
-1-

Image and Volume Registration with AFNI

• Goal: bring images collected with different methods and at different times into
spatial alignment

• Facilitates comparison of data on a voxel-by-voxel basis
 Functional time series data will be less contaminated by artifacts due to

subject movement
 Can compare results across scanning sessions once images are properly

registered
• Most (all?) image registration methods now in use do pair-wise alignment:

 Given a base image J(x) and target (or source) image I(x), find a geometrical
transformation T[x] so that I(T[x]) ≈ J(x)

 T[x] will depend on some parameters
➥ Goal is to find the parameters that make the transformed I a ‘best fit’ to J

 To register an entire time series, each volume In(x) is aligned to J(x) with its
own transformation Tn[x], for n = 0, 1, …
➥ Result is time series In(Tn[x]) for n=0, 1, …
➥ User must choose base image J(x)

-2-

• Most image registration methods make 3 algorithmic choices:
 How to measure mismatch E (for error) between I(T[x]) and J(x)?

➥ Or … How to measure goodness of fit between I(T[x]) and J(x)?
➭ E(parameters) ≡ –Goodness(parameters)

 How to adjust parameters of T[x] to minimize E?
 How to interpolate I(T[x]) to the J(x) grid?

➥ So can compare voxel intensities directly
• AFNI 3dvolreg program matches images by grayscale (intensity) values

 E = (weighted) sum of squares differences = Σx w(x) · {I(T[x]) - J(x)}2

➥ Only useful for registering ‘like images’:
➭ Good for SPGRSPGR, EPIEPI, but notnot good for SPGREPI

 Parameters in T[x] are adjusted by “gradient descent”
➥ Fast, but customized for the least squares E

 Several interpolation methods are available:
➥ Default method is Fourier interpolation
➥ Polynomials of order 1, 3, 5, 7 (linear, cubic, quintic, and heptic)

 This program is designed to run very fast for EPIEPI registration with small
movements — good for FMRI purposes

• Newer program 3dAllineate uses more complicated definitions of E
 Will discuss this software later in the presentation

-3-

• AFNI program 3dvolreg is for aligning 3D volumes by rigid movements
 T[x] has 6 parameters:

➥ Shifts along x-, y-, and z-axes; Rotations about x-, y-, and z-axes
 Generically useful for intra- and inter-session alignment
 Motions that occur within a single TR (2-3 s) cannot be corrected this way,

since method assumes rigid movement of the entire volume
• AFNI program 2dImReg is for aligning 2D slices

 T[x] has 3 parameters for each slice in volume:
➥ Shift along x-, y-axes; Rotation about z-axis
➥ No out of slice plane shifts or rotations!

 Useful for sagittal EPI scans where dominant subject movement is ‘nodding’
motion that may be faster than TR

 It is possible and sometimes even useful to run 2dImReg to clean up sagittal
nodding motion, followed by 3dvolreg to deal with out-of-slice motion

• Hybrid ‘slice-into-volume’ registration:
 Put each separate 2D image slice into the target volume with its own 6

movement parameters (3 out-of-plane as well as 3 in-plane)
 Has been attempted, but the results are not much better than volume

registration; method often fails on slices near edge of brain
➥ We do not have a program to do this

-4-

• Intra-session registration example:
3dvolreg -base 4 -heptic -zpad 4 \

 -prefix fred1_epi_vr \
 -1Dfile fred1_vr_dfile.1D \
 fred1_epi+orig

 -base 4 ⇒ Selects sub-brick #4 of dataset fred1_epi+orig as base image J(x)
 -heptic ⇒ Use 7th order polynomial interpolation (my personal favorite)
 -zpad 4 ⇒ Pad each target image, I(x), with layers of zero voxels 4 deep on each

face prior to shift/rotation, then strip them off afterwards (before output)
➥ Zero padding is particularly desirable for -Fourier interpolation
➥ Is also good to use for polynomial methods, since if there are large rotations,

some data may get ‘lost’ when no zero padding if used (due to the 4-way shift
algorithm used for very fast rotation of 3D volume data)

 -prefix fred1_epi_vr ⇒ Save output dataset into a new dataset with the
given prefix name (e.g., fred1_epi_vr+orig)

 -1Dfile fred1_vr_dfile.1D ⇒ Save estimated movement parameters into a
1D (i.e., text) file with the given name
➥ Movement parameters can be plotted with command
1dplot -volreg -dx 5 -xlabel Time fred1_vr_dfile.1D

Input dataset name

-5-
 Can now register second dataset from same session:
3dvolreg -base ‘fred1_epi+orig[4]’ -heptic -zpad 4 \

 -prefix fred2_epi_vr -1Dfile fred2_vr_dfile.1D \
 fred2_epi+orig

➥ Note base is from different dataset (fred1_epi+orig) than input
(fred2_epi+orig)
➭ Aligning all EPI volumes from session to EPI closest in time to SPGR

• 1dplot -volreg -dx 5 -xlabel Time fred2_vr_dfile.1D

➥ Note motion peaks at time ≈ 160s: subject jerked head up at that time

-6-

 Examination of time series fred2_epi+orig and fred2_epi_vr_+orig
shows that head movement up and down happened within about 1 TR
interval
➥ Assumption of rigid motion of 3D volumes is not good for this case
➥ Can do 2D slice-wise registration with command
2dImReg -input fred2_epi+orig \
 -basefile fred1_epi+orig \
 -base 4 -prefix fred2_epi_2Dreg

 Graphs of a single voxel time series near
the edge of the brain:
➥ Top = slice-wise alignment
➥ Middle = volume-wise adjustment
➥ Bottom = no alignment

 For this example, 2dImReg appears to
produce better results. This is because
most of the motion is ‘head nodding’ and
the acquisition is sagittal

 You should also use AFNI to scroll through
the images (using the Index control)
during the period of pronounced
movement
 Helps see if registration fixed problems

fred1_epi registered
with 2dImReg

fred1_epi registered
with 3dvolreg

fred1_epi unregistered

-7-

• Intra-subject, inter-session registration (for multi-day studies on same subject)
 Longitudinal or learning studies; re-use of cortical surface models
 Transformation between sessions is calculated by registering high-resolution

anatomicals from each session

➥ to3d defines defines
relationship between EPI
and SPGR in each session

➥ 3dvolreg computes
relationship between
sessions

➥ So can transform EPI from
session 2 to orientation of
session 1

 Issues in inter-session registration:
➥ Subject’s head will be positioned differently (in orientation and location)

➭ xyz-coordinates and anatomy don’t correspond
➥ Anatomical coverage of EPI slices will differ between sessions
➥ Geometrical relation between EPI and SPGR differs between session
➥ Slice thickness may vary between sessions (try not to do this, OK?)

-8-

• Anatomical coverage differs

 At acquisition:
 Day 2 is rotated

relative to Day 1

 After rotation to
same orientation,
then clipping to
Day 2 xyz-grid

-9-

 Another problem: rotation
occurs around center of
individual datasets

-10-

 Solutions to these problems:
➥ Add appropriate shift to E2 on top of rotation

➭ Allow for xyz shifts between days (E1-E2), and center shifts
between EPI and SPGR (E1-S1 and E2-S2)

➥ Pad EPI datasets with extra slices of zeros so that aligned datasets
can fully contain all data from all sessions

➥ Zero padding of a dataset can be done in to3d (at dataset creation
time), or later using 3dZeropad

➥ 3dvolreg and 3drotate can zero pad to make the output match a
“grid parent” dataset in size and location

-11-

 Recipe for intra-subject S2-to-S1 transformation:
1. Compute S2-to-S1 transformation:

3dvolreg -twopass -zpad 4 -base S1+orig \
 -prefix S2reg S2+orig

➥ Rotation/shift parameters are saved in S2reg+orig.HEAD
2. If not done before (e.g., in to3d), zero pad E1 datasets:

3dZeropad -z 4 -prefix E1pad E1+orig

3. Register E1 datasets within the session:
3dvolreg -base ‘E1pad+orig[4]’ -prefix E1reg \

 E1pad+orig

4. Register E2 datasets within the session, at the same time executing
larger rotation/shift to session 1 coordinates that were saved in
S2reg+orig.HEAD:
3dvolreg -base ‘E2+orig[4]’ \
 -rotparent S2reg+orig \
 -gridparent E1reg+orig \
 -prefix E2reg E2reg+orig

➥ -rotparent tells where the inter-session transformation comes from
➥ -gridparent defines the output grid location/size of new dataset

➭ Output dataset will be shifted and zero padded as needed to lie on
top of E1reg+orig

• These options put the aligned
• E2reg into the same coordinates
 and grid as E1reg

• -twopass allows
 for larger motions

-12-

 Recipe above does not address problem of having different slice thickness in
datasets of the same type (EPI and/or SPGR) in different sessions
➥ Best solution: pay attention when you are scanning, and always use the

same slice thickness for the same type of image
➥ OK solution: use 3dZregrid to linearly interpolate datasets to a new slice

thickness
 Recipe above does not address issues of slice-dependent time offsets stored

in data header from to3d (e.g., ‘alt+z’)
➥ After interpolation to a rotated grid, voxel values can no longer be said to

come from a particular time offset, since data from different slices will have
been combined

➥ Before doing this spatial interpolation, it makes sense to time-shift dataset
to a common temporal origin

➥ Time shifting can be done with program 3dTshift
➭ Or by using the -tshift option in 3dvolreg, which first does the

time shift to a common temporal origin, then does the 3D spatial
registration

• Further reading at the AFNI web site
 File README.registration (plain text) has more detailed instructions and

explanations about usage of 3dvolreg
 File regnotes.pdf has some background information on issues and methods

used in FMRI registration packages

-13-

Real-Time 3D Image Registration
• The image alignment method using in 3dvolreg is also built into the

AFNI real-time image acquisition plugin
 Invoke by command afni -rt
 Then use Define Datamode → Plugins → RT Options

to control the operation of real-time (RT) image acquisition
• Images (2D or 3D arrays of numbers) can be sent into AFNI through a

TCP/IP socket
 See the program rtfeedme.c for sample of how to connect to

AFNI and send the data
➥ Also see file README.realtime for lots of details

 2D images will be assembled into 3D volumes = AFNI sub-bricks
• Real-time plugin can also do 3D registration when each 3D volume is

finished, and graph the movement parameters in real-time
 Useful for seeing if the subject in the scanner is moving his head too

much
➥ If you see too much movement, telling the subject will usually

help

-14-

• Screen capture from
example of real-time image
acquisition and registration

• Images and time series
graphs can be viewed as
data comes in

• Graphs of movement
parameters

-15-

New Program: 3dAllineate
• 3dAllineate can be used align images from different methods

 For example, to align EPI data to SPGR / MPRAGE:
➥ Run 3dSkullStrip on the SPGR dataset so that it will be more

like the EPI dataset (which will have the skull fat suppressed)
➥ Use 3dAllineate to align the EPI volume(s) to the skull-

stripped SPGR volume
➥ Only works well if the EPI volume covers most of the brain

• Program is slower than 3dvolreg
 Allows more general spatial transformations

➥ At present, 12 parameter affine: T[x] = Ax+b
 Uses a more general-purpose optimization library than gradient

descent
➥ The NEWUOA package from Michael Powell at Oxford
➥ Less efficient than a customized gradient descent formulation

➭ But can be used in more situations
➭ And is easier to put in the computer program, since there is

no need to compute the derivatives of the cost function E

-16-

• 3dAllineate has several different “cost” functions (E) available
 leastsq = Least Squares (like 3dvolreg)
 mutualinfo = Mutual Information
 norm_mutualinfo = Normalized Mutual Information
 hellinger = Hellinger Metric [the defaultdefault cost function]
 corrratio_mul = Correlation ratio (symmetrized by multiplication)
 corratio_add = Correlation ratio (symmetrized by addition)
 corratio_uns = Correlation ratio (unsymmetric)

• All cost functions, except “leastsq ”, are based on the joint histogram
between images I(T[x]) and J(x)
 The goal is to make I(T[x]) “predictable” as possible given J(x), as

the parameters that define T[x] are varied
 The different cost functions use different ideas of “predictable”
 Perfect predictability = knowing value of J, can calculate value of I

exactly
➥ Least squares: I = α⋅J+β for some constants α and β
➥ Joint histogram of I and J is “simple” in the idealized case of

perfect predictability

-17-

• Histogram cartoons:

J

I

J

I

J

I

• J not useful in
predicting I

• I can be accurately
predicted from J with
a linear formula:
 -leastsq is OK

• I can be accurately
predicted from J, but
nonlinearly:
 -leastsq is BAD

-18-

• Actual histograms from a registration example
 J(x) = 3dSkullStrip-ed MPRAGE I(x) = EPI volume

J

I

• Before alignment

J

I

• After alignment
(using -mutualinfo)

-19-

• grayscale underlay = J(x) = 3dSkullStrip-ed MPRAGE
• color overlay = I(x) = EPI volume

• Before alignment • After alignment
(using -mutualinfo)

-20-

• Other 3dAllineate capabilities:
 Save transformation parameters with option -1Dfile in one

program run
➥ Re-use them in a second program run on another input

dataset with option -1Dapply
 Interpolation: linear (polynomial order = 1) during alignment

➥ To produce output dataset: polynomials of order 1, 3, or 5
• Algorithm details:

 Initial alignment starting with many sets of transformation
parameters, using only a limited number of points from
smoothed images

 The best (smallest E) sets of parameters are further refined
using more points from the images and less blurring

 This continues until the final stage, where many points from
the images and no blurring is used

-21-

• The future for 3dAllineate:
 Allow alignment to use manually placed control points (on both

images) and the image data
➥ Will be useful for aligning highly distorted images or images with

severe shading
➥ Current AFNI program 3dTagalign allows registration with

control points only
 Nonlinear spatial transformations

➥ For correcting distortions of EPI (relative to MPRAGE or SPGR) due
to magnetic field inhomogeneity

➥ For improving inter-subject brain alignment (Talairach)
 Investigate the use of local computations of E (in a set of overlapping

regions covering the images) and using the sum of these local E’s as
the cost function
➥ May be useful when relationship between I and J image

intensities is spatially dependent
➭ RF shading and/or Differing MRI contrasts

 Save warp parameters in dataset headers for re-use

-22-

3dAllineate3dAllineate::
More than you want toMore than you want to

knowknow

-23- Algorithmic Features
• Uses Powell’s NEWUOA software for minimization of general cost function
• Lengthy search for initial transform parameters if two passes of registration

are turned on [which is the default]
 Random and grid search through hundreds of parameter sets for 15 good

(low cost) parameter sets
 Optimize a little bit from each ‘good’ set, using blurred images

➥ Blurring the images means that small details won’t prevent a match
 Keep best 4 of these parameter sets, and optimize them some more

[keeping 4 sets is the default for -twobest option]
➥ Amount of blurring is reduced in several stages, followed by re-

optimization of the transformation parameter sets on these less
blurred images

➥ -twofirst does this for first sub-brick, then uses the best parameter
sets from the first sub-brick as the starting point for the rest of the sub-
bricks [the default]

 Use best 1 of these parameter sets as starting point for fine (un-blurred)
parameter optimization
➥ The slowest part of the program

-24-

Algorithmic Features
• Goal is to find parameter set w such that E[J(x) , I(T(x,w))] is small

 T(x,w) = spatial transformation of x given w
 J() = base image, I() = target image, E[] = cost function

• For each x in base image space, compute T(x,w) and then interpolate I() at
those points
 For speed, program doesn’t use all points in J(), just a scattered

collection of them, selected from an automatically generated mask
➥ Mask can be turned off with -noauto option
➥ At early stages, only a small collection of points [default=23456] is

used when computing E[]
➥ At later stages, more points are used, for higher accuracy

➭ Recall that each stage is less blurred than the previous stages
 Large fraction of CPU time is spent in interpolation of image I() over the

collection of points used to compute E[]

-25-

Cost Functions
• Except for least squares (actually, ls minimizes E = 1.0 – Pearson

correlation coefficient), all cost functions are computed from 2D joint
histogram of J(x) and I(T(x,w))
 Start and final histograms can be saved using hidden option -savehist

Before After

Base image

Source
image

Source image
= rotated copy
of Base image

-26-

Histogram Based Cost Functions

• Goal is to make 2D histogram become ‘simple’ in some sense, as a
measurement of ‘predictability’ between J(x) and I(T(x,w))

• Entropy H() of a histogram (finite number of bins):
 {pi} = probabilities of index i occuring
 H({pi}) = –Σi pi log2(pi) > 0
 H({pi}) = Number of bits needed to encode a single value randomly

drawn from the probabilities {pi}
 Smaller entropy H means the values are ‘simpler’ to encode

➥ Largest H is for uniform histogram (all pi equal)

-27- Mutual Information
• Entropy of 2D histogram

 H({rij}) = –Sij rij log2(rij)
 Number of bits needed to encode value pairs (i,j)

• Mutual Information between two distributions
 Marginal (1D) histograms {pi} and {qj}
 MI = H({pi}) + H({qj}) - H({rij})
 Number of bits required to encode 2 values separately minus

number of bits required to encode them together (as a pair)
 If 2D histogram is independent (rij= pi×qj) then MI = 0 = no gain from

joint encoding
• 3dAllineate minimizes E[J,I] = –MI(J,I) with -cost mi

-28-

Normalized MI
• NMI = H({rij}) ⁄ [H({pi}) + H({qj})]

 Ratio of number of bits to encode value pair divided by number of
bits to encode two values separately

 Minimize NMI with -cost nmi
• Some say NMI is more robust for registration than MI, since MI can be

large when there is no overlap between the two images

NO
overlap

100%
overlap

BAD
overlap

-29-

Hellinger Metric
• MI can be thought of as measuring a ‘distance’ between two 2D

histograms: the joint distribution {rij} and the product distribution
{pi×qj}
 MI is not a ‘true’ distance: it doesn’t satisfy triangle inequality

d(a,b)+d(b,c) > d(a,c)
• Hellinger metric is a true distance in distribution “space”:

HM = Σij [√rij – √(pi×qj)]2

 3dAllineate minimizes –HM with -cost hel
 This is the default cost function a

c

b

-30-

Correlation Ratio
• Given 2 (non-independent) random variables x and y

 Exp[y|x] is the expected value (mean) of y for a
fixed value of x
➥ Exp[a|b] ≡ Average value of ‘a’, given value of ‘b’

 Var(y|x) is the variance of y when x is fixed =
amount of uncertainty about value of y when we
know x
➥ v(x) ≡ Var(y|x) is a function of x only x

y

• CR(x,y) ≡ 1 – Exp[v(x)] ⁄ Var(y)
• Relative reduction in uncertainty about value of y when x is known;
large CR means Exp[y|x] is a good prediction of the value of y given the
value of x

• Does not say that Exp[x|y] is a good prediction of the x given y
• CR(x,y) is a generalization of the Pearson correlation coefficient, which
assumes that Exp[y|x] = α⋅x+β

-31-

3dAllineate’s Symmetrical CR
• First attempt to use CR in 3dAllineate didn’t give good results
• Note asymmetry: CR(x,y) ≠ CR(y,x)
• 3dAllineate now offers two different symmetric CR cost functions:

 Compute both unsymmetric CR(x,y) and CR(y,x), then combine by
Multiplying or Adding:

 CRm(x,y) = 1 – [Exp(v(x))⋅Exp(v(y))] ⁄ [Var(y) ⋅ Var(x)]
 = CR(x,y) + CR(y,x) – CR(x,y) ⋅ CR(y,x)

 CRa(x,y) = 1 – 1/2 [Exp(v(x)) ⁄ Var(y)] – 1/2 [Exp(v(y)) ⁄ Var(x)]
 = [CR(x,y) + CR(y,x)] ⁄ 2

 These work better than CR(J,I) in my test problems
• If Exp[y|x] can be used to predict y and/or Exp[x|y] can be used to

predict x, then crM(x,y) will be large (close to 1)
• 3dAllineate minimizes 1 – CRm(J,I) with option -cost crM
• 3dAllineate minimizes 1 – CRa(J,I) with option -cost crA
• 3dAllineate minimizes 1 – CR(J,I) with option -cost crU

-32-

Test: Monkey EPI - Anat

6 DOF
CRm

6 DOF
NMI

-33-

6 DOF
HEL

6 DOF
MI

Test: Monkey EPI - Anat

-34-

11 DOF
CRm

11 DOF
NMI

Test: Monkey EPI - Anat

-35-

11 DOF
HEL

11 DOF
MI

Test: Monkey EPI - Anat

