Notizia dell'AFNI How to Handle Multiple Comparisons **Poster #: T542** in "Connectivity" Analysis?

Gang Chen¹, Paul-Christian Bürkner², Zhihao Li³, Paul A Taylor¹, Lijun Yin⁴, Daniel Glen¹, Joshua Kinnison⁵, Robert W Cox¹, Emily Finn⁶, Luiz Pessoa⁵

¹Scientific and Statistical Computing Core, NIMH / NIH, USA; ²Department of Psychology, University of Münster, Germany

³School of Psychology and Sociology, Shenzhen University, China; ⁴Department of Psychology, Sun Yat-sen University, China ⁵Department of Psychology, University of Maryland, College Park, USA; Section on Functional Imaging Methods, NIMH / NIH, USA Contact: gangchen@mail.nih.gov

0.08

0.07

0.05 0.04 0.03

0.01

Multiple comparisons in "connectivity" analysis

Data Structure

- Correlation matrices appear in lots of MRI analyses
- among regions (e.g., anatomical parcellations of subjects)
- among subjects (inter-subject correlation)
- There is an intricate relatedness among pairs of matrix elements.

Standard approach: massively univariate modeling

- As many models as pairs
- Assumption: no information shared across regions and pairs

... and so we then need a penalty for multiplicity

- o "Correction" via neighborhood leverage
 - Pair cluster size
 - Permutation

Challenges for this standard approach

- \circ Do we incur an excessive penalty? (\rightarrow probably!)
- \circ Do we discriminate against small pair clusters? (→ probably!)
- \circ Is there some arbitrariness: artificial dichotomization? (\rightarrow usually!)

Can we do a better job? (\rightarrow Definitely!)

Demo dataset #1

Resting-state

- \circ Subjects: n = 41
- \circ Individual level: correlation matrix among *m* = 16 ROIs

Conventional group analysis

- o Element-wise GLM
- Handling multiplicity: NBS, CONN, FSLnets, GIFT

Demo dataset #2

Naturalistic scanning

- \circ Subjects: n = 68
- 2278 ISC matrices at m = 268 ROIs
- Variables: SRS (Social Responsiveness Scale-2), Age, and Sex

Conventional group analysis

- Whole brain voxel-wise LME
- o Handling multiplicity: clustering

References

Chen et al., 2019. An Integrative Approach to Matrix-Based Analyses in Neuroimaging. Human Brain Mapping. In press. doi: https://doi.org/10.1101/459545

Chen et al., 2019. Untangling the Relatedness among Correlations, Part III: Extending Model Capabilities of Inter-Subject Correlation Analysis for Naturalistic Scanning. Under review.

New approach: dissolving multiplicity

Use one model to integrate everything

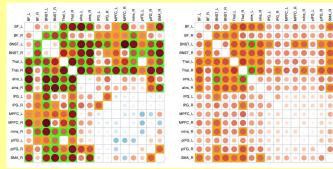
o Bayesian multilevel (BML) modeling

 $z_{ijk} = b_0 + \xi_i + \xi_j + \eta_{ij} + \zeta_{ik} + \zeta_{jk} + \pi_k + \epsilon_{ijk}, \quad i, j = 1, 2, ..., m \ (i \neq j), k = 1, 2, ..., n$ o Assumption: Gaussian distribution across regions or subjects

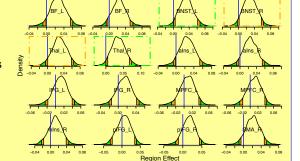
BML applied to dataset #1: correlation matrix

• Region pair modeling

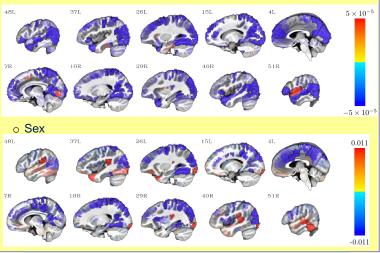
GLM (and none survives correction) BML (no extra correction needed!)



 Regional Posterior Distributions



BML applied to dataset #2: ISC data o SRS



This new approach/program available in AFNI: MBA (= "matrix-based analysis")