m N“" Multiple ways to process multi-echo FMRI data with AFNI

Richard C. Reynolds, Stephen J. Gotts, Adrian W. Gilmore, Daniel R. Glen, Paul A. Taylor

Sponsors
i i 2 4 I 2 iMediSync Inc
Rogue Research Inc

AFNI’s afni_proc.py can flexibly set up analyses We present 5 resting state processing examples Let’s look at some seed-based correlation maps
for: single- or multi-echo FMRI; with/without to highlight the ease of implementing different from each method, via the automatic QC HTML:
physio; with/without BO correction; on a surface analysis choices with afni_proc.py. DMN (seed in |h-PCC) and Visual network (seed
or in a volume; for rest- or task-modeling; etc... in rh-cort-vis).

Here we present convenient ways to process multi-echo (ME) Processing variations with afni_proc.py

FMRI data using AFNI's [1] main tool for pipeline design at the Method 1: single echo with basic processing (“control”). * |
single subject level, afni_proc.py. This includes: both Method 2: ME-FMRI with echos “optimally combined”. %
volumetric and surface analyses; integrating with TEDANA for Method 3: same as #2, but with added BO-correction. =
ME-ICA [2] or “optimally combining” echos; and incorporating Method 4: same as #3, but also used TEDANA to create S |
BO-distortion correction and cardiac/respiratory regressors. regressors of no interest for the regression model. %
(We also show single echo processing, for comparison.) Method 5: same as #4, but with surface analysis. =
Standard (single echo) FMRI How hard is it to adapt afni_proc.py for each? Not very... &
+ a slice is acquired after a single, fixed echo time (TE) Method 1 -+ 2: =
+ images are essentially T2* weighted + add “combine” block, with lists of ME datasets and times: = |
+ echo spacing maximizes signal in GM; produces BOLD signal -dsets_me_run b{dsets_epi_me} Ny

. -echo_times ${me_times} -
Multi-echo FMRI (ME'FMRI) -combi ne_method 0C O
+ multiple echos per volume Method 2 - 3: = o ————
+ echos can be combined in various ways to identify+remove + add the names of reverse-phase encoded (blip) datasets: | |

noise features [3,4] -blip forward dset ${epi forward}
: -blip reverse dset ${epi reverse Z

Data details Method '33; 4 ~ Lepi_ } =
This dataset was acquired using a GE 3T scanner at NIH in accord with IRB protocols (details in [5,6]). It etno y
includes a T1w anatomical volume: voxels=1x1x1 mm?3; matrix=172x256x256. Six ME-FMRI runs were + Change the ME combination method and include an Option:
acquired for a naming task of visually-presented event stimuli: TR=2200ms; TE=12.5,27.6,42.7 ms; .
voxels=3.2x3.2x3.5 mm3; matrix=64x64x33; N=237 volumes (each run). One ME-FMRI resting state run -comb1 ne_mEthOd OC_tEdO rt v
(N=220 volumes) was acquired with the same parameters. A single-echo reverse encoded EPI set (N=10, - comb'i ne tedort rej ect mi dk no >
TE=27.6ms) was acquired for BO-correction. Cardiac and respiratory data were collected for each scan. M h d 4 +5—. — — S e =
Processing details etho : | 0.6 WS W 0.6 thr: Ir] > 0.3
Here we perform various combinations of analyses for the large dataset available. Censoring at + Change “tlrc” to “Surf”, and ]npUt surface datasets . .
enorm=0.2 and outlier fraction=5% was performed in all cases. For surface analyses FreeSurfer v7 [7] was Results tend to be Slmllar, but ME methods show larger, more

first run to estimate surfaces from the T1w anatomical; results were converted to NIFTI volumes and DOWﬂ lOad thlS ME-FMR| Demo from AFN| Sym metric Correlation patterns than Single eChO Though
. )

standard mesh surfaces for use in SUMA [8,9]. For all volumetric analyses, AFNI's @SSwarper calculated

nonlinear alignment to MNI space, and warps were applied within afni_proc.py; also, a blur of 5Smm was + YoUu can (and Should!) get the full Demo data+SC|"iptS, Run: Method #4 shows h]gh correlation in several areas of WM.

used. In some volumetric cases, BO-distortion correction was also used, via nonlinear alighment of . .
opposite-phase encoded EPIs. @Instal -I-_AP_MU LTI_DEMO:I- You can test them all (and more) using afm_proc.py!
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