3 3 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 2 2 2 2 2

0 1 1 1 1 1 0 2 2 2 2 2 1 1 1 1 1 2 2 2

2 2 0 2 2 2 2 2 0 0 0 0 1 1 1 1 1 3 3 3

3 3 0 0 2 2 2 2 2 3 3 3 3 3 0 3 3 3 3 3

1 1 1 1 1 3 3 3 3 3 0 3 3 3 3 3 0 0 0 0

Example 3.3.3.2 Another Random Block Design
Now, for comparison, we repeat the previous example, but using a di¤erent random

number seed option -seed 76543521:

Program RSFgen Command Line for Example 3.3.3.2

RSFgen n
-nt 200 -num_stimts 3 -seed 7654321n
-nreps 1 10 -nblock 1 5 n
-nreps 2 10 -nblock 2 5 n
-nreps 3 10 -nblock 3 5 n
-one_file -prefix RB2
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Program RSFgen Screen Output for Example 3.3.3.2

Expanded array:
2 2 2 2 2 3 3 3 3 3 0 1 1 1 1 1 0 1 1 1

1 1 0 0 0 0 0 0 3 3 3 3 3 1 1 1 1 1 0 2

2 2 2 2 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

1 1 1 0 2 2 2 2 2 0 0 3 3 3 3 3 2 2 2 2

2 0 0 0 0 1 1 1 1 1 0 0 3 3 3 3 3 0 0 0

0 3 3 3 3 3 2 2 2 2 2 0 0 3 3 3 3 3 3 3

3 3 3 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0 0 0

0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 3 3 3 3 3

0 0 0 0 0 3 3 3 3 3 1 1 1 1 1 0 2 2 2 2

2 1 1 1 1 1 2 2 2 2 2 0 0 3 3 3 3 3 0 0

Note how the random block design of this example di¤ers from that of the previous
example. In particular, note that the blocks occur in di¤erent locations.

Example 3.3.3.3 Stimulus Label Permutation
For our third example, we use the same random number seed option -seed 1234567 as

in the �rst example. However, this time we add the stimulus label permutation option
-pseed 16489125.

Program RSFgen Command Line for Example 3.3.3.3

RSFgen n
-nt 200 -num_stimts 3 -seed 1234567n
-nreps 1 10 -nblock 1 5 n
-nreps 2 10 -nblock 2 5 n
-nreps 3 10 -nblock 3 5 n
-pseed 16489125 -one_file -prefix RB3

Program RSFgen Screen Output for Example 3.3.3.3

Expanded array:
0 0 3 3 3 3 3 0 1 1 1 1 1 0 0 0 0 0 3 3

3 3 3 0 0 0 3 3 3 3 3 0 0 3 3 3 3 3 0 0

1 1 1 1 1 0 2 2 2 2 2 0 0 3 3 3 3 3 1 1

1 1 1 3 3 3 3 3 1 1 1 1 1 0 0 0 0 0 0 0

0 0 2 2 2 2 2 0 0 0 3 3 3 3 3 2 2 2 2 2

1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0 3 3 3 3 3 0 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 0 1 1 1 1 1 0 0 0 0 2 2 2 2 2 2 2 2

2 2 0 0 2 2 2 2 2 3 3 3 3 3 0 1 1 1 1 1

2 2 2 2 2 3 3 3 3 3 0 2 2 2 2 2 0 0 0 0
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Compare the output for this example with the output from the previous two examples.
In particular, note that the blocks in Example 3.3.3.3 occur in exactly the same locations
as the blocks in Example 3.3.3.1. However, due to the stimulus label permutation option
-pseed, the labels of the blocks (i.e., the index numbers for the experimental conditions)
have been shu­ ed. This capability may prove useful for some types of statistical analysis.

3.3.4 Markov Chain Designs

The previous examples used the Random Permutation method for creating the experimental
designs. That is, the number of repetitions of each stimulus type was �xed; a speci�c
experimental design was created by random permutation of the sequence in which the
stimulus events occur. However, for some experimental designs, this approach may not
have the needed �exibility. For example, if some types of events must not be allowed to
follow other types of events, then additional structure must be introduced into the design
speci�cation. For such cases, program RSFgen has the Markov Chain option for creating
random experimental designs.

Example 3.3.4.1 Markov Chain Design
(This example was suggested by Eli Merriam.)
For this example, there are 6 experimental conditions: A, B, C, D, E, and F. However,

there are restrictions on the order in which the di¤erent events can occur. Speci�cally, we
have the following requirements:

A can�t follow D, E, or F
B can�t follow A, B, or C
C can�t follow A, B, or C
D can�t follow A, B, or C
E can�t follow D, E, or F
F can�t follow D, E, or F

These conditions can be represented by the following transition probability matrix
(TPM), where uniform probabilities are used for the allowed transitions:

A B C D E F
A 0:33 0:00 0:00 0:00 0:33 0:34
B 0:33 0:00 0:00 0:00 0:33 0:34
C 0:33 0:00 0:00 0:00 0:33 0:34
D 0:00 0:33 0:33 0:34 0:00 0:00
E 0:00 0:33 0:33 0:34 0:00 0:00
F 0:00 0:33 0:33 0:34 0:00 0:00

Reading the �rst row of the matrix, we see that state A can be followed by state A
(with probability 1

3
), or by state E (with probability 1

3
), or by state F (with probability 1

3
).

Similarly, for rows B, C, D, E, and F. (The numbers have been rounded to 2 decimal places,
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and the last entry in each row is rounded up so that the row sums equal 1.0.) Looking at
the nonzero entries in each column, we see that A can only follow A, B, or C; B can only
follow D, E, or F; etc. Therefore, we see that the conditions stated above are satis�ed by
this Markov chain.
Now, store the above matrix (the numbers only!) as 6 rows and 6 columns into �le

tpm.mat. The script for executing RSFgen using the Markov chain model is as follows:

Program RSFgen Command Line for Example 3.3.4.1

RSFgen n
-nt 200 -num_stimts 6 -seed 123456789 n
-markov tpm.mat -pzero 0.20 -one_file -prefix ABCDEF

Note that the -pzero command lets the user specify the frequency of occurrence of the
zero (null) state. For example, to get approximately 20% nulls, use -pzero 0:20.

Program RSFgen Screen Output for Example 3.3.4.1

Program: RSFgen
Author: B. Douglas Ward
Initial Release: 06 July 1999
Latest Revision: 27 April 2001

nt = 200
num_stimts = 6
seed = 123456789
output prefix = ABCDEF
TPM file = tpm.mat
pzero = 0.200000

TPM matrix:
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000
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Markov chain time series:
0 0 1 5 0 3 6 3 1 1 1 5 3 6 4 0 0 4 0 0

3 0 0 1 5 3 6 3 5 3 5 3 6 0 4 0 2 1 6 0

4 2 0 5 2 0 5 0 3 1 5 2 0 1 0 1 0 5 0 2

5 4 3 6 2 5 0 3 5 0 3 1 1 6 3 0 6 2 1 0

6 2 6 0 4 2 1 6 4 3 5 2 1 6 0 0 2 5 4 4

3 5 4 2 6 4 3 5 3 5 3 0 6 3 5 2 1 0 0 5

3 0 6 2 5 3 6 3 5 3 6 2 6 4 0 2 1 1 6 3

1 1 1 5 4 2 1 1 5 4 4 0 4 0 2 1 0 6 3 6

0 4 4 0 3 0 5 3 0 5 2 0 5 3 6 4 3 1 0 6

2 0 0 0 0 5 2 6 4 3 6 2 6 3 0 0 6 4 2 0

As before, the coding is A=1, B=2, C=3, etc. The output is stored as 6 columns of
0�s and 1�s into �le ABCDEF.1D.

Example 3.3.4.2 Markov Chain Block Design
This example is similar to the previous example, only now we specify the block length

for each of the 6 experimental conditions. Speci�cally, we require that condition A occur
in blocks of length 1, condition B occurs in blocks of length 2, ..., condition F occurs in
blocks of length 6. The state transition probability matrix is the same as in Example
3.3.4.1. The script for generating this Markov Chain block design is as follows:

Program RSFgen Command Line for Example 3.3.4.2

RSFgen n
-nt 200 -num_stimts 6 -seed 123456789 n
-nblock 1 1 -nblock 2 2 -nblock 3 3 n
-nblock 4 4 -nblock 5 5 -nblock 6 6 n
-markov tpm.mat -pzero 0.20 -one_file -prefix MCblock

The RSFgen screen output for this example is:

Program RSFgen Screen Output for Example 3.3.4.2

Program: RSFgen
Author: B. Douglas Ward
Initial Release: 06 July 1999
Latest Revision: 06 March 2002

nt = 200
num_stimts = 6
seed = 123456789
output prefix = MCblock
TPM file = tpm.mat
pzero = 0.200000
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nblock[1] = 1
nblock[2] = 2
nblock[3] = 3
nblock[4] = 4
nblock[5] = 5
nblock[6] = 6

TPM matrix:
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.3300 0.0000 0.0000 0.0000 0.3300 0.3400
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000
0.0000 0.3300 0.3300 0.3400 0.0000 0.0000

Markov chain time series:
0 0 1 5 0 3 6 3 1 1 1 5 3 6 4 0 0 4 0 0

3 0 0 1 5 3 6 3 5 3 5 3 6 0 4 0 2 1 6 0

4 2 0 5 2 0 5 0 3 1 5 2 0 1 0 1 0 5 0 2

5 4 3 6 2 5 0 3 5 0 3 1 1 6

Expanded array:
0 0 1 5 5 5 5 5 0 3 3 3 6 6 6 6 6 6 3 3
3 1 1 1 5 5 5 5 5 3 3 3 6 6 6 6 6 6 4 4
4 4 0 0 4 4 4 4 0 0 3 3 3 0 0 1 5 5 5 5
5 3 3 3 6 6 6 6 6 6 3 3 3 5 5 5 5 5 3 3
3 5 5 5 5 5 3 3 3 6 6 6 6 6 6 0 4 4 4 4
0 2 2 1 6 6 6 6 6 6 0 4 4 4 4 2 2 0 5 5
5 5 5 2 2 0 5 5 5 5 5 0 3 3 3 1 5 5 5 5
5 2 2 0 1 0 1 0 5 5 5 5 5 0 2 2 5 5 5 5
5 4 4 4 4 3 3 3 6 6 6 6 6 6 2 2 5 5 5 5
5 0 3 3 3 5 5 5 5 5 0 3 3 3 1 1 6 6 6 6

As before, the coding is A=1, B=2, C=3, etc. The output is stored as 6 columns of 0�s
and 1�s into �le MCblock.1D. Note that the last block (corresponding to condition F) is
of length 4 rather than 6. This block was truncated in order to satisfy the speci�ed time
series length of nt=200.

3.4 Evaluation of the Experimental Design (continued)

In this section, we continue our previous discussion about evaluation of the experimental
design. By using the output of RSFgen as input to 3dDeconvolve with the -nodata option,
we can iteratively evaluate the experimental design(s). This not only helps to avoid multi-
collinearity; it can be used to create experimental designs that are optimized for estimation
of the unknown parameters. We conclude this section with examples of statistical power
estimation.
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3.4.1 Parameter Estimation Accuracy

Example 3.4.1.1 Random Event Design
Consider an event-related design, in which there are two types of events, A and B. Since

there are nt = 300 time points, we will initially divide these time points equally between
event A, event B, and the null event (or �rest�) condition. This design can be created
with the following command line:

Program RSFgen Command Line for Example 3.4.1.1

RSFgen n
-nt 300 -num_stimts 2 n
-nreps 1 100 -nblock 1 1 n
-nreps 2 100 -nblock 2 1 n
-seed 123456789 -one_file -prefix Event

To investigate the accuracy of the parameter estimates, the output stimulus �le Event.1D
is used as input to program 3dDeconvolve, using the -nodata option, as indicated by the
following command line:

Program 3dDeconvolve Command Line for Example 3.4.1.1:

3dDeconvolve n
-nodata -nlast 299 -polort 1 -num_stimts 2 n
-stim_file 1 �Event.1D[0]� -stim_label 1 �Event A� -stim_maxlag 1 4 n
-stim_file 2 �Event.1D[1]� -stim_label 2 �Event B� -stim_maxlag 2 4 n
-glt 1 A.mat -glt_label 1 �A� n
-glt 1 B.mat -glt_label 2 �B� n
-glt 1 A+B.mat -glt_label 3 �A+B� n
-glt 1 A-B.mat -glt_label 4 �A-B�

Note that the above command line includes 4 GLT�s, which (approximately) test for:
IRF area for Event A 6= 0,
IRF area for Event B 6= 0,
IRF area for Event A + IRF area for Event B 6= 0, and
IRF area for Event A � IRF area for Event B 6= 0.

are speci�ed by the following GLT matrix �les.

GLT matrix files:
A.mat : 0 0 1 1 1 1 1 0 0 0 0 0
B.mat : 0 0 0 0 0 0 0 1 1 1 1 1

A+B.mat : 0 0 1 1 1 1 1 1 1 1 1 1
A-B.mat : 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
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Store the above numbers as single rows into �les A.mat, B.mat, A+B.mat, A�B.mat, and
then execute the above command line.
The program output includes the normalized variance-covariance matrix (XtX)�1. For

further discussion, see Section 1.2.7.

Program 3dDeconvolve Screen Output for Example 3.4.1.1

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 11 August 2000

(X�X) inverse matrix:
:065 �:000 �:013 �:014 �:013 �:013 �:012 �:013 �:014 �:014 �:014 �:014

�:000 :000 :000 :000 :000 :000 :000 :000 :000 :000 :000 :000
�:013 :000 :021 :000 :001 :000 �:000 :010 :001 :000 :003 �:000
�:014 :000 :000 :021 :000 :001 :000 �:001 :010 :001 :000 :003
�:013 :000 :001 :000 :021 :000 :001 :001 �:000 :010 :001 �:000
�:013 :000 :000 :001 :000 :021 :000 :000 :001 �:000 :011 :001
�:012 :000 �:000 :000 :001 :000 :021 :002 :000 :001 �:001 :010
�:013 :000 :010 �:001 :001 :000 :002 :021 :002 :000 �:001 :000
�:014 :000 :001 :010 �:000 :001 :000 :002 :021 :001 :000 �:001
�:014 :000 :000 :001 :010 �:000 :001 :000 :001 :021 :001 :000
�:014 :000 :003 :000 :001 :011 �:001 �:001 :000 :001 :022 :001
�:014 :000 �:000 :003 �:000 :001 :010 :000 �:001 :000 :001 :021

Stimulus: Event A
h[0] norm. std. dev. = 0.1438
h[1] norm. std. dev. = 0.1445
h[2] norm. std. dev. = 0.1436
h[3] norm. std. dev. = 0.1438
h[4] norm. std. dev. = 0.1438

Stimulus: Event B
h[0] norm. std. dev. = 0.1451
h[1] norm. std. dev. = 0.1448
h[2] norm. std. dev. = 0.1446
h[3] norm. std. dev. = 0.1466
h[4] norm. std. dev. = 0.1461

General Linear Test: A
LC[0] norm. std. dev. = 0.3361
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General Linear Test: B
LC[0] norm. std. dev. = 0.3408

General Linear Test: A+B
LC[0] norm. std. dev. = 0.5994

General Linear Test: A-B
LC[0] norm. std. dev. = 0.3147

From the above output, we see that the standard deviation of the estimate for each of
the IRF coe¢ cients is about 0.14�, where � is the square root of the measurement variance
for a particular voxel.
To see how the accuracy depends on the number of repetitions, the above analysis was

repeated using r = 140 repetitions for each stimulus. All commands remain the same as
above, except that the -nreps k 100 command for program RSFgen was replaced with -nreps
k 140, for k=1, 2. The output from program 3dDeconvolve indicates that, by increasing the
number of repetitions from 100 to 140, the standard deviation of the regressor coe¢ cients
increases from 0.14� to 0.25�.
Continuing in this manner, by varying the experimental design inputs, one can deter-

mine the sensitivity of the regression coe¢ cient estimation accuracy to the design parame-
ters. Of course, the accuracy of these estimates depends on the validity of the assumptions
involved (e.g., that the system is linear and time-invariant, with independent errors, etc.).
Also, other external considerations may be involved in deciding upon the ultimate ex-
perimental design. Nevertheless, this analysis tool should prove useful in arriving at an
acceptable experimental design.

Example 3.4.1.2 Random Block Design
For contrast with Example 3.4.1.1, here we assume that conditions A and B occur in

blocks of length 10 TR, with 10 repetitions of each during the run. This experimental
design was created by the following command line:

Program RSFgen Command Line for Example 3.4.1.2

RSFgen n
-nt 300 -num_stimts 2 n
-nreps 1 10 -nblock 1 10 n
-nreps 2 10 -nblock 2 10 n
-seed 123456789 -one_file -prefix Block

The output stimulus function �le Block.1D was then used as input to program 3dDe-
convolve, using the -nodata option:
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Program 3dDeconvolve Command Line for Example 3.4.1.2:

3dDeconvolve n
-nodata -nlast 299 -polort 1 -num_stimts 2 n
-stim_file 1 �Block.1D[0]� -stim_label 1 �Block A� -stim_maxlag 1 4 n
-stim_file 2 �Block.1D[1]� -stim_label 2 �Block B� -stim_maxlag 2 4 n
-glt 1 A.mat -glt_label 1 �A� n
-glt 1 B.mat -glt_label 2 �B� n
-glt 1 A+B.mat -glt_label 3 �A+B� n
-glt 1 A-B.mat -glt_label 4 �A-B�

The following shows the 3dDeconvolve evaluation of the random block design. Note
that, using the random block design, the accuracy of the estimated regression coe¢ cients
has signi�cantly decreased relative to that of the previous random event design, as indicated
by the higher norm. std. dev.�s.

Program 3dDeconvolve Screen Output for Example 3.4.1.2

Program: 3dDeconvolve
Author: B. Douglas Ward
Initial Release: 02 Sept 1998
Latest Revision: 11 August 2000

(X�X) inverse matrix:
:031 �:000 �:006 �:002 �:002 �:001 �:006 �:008 �:002 �:003 �:002 �:008

�:000 :000 :000 :000 :000 :000 �:000 :000 :000 :000 :000 :000
�:006 :000 :057 �:047 �:002 :000 :004 :005 :001 :004 �:005 �:000
�:002 :000 �:047 :096 �:045 �:003 :000 :004 �:002 �:002 :008 �:005
�:002 :000 �:002 �:045 :096 �:045 �:002 :001 :003 �:002 �:002 :004
�:001 :000 :000 �:003 �:045 :096 �:047 �:005 :006 :003 �:002 :001
�:006 �:000 :004 :000 �:002 �:047 :058 �:001 �:005 :002 :004 :006
�:008 :000 :005 :004 :001 �:005 �:001 :066 �:055 :001 �:003 :003
�:002 :000 :001 �:002 :003 :006 �:005 �:055 :112 �:055 :003 �:003
�:003 :000 :004 �:002 �:002 :003 :002 :001 �:055 :112 �:055 :001
�:002 :000 �:005 :008 �:002 �:002 :004 �:003 :003 �:055 :112 �:055
�:008 :000 �:000 �:005 :004 :001 :006 :003 �:003 :001 �:055 :066

Stimulus: Block A
h[0] norm. std. dev. = 0.2386
h[1] norm. std. dev. = 0.3104
h[2] norm. std. dev. = 0.3099
h[3] norm. std. dev. = 0.3101
h[4] norm. std. dev. = 0.2407
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Stimulus: Block B
h[0] norm. std. dev. = 0.2580
h[1] norm. std. dev. = 0.3350
h[2] norm. std. dev. = 0.3348
h[3] norm. std. dev. = 0.3354
h[4] norm. std. dev. = 0.2563

General Linear Test: A
LC[0] norm. std. dev. = 0.1784

General Linear Test: B
LC[0] norm. std. dev. = 0.1801

General Linear Test: A+B
LC[0] norm. std. dev. = 0.3167

General Linear Test: A-B
LC[0] norm. std. dev. = 0.1680

3.4.2 Statistical Power Calculations

We again consider the multiple linear regression model:

y = X� + "

where y = vector of measured data, X = experimental design matrix, � = (unknown)

parameter vector, and " = error vector, with "n
iid� N(0; �2). The least squares estimate

of � is b:

b = b� = (X0X)�1X0y

The variance for the estimated parameter vector b is:

var(b) = �2(X0X)�1

where �2 is the measurement error variance. Since �2 is unknown, it is estimated using
the sample error variance MSE:

s2(b) = MSE � (X0X)�1

= s2 � (X0X)�1

where the sample standard deviation s =
p
MSE. Suppose we are interested in testing a

(possibly vector-valued) linear combination of the b parameters:

L = Cb
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Then the variance of L is given by:

var(L) = var(Cb)

= C var(b)C0

= �2C(X0X)�1C0

and the estimated variance of L is:

s2(L) = s2 �C(X0X)�1C0

Now, let l be the ith linear combination of the parameters:

l = Li

and let d be the square root of the ith diagonal element of the C(X0X)�1C0 matrix:

d =
q�
C(X0X)�1C0

�
i;i

then the standard deviation for the linear combination l is given by:

s(l) = s � d

Now, l is an estimate for the true value �. Suppose that we wish to test:

Ho : � � 0
vs. Ha : � > 0

The question is: what is the probability of rejecting Ho for � > 0? This probability is the
statistical power of the test. In order to guard against false positives, we will reject Ho
only if the measured value l is some k standard deviations greater than zero; otherwise, we
accept Ho. Note that k is a constant, which is used to set the statistical signi�cance of
the test. The power of the test is calculated thus (see Ref.[4]):

Power�(l) = Pr

�
l

s � d > k
�

= Pr

�
l � �
s � d > k �

�

s � d

�
= Pr

�
Z > k � �

s � d

�

where Z =
l � �
s � d is approx. N(0; 1)

Example 3.4.2.1 Random Event Design
We continue the analysis of Example 3.4.1.1. Suppose that we wish to estimate the

statistical power for detection of the di¤erence in area under the IRF curve. We will assume

94



that condition A has IRF area 10 units greater than condition B; i.e., � = Area(A) �
Area(B) = 10:0. Now, from Example 3.4.1.1, we have:

General Linear Test: A-B
LC[0] norm. std. dev. = 0.3147

So, we will let d = 0:3147. Also, suppose that from previous experience, the measurement
error standard deviation is known to be s = 15:0. For protection against false positives, we
will use k = 3:0 (corresponding to � = 0:0013). The probability of detecting the assumed
di¤erence in IRF areas is estimated by:

Power�(l) = Pr

�
Z > k � �

s � d

�
= Pr

�
Z > 3:0� 10:0

(15:0)(0:3147)

�
= Pr (Z > 0:882)

= 0:189

Example 3.4.2.2 Random Block Design
We will repeat the above analysis, but using the random block design from Example

3.4.1.2. From that example, we obtained:

General Linear Test: A-B
LC[0] norm. std. dev. = 0.1680

Therefore, using d = 0:1680, with the other parameters the same as in Example 3.4.2.1, we
estimate the statistical power thus:

Power�(l) = Pr

�
Z > k � �

s � d

�
= Pr

�
Z > 3:0� 10:0

(15:0)(0:168)

�
= Pr (Z > �0:968)
= 0:834

Careful examination of Examples 3.4.1.1, 3.4.1.2, 3.4.2.1, and 3.4.2.2 may help explain
the observed and (seemingly) contradictory results that event-related designs yield more
accurate estimates of the system impulse response functions, whereas block-type designs
often yield more active voxels. The above examples should highlight the fact that the
optimum experimental design depends, among other things, on the particular parameters
(or e¤ects) that are of interest.
A word of caution: The theoretical estimates for statistical power should be used as a

guide only. Many assumptions are involved in the above analysis, and many complicating
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factors have not been taken into account. As usual, it is assumed that the system is
linear and time-invariant, with independent errors. No allowance is made for confounding
of the input stimulus with subject motion or with natural physiological processes (e.g.,
respiration). Also, no allowance is made for habituation or anticipatory e¤ects. These
later points, in particular, would seem to argue in favor of event-related designs, even
though they are not explicitly incorporated into the mathematical analysis.
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4 Program 3dConvolve

4.1 Purpose

As the name implies, program 3dConvolve performs basically the inverse operation of pro-
gram 3dDeconvolve. There are essentially four types of input to program 3dConvolve:

� One or more input stimulus functions. These can be the same .1D time series �les
that are used as input to program 3dDeconvolve.

� One or more system impulse response functions (IRF�s) for each voxel in the dataset.
There should be a 1-1 correspondence between the number of .1D stim functions
and the number of IRF input datasets. The IRF coe¢ cients can be input from the
bucket dataset output of 3dDeconvolve, or from the 3d+time datasets created by the
3dDeconvolve -iresp command, or they can be �manually�created 3d+time datasets.
Yet another alternative is to enter a single .1D time series �le for each IRF. In the
latter case, the output will be a single .1D time series �le, instead of a 3d+time
dataset.

� The baseline parameters for each voxel (say, from the 3dDeconvolve bucket dataset
output).

� System noise (an optional input) can be added to the output response.

Program 3dConvolve convolves the input stimulus function(s) with the IRF(s) for each
voxel, to which is added the baseline o¤set and the system noise (if included in the model);
the predicted measurement time series (for each voxel) is then written to a 3d+time dataset.
As an alternative, if the -input1D option is used, then all inputs are .1D time series �les,
and the output is a single .1D time series.
There are several possible applications for this program:

� Prediction of the system response to hypothetical inputs, given the system response
to previous inputs. This may be useful in experimental design.

� Evaluation of the 3dDeconvolve parameter estimation accuracy. This is not possible
using �real� data, since the actual parameter values are unknown. However, by
using 3dConvolve to produce arti�cial time series corresponding to known parameter
values, one can compare the �actual�parameter values with the parameter estimates
obtained from program 3dDeconvolve.

� Validation of the 3dDeconvolve statistical output. Using program 3dConvolve, one
can generate 3d+time datasets corresponding to either the null hypothesis (signal
is not present), or the alternative hypothesis (signal is present). By examining the
output from program 3dDeconvolve, one can then evaluate the statistical signi�cance
level (probability of a false positive) or the statistical power (probability of a true
detection).
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4.2 Theory

As in Section 1.2.2, we model the system response as the convolution of the input stimulus
function f(t) with the system impulse response function (IRF) h(t), represented thus:

y(t) = f(t)
 h(t)
If multiple types of stimuli are used (say, m stimulus functions), then the system response
is modeled as the sum of the convolutions of each individual stimulus function with their
corresponding IRF:

y(t) = f1(t)
 h1(t) + f2(t)
 h2(t) + � � �+ fm(t)
 hm(t)
The measured data is modeled as the sum of a baseline (e.g., a constant plus linear trend)
plus the system response, plus measurement noise:

z(t) = b0 + b1t+ y(t) + "(t)

= b0 + b1t+ f1(t)
 h1(t) + f2(t)
 h2(t) + � � �+ fm(t)
 hm(t) + "(t)

For program 3dConvolve, the inputs are the baseline parameters b0 and b1; the impulse
response functions h1(t), h2(t),...,hm(t); the input stimulus functions f1(t), f1(t),:::; fm(t);
and (possibly) the measurement noise vector "(t). Program 3dConvolve output is the
predicted measurement data z(t).

4.3 Usage

4.3.1 Syntax

The syntax for execution of program 3dConvolve is as follows:

3dConvolve [-input fname j -input1D ] [-mask mname] [-censor cname]
[-concat rname] [-n�rst fnum] [-nlast lnum] [-polort pnum] [-base_�le bname]
-num_stimts num -stim_�le k sname [-stim_minlag k m] [-stim_maxlag k
n]
[-stim_nptr k p] -iresp k ipre�x [-errts epre�x] [-sigma s] [-seed d]
[-xout] [-output tpre�x]

The di¤erent command line options are explained below.

4.3.2 Options

-input fname
The -input command speci�es that fname is the �lename of the AFNI 3d+time data

set to be used as a template for the program 3dConvolve output. The -input command is
mandatory except when the -input1D command is used in its place.
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-input1D
The -input1D command speci�es that only .1D time series data �les will be used as input

for program 3dConvolve. That is, instead of 3d+time datasets, the inputs are given only
for a single voxel. If this option is used, the predicted measurement time series is written
to the screen and (optionally) to a .1D output �le. This option allows prediction of the
measured response time series for a single voxel.

-mask mname
The optional -mask command speci�es that mname is the �lename of the AFNI 3d

dataset to be used for �masking �the input data. That is, if a voxel in the mask dataset
has value zero, then the corresponding voxel in the 3d+time input datasets will be ignored
for computational purposes. All output corresponding to that particular voxel will be set
to zero. If the mask dataset represents the brain, i.e., if the mask contains 1�s only at
locations inside the brain, and 0�s at locations outside the brain, this will greatly improve
the program execution speed. Of course, the mask dataset must have the same voxel
dimensions as the input 3d+time template dataset.

-censor cname
The optional -censor command is used to specify that cname is a .1D �le, equal in length

to that of the input 3d+time dataset, consisting of 1�s and 0�s. At time points correspond-
ing to 0�s in �le cname, the output data values are replaced with the corresponding values
from the input 3d+time template dataset.

-concat rname
The optional -concat command speci�es that rname is the �lename of the AFNI .1D

time series data �le containing a list of the starting points for each individual run within a
concatenated dataset.

-n�rst fnum
The optional -n�rst command speci�es that fnum is the number of the �rst time point

to be calculated by the convolution procedure. (Note: the �rst image in the dataset is
numbered 0.) At time points prior to fnum, the output data values are replaced with
the corresponding values from the input 3d+time template dataset. The default value is
fnum = maximum of the maxlag values. See option -stim_maxlag below.

-nlast lnum
The optional -nlast command speci�es that lnum is the number of the last time point

to be calculated by the convolution procedure. (Note: the �rst image in the dataset
is numbered 0). At time points after l num, the output data values are replaced with
the corresponding values from the input 3d+time template dataset. The default value is
lnum = number of the last image in the dataset. (Program 3dinfo can be used to print out
relevant information about a dataset.)
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-polort pnum
The optional -polort command speci�es that pnum (pnum = 0; 1; 2; ...) is the degree of

the polynomial in the baseline model. The default value is pnum = 1 (corresponding to
the baseline model: Zn = 
0 + 
1n; i.e., the signal is a constant plus linear trend).
Note: The command �-polort -1�can be used to specify no basline model parameters;

in this case, the baseline model is: Zn = 0.

-base_�le bname
The -base_�le command speci�es that bname is the name of the 3d dataset which con-

tains the baseline parameters for each voxel. Be sure to use the �[ ]�sub-brick selectors
to indicate which speci�c sub-bricks contain the baseline parameters. Note: The number
of baseline parameter sub-bricks must be exactly one more than the degree of the baseline
polynomial speci�ed with the -polort command. If the command �-polort -1�is used, do
not use the -base_�le command.

-num_stimts num
The mandatory -num_stimts is used to indicate that num input stimulus time series will

be used. Note: the -num_stimts command must precede the following commands.

-stim_�le k sname
The mandatory -stim_�le command speci�es that sname is the �lename of the .1D

time series representing the kth input stimulus function. For multi-column .1D �les, this
command has the alternative format:

-stim_�le k �sname[j]�
In this case, the -stim_�le command speci�es that the kth input stimulus function is

contained in column j of �le sname. Note: The column numbering begins with 0; i.e.,
the �rst column corresponds to j = 0, etc. Also, note that the square brackets around the
column index must be enclosed within quotation marks.

-stim_minlag k m
The optional -stim_minlag command speci�es that the minimum time lag is m for the

input impulse response function corresponding to the kth input stimulus. The default value
is m = 0.

-stim_maxlag k n
The optional -stim_maxlag command speci�es that the maximum time lag is n for the

input impulse response function corresponding to the kth input stimulus. The default value
is n = 0. Note that for each input stimulus, it is required that: min lag � max lag.

-stim_nptr k p
The optional -stim_nptr command speci�es that there are p (p = 1; 2; 3; :::) time points

in the kth input stimulus for each TR. The default value is p = 1. If the input 3d+time
dataset contains N points, then the kth input stimulus must contain at least p�N points.
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If p > 1, then the user must align all input slices to 0 time o¤set beforehand (see program
3dTshift). Note: The IRF time limits speci�ed with -stim_minlag and -stim_maxlag are
in multiples of TR=p. Therefore, the commands:

-stim_minlag k m
-stim_maxlag k n
-stim_nptr k p

indicate that the kth IRF extends from m� TR=p to n� TR=p.

-iresp k iname The mandatory -iresp command instructs program 3dConvolve to read
the impulse response function corresponding to the kth input stimulus. That is, the impulse
response function for each voxel is read as a time series of length max lag � min lag + 1
from an AFNI 3d (+time) dataset. The input dataset has �lename iname. Note: If the
-input1D option is used, then the single impulse response function is read from the .1D �le
iname. For multi-column .1D �les, this command has the alternative format:

-iresp k �iname[j]�
In this case, the -iresp command speci�es that the kth impulse response function is

contained in column j of �le iname. Note: The column indexing begins with 0; i.e., the
�rst column corresponds to j = 0, etc. Also note that the square brackets around the
column index must be enclosed within quotation marks.

-errts ename
The optional -errts command instructs program 3dConvolve to read the residual error

time series, for each voxel, from an AFNI 3d+time dataset. These errors are then added
to the full model (i.e., predicted measurement = full model �t + residual error). The
residual error input dataset has �lename ename. Note: If the -input1D option is used,
then the single residual error time series is read from the .1D �le iname.

-sigma s
The optional -sigma command is used to indicate that s = standard deviation of white

Gaussian noise, which is added to the predicted response. The default value is s = 0.

-seed d
The optional -seed command is used to indicate that d = seed for the random number

generator. The default value is d = 1234567.

-xout
The optional -xout command is used to write the experimental design matrix X to the

screen. This may help the user to understand what the program is doing. Note that this
option e¤ects screen output only, and does not alter the content of the output dataset.
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-output tpre�x
The -output command instructs program 3dConvolve to save the predicted measurement

data time series for each voxel. The predicted measurement time series are stored into an
AFNI 3d+time dataset with pre�x �lename tpre�x.
However, if -output is used in conjunction with the -input1D command, then the single

predicted measurement time series will be written to �le tpre�x.1D. Note: This will
automatically overwrite a pre-existing tpre�x.1D �le.

4.4 Examples

Example 4.4.1 Single Stimulus; No Noise; 1d Inputs
As the inverse problem to Example 1.4.2.3, we will use program 3dConvolve to compute

the single time series which results from the convolution

w(t) = b0 + b1t+ g(t)
 h(t)

where the baseline parameters are: �
b0
b1

�
=

�
100:0
1:0

�
Save the above as a single column of two numbers into �le Base.1D. The input stimulus
function g(t) is the same as given in that example:

g(t) =
�
1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 0 0 0

	
We will assume that this stim function has already been saved in �le g.1D (if not, then do
so now). The impulse response function h(t) from that example is as follows:

h(t) = f 0:0 5:0 10:0 5:0 2:0 g

Save the above IRF as a single column of numbers into �le h.1D. Now, execute the following
script:

Program 3dConvolve Command Line for Example 4.4.1

3dConvolve n
-input1D -nfirst 0 -nlast 19 -polort 1 n
-base_file Base.1D n
-num_stimts 1 n
-stim_file 1 g.1D -stim_maxlag 1 4 n
-iresp 1 h.1D

Verify that the output to the screen is identical to the w(t) time series displayed in Example
1.4.2.3:

w(t) = f 100 106 117 118 111 112 121 127 125 116
117 121 117 120 124 125 133 137 135 126 g
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Pay particular attention to the di¤erence between this example and Example 1.4.2.3. In
the earlier example, the inputs were g(t) and w(t); the output consisted of the baseline
parameters b0 and b1, and impulse response function h(t). In the current example, the
inputs are g(t), baseline parameters b0 and b1, and impulse response function h(t). The
output is the predicted measurement w(t).

Example 4.4.2 Single Stimulus; External Noise; 1d Inputs
This example is the same as the previous example, except that we specify the measure-

ment error at each time point. Referring to Example 1.4.2.4, let the measurement errors
be given by:

"(t) = wn(t)� w(t)

=
f �0:22 �0:54 �0:70 5:51 �2:40 �0:99 �0:16 �0:58 �1:89 0:85
�2:45 �2:82 0:58 �1:07 1:01 1:21 2:23 3:22 3:75 1:28 g

If these errors are stored in �le eps.1D, then they can be added to the predicted measurement
using the -errts command, as illustrated below:

Program 3dConvolve Command Line for Example 4.4.2

3dConvolve n
-input1D -nfirst 0 -nlast 19 -polort 1 n
-base_file Base.1D n
-num_stimts 1 n
-stim_file 1 g.1D -stim_maxlag 1 4 n
-iresp 1 h.1D n
-errts eps.1D

Verify that the output to the screen is equal to the wn(t) time series displayed in Example
1.4.2.4, i.e.:

wn(t) =

f 99:78 105:46 116:30 123:51 108:60 111:01 120:84 126:42 123:11 116:85
114:55 118:18 117:58 118:93 125:01 126:21 135:23 140:22 138:75 127:28 g

Example 4.4.3 Multiple Stimuli; No Noise; 1d Inputs
In Example 1.4.3.4, there were three separate stimulus time series functions, correspond-

ing to the times of presentation for the three di¤erent word categories.

r(t)
m(t)
e(t)

=
=
=

f
f
f

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0

g
g
g

If you haven�t already done so, store these rows as single columns into �les Random.1D,
Markov.1D, and English.1D, respectively. As before, let the 3 point IRF�s be given by:
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hR(t)
hM(t)
hE(t)

=
=
=

f
f
f

2 7 5
1 4 6
3 9 2

g
g
g

Store these IRF�s as 3 columns of 3 numbers each into �le IRF.1D.
Suppose that we model the system response as the sum of the convolutions of these

IRF�s with their corresponding stimulus functions:

y(t) = r(t)
 hR(t) +m(t)
 hM(t) + e(t)
 hE(t)

Now, model the measured data as a constant (100) plus slope (1) plus the system response,
e.g.:

z(t) = b0 + b1t+ y(t)

= 100 + 1 � t+ r(t)
 hR(t) +m(t)
 hM(t) + e(t)
 hE(t)

The following command line can be used to calculate z(t):

Program 3dConvolve Command Line for Example 4.4.3

3dConvolve n
-input1D -nfirst 0 -nlast 19 -polort 1 n
-base_file Base.1D n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_maxlag 1 2 n
-stim_file 2 Markov.1D -stim_maxlag 2 2 n
-stim_file 3 English.1D -stim_maxlag 3 2 n
-iresp 1 �IRF.1D[0]� n
-iresp 2 �IRF.1D[1]� n
-iresp 3 �IRF.1D[2]�

Verify that the program output agrees with the input data from Example 1.4.3.4:

z(t) = f 100 103 110 115 119 108 110 116 119 118
117 121 127 119 120 115 117 124 135 128 g

Example 4.4.4 Multiple Stimuli; Additive Gaussian Noise; 1d Inputs
Now, let�s add white Gaussian noise to the above data. This is easily accomplished

with the -sigma s command, which adds N(0; s2) random variates to the output.
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Program 3dConvolve Command Line for Example 4.4.4

3dConvolve n
-input1D -nfirst 0 -nlast 19 -polort 1 n
-base_file Base.1D n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_maxlag 1 2 n
-stim_file 2 Markov.1D -stim_maxlag 2 2 n
-stim_file 3 English.1D -stim_maxlag 3 2 n
-iresp 1 �IRF.1D[0]� n
-iresp 2 �IRF.1D[1]� n
-iresp 3 �IRF.1D[2]� n
-sigma 1.0 -seed 123456789

The screen output should look like this:
wn(t) =

f 102:40 101:02 110:65 116:07 118:70 108:58 109:34 116:35 119:92 118:59
115:74 120:87 126:85 118:91 122:16 114:98 118:23 123:67 136:45 128:22 g

Repeat the above command line, but use di¤erent values for the initial random number
seed, by changing the argument of the -seed command. How does this e¤ect the output?

Example 4.4.5 (Continuation of Examples 1.4.3.2 and 2.3.2)
In Example 1.4.3.2, we modeled the measured data, for a particular voxel, using the

input �ideal�function (Cos) and the estimated motion parameters (Roll; P itch; Y aw; dS;
dL; dP ) thus:

z(t) = b0 + b1 � t+ c0 � Cos(t) + c1 � Cos(t� 1)
+d �Roll(t) + e � Pitch(t) + f � Y aw(t) + g � dS(t) + h � dL(t) + i � dP (t)

From Example 2.3.2, we have the following parameter estimates:

b =

�
b0
b1

�
=

�
820:7942
0:3943

�
, c =

�
c0
c1

�
=

�
0:0054
0:0040

�
,

m0 =
�
d e f g h i

�
=

�
132:4883 �18:0019 �87:6356 24:2552 18:3589 �29:6341

�
Save b as a single column into �le b.coef.1D; save c as a single column into �le c.coef.1D,
and save m0 as a single row into �le m.coef.1D. As before, we will assume that the �ideal�
time series is contained in �le cos7.00.1D, and that the 6 estimated motion parameter time
series are contained in �le v2.motion.1D. Now, execute the following command line:
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Program 3dConvolve Command Line for Example 4.4.5

3dConvolve n
-input1D -nfirst 6 -nlast 67 -polort 1 n
-base_file b.coef.1D n
-num_stimts 7 n
-stim_file 1 cos7.00.1D -stim_maxlag 1 1 n
-stim_file 2 �v2.motion.1D[0]� n
-stim_file 3 �v2.motion.1D[1]� n
-stim_file 4 �v2.motion.1D[2]� n
-stim_file 5 �v2.motion.1D[3]� n
-stim_file 6 �v2.motion.1D[4]� n
-stim_file 7 �v2.motion.1D[5]� n
-iresp 1 c.coef.1D n
-iresp 2 �m.coef.1D[0]� n
-iresp 3 �m.coef.1D[1]� n
-iresp 4 �m.coef.1D[2]� n
-iresp 5 �m.coef.1D[3]� n
-iresp 6 �m.coef.1D[4]� n
-iresp 7 �m.coef.1D[5]� n
-xout -output myPred

The predicted measurement time series has been written to �le myPred.1D. This time series
can be plotted using the command

1dplot -ignore 6 myPred.1D

However, if you wish to overlay the predicted time series on top of the actual data, which
is contained in �le 029_029_008.1D, this can be accomplished with the following script:

Script for Plotting Predicted Data on top of Actual Data

1dcat 029_029_008.1D myPred.1D > Overlay.1D
1dplot -ignore 6 -one Overlay.1D

Example 4.4.6 Single Stimulus; No Noise; 3d+time Input
As a further illustration of the relationship between programs 3dDeconvolve and 3dCon-

volve, we present the following example. Here, we analyze the hypothetical 3d+time dataset
Paula+orig, which we considered in Example 1.4.2.5. Again, please try this example using
your own 3d+time dataset.
Recall that in Example 1.4.2.5, three output datasets were generated by program 3dDe-

convolve. The �rst, Paula.bucket+orig, is a bucket dataset containing the estimates for
the regression parameters and t-statistics, along with the F -statistics and R2 values for the
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statistical signi�cance of the �t, at each voxel. File Paula.irf+orig is a 3d+time dataset con-
taining the estimated impulse response function for each voxel. Finally, �le Paula.�t+orig
is a 3d+time dataset containing the full model least squares �t to the observed data for
each voxel.
Use the following command line to �predict�the measurement at each voxel location.

Program 3dConvolve Command Line for Example 4.4.6

3dConvolve n
-input Paula+orig -polort 1 n
-base_file �Paula.bucket+orig[0,2]� n
-num_stimts 1 n
-stim_file 1 Visual.1D -stim_maxlag 1 10 n
-iresp 1 Paula.irf+orig n
-xout -output Paula.pred1

The -base_�le command indicates that the baseline parameters b0 and b1, for each
voxel, are to be read from the #0 and #2 sub-bricks, respectively, of the bucket dataset
Paula.bucket+orig. The -num_stimts command indicates that there is one input stimulus
function (and one IRF for each voxel). The -iresp command indicates that the IRF for each
voxel is to be read from the 3d+time dataset Paula.irf+orig. The predicted measurement
data will then be stored in the 3d+time dataset Paula.pred1+orig.
The above script reads the 11-point IRF for each voxel from the 3d+time dataset

Paula.irf+orig, which was created by program 3dDeconvolve using the -iresp command.
However, an entirely equivalent procedure is to read the IRF coe¢ cients directly from
the output bucket dataset Paula.buck+orig, as illustrated below:

Program 3dConvolve Command Line for Example 4.4.6

3dConvolve n
-input Paula+orig -polort 1 n
-base_file �Paula.bucket+orig[0,2]� n
-num_stimts 1 n
-stim_file 1 Visual.1D -stim_maxlag 1 10 n
-iresp 1 �Paula.bucket+orig[4..24(2)]� n
-xout -output Paula.pred2

The command -iresp 1 �Paula.bucket+orig[4..24(2)]�indicates that the 11-point IRF co-
e¢ cients are to be read from sub-bricks #4, #6, #8, #10, ..., #22, and #24 of dataset
Paula.bucket+orig. This demonstrates that it is not necessary to save the IRF coe¢ cients
as a separate 3d+time dataset, if it is not convenient to do so. Obviously, it is important
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that the user correctly specify which sub-bricks of the bucket dataset contain the IRF co-
e¢ cients. When in doubt, use program 3dinfo to print the sub-brick labels of the bucket
dataset.
Verify that the 3d+time datasets Paula.pred1+orig and Paula.pred2+orig agree with the

3dDeconvolve �tted time series output Paula.�t+orig.

Example 4.4.7 Multiple Stimuli; External Noise; 3d+time Input
Here we consider the inverse to the problem considered in Example 1.4.3.6. Given

the 3 input stimulus functions Random.1D, Markov.1D, English.1D, and the corresponding
3 IRF�s for each voxel, and given the residual error time series for each voxel, the objective
is to reconstruct the measured data contained in �le Monica+orig.

Program 3dConvolve Command Line for Example 4.4.7

3dConvolve n
-input Monica+orig -polort 1 n
-base_file �Monica.bucket+orig[0,1]� n
-num_stimts 3 n
-stim_file 1 Random.1D -stim_file 2 Markov.1D -stim_file 3 English.1D n
-stim_minlag 1 2 -stim_minlag 2 2 -stim_minlag 3 2 n
-stim_maxlag 1 5 -stim_maxlag 2 5 -stim_maxlag 3 5 n
-iresp 1 �Monica.bucket+orig[2..5]� n
-iresp 2 �Monica.bucket+orig[7..10]� n
-iresp 3 �Monica.bucket+orig[12..15]� n
-errts Monica.err+orig n
-xout -output Monica.recon

Note that since there are 3 input stimulus functions, there must be exactly 3 -iresp com-
mands to read the corresponding IRF�s. The -errts command indicates that the mea-
surement error at each time point for each voxel is to be read from the 3d+time dataset
Monica.err+orig.
Verify that the 3d+time dataset Monica.recon+orig agrees with the 3dDeconvolve input

dataset Monica+orig.
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