

Notizia dell'AFNI Do We Have to Deal with Multiple Comparisons in Neuroimaging?

Gang Chen¹, Yaqiong Xiao², Paul A Taylor¹, Justin Rajendra¹, Fengji Geng², Tracy Riggins², Elizabeth Redcay², Robert W Cox¹

¹Scientific and Statistical Computing Core, NIMH / NIH / DHHS, USA; ²Department of Psychology, University of Maryland, USA Contact: gangchen@mail.nih.gov

Multiple comparisons in neuroimaging New method: Bayesian multilevel (BML) modeling Standard approach: massively univariate modeling Integrative modeling • As many models as voxels • One (beautiful) model o Assumption: no information shared across voxels

... which has a penalty for multiplicity

- o "Correction" via neighborhood leverage
 - Cluster size
 - Permutation

... and several challenges

- o Excessive penalty?
- o Discrimination against small regions
- o Arbitrariness: artificial dichotomization
- Spatial ambiguity
- Vulnerable to p-hacking

Food for thought

Sources of problem for conventional approach

- o Too many models
- False assumption

Potential improvements

- One model (not maaany initially followed by some correction)
- Information shared across regions

Goals

- No more multiple comparisons issue
- More efficient
- No discrimination
- No spatial ambiguity
- Highlighting instead of hiding
- o Less vulnerable to data manipulation

Demo dataset

Resting-state FMRI

- Subjects: n = 124
- o Individual level: seed-based correlation (seed: right temporoparietal junction)

Conventional group analysis

o Whole brain analysis for effect of behavior (theory of mind index):

$$y_{ij}=a_j+b_jx_i+\epsilon_{ij},i=1,2,...,n$$

o Surviving clusters: up to 4

voxel p	cluster threshold	surviving ROIs	ROIs
0.001	28	2	R PCC, PCC/PrC
0.005	66	4	R PCC, PCC/PrC., L IPL, L TPJ
0.01	106	4	R PCC, PCC/PrC., L IPL, L TPJ
0.05	467	4	R PCC, PCC/PrC., L IPL, L TPJ

Conventional region-based group analysis

o Group analysis with 21 predefined ROIs: 21 GLMs $y_{ij} = a_j + b_j x_i + \epsilon_{ij}, i = 1, 2, ..., n$

a_i, b_i : freely vary from $-\infty$ to $+\infty$

Correction for multiplicity: Bonferroni too costly

$y_{ij} = b_0 + b_1 x_i + \pi_i + \xi_{0j} + \xi_{1j} x_i + \epsilon_{ij}, \ i = 1, 2, ..., n, \ j = 1, 2, ..., r$

- o Assumption: Gaussian across regions
 - Information shared and regularized among regions: partial pooling
 - Not fully trusting effects estimated individually

Good model?

o All models are wrong, but ...

Results comparisons

o GLM (no correction) vs BML

Conclusions

Multiplicity in neuroimaging: result of inefficient modeling

- Information waste: incorrect assumption
- o Correction: excessive penalization

Improved approach via Bayesian multilevel modeling (BML)

- o Information sharing: more efficient
- o Full results reporting: crucial for reproducibility and future studies

This new approach/program available in AFNI: RBA (= "region-based analysis")

Reference

Chen et al., 2019. Handling Multiplicity in Neuroimaging through Bayesian Lenses with Multilevel Modeling. Neuroinformatics. https://rdcu.be/bhhJp

Acknowledgements: This research supported by the NIMH & NINDS Intramural Research Programs of the NIH.