Does the cluster thresholding strategy
waste too much information?
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Two types of result presentation in neuroimaging Recap: information loss in massively univariate analysis
Survived clusters Highlight but not hide e Same model simultaneously applied to voxels, regions, matrix elements, DTI tracks

e Which presentation would you prefer?

— Left (current practice): rigorously defined clusters per multiple testing adjustment
- Right (highlight but not hide): strong evidence highlighted with weaker evidence faded

e Questions

— Which presentation is more informative & realistic?

— How rigorous/accurate is cluster-level FWE /FPR in the current practice?

— How is massive univariate modeling associated with excessively conservative inferences?
—Is artificial dichotomization absolutely necessary in result reporting?

— Can other info (anatomical structure, prior studies) be used as auxiliary evidence?

—Is it a good idea to combine left & right in result presentation?

Multiple comparisons: enemy worth fight against?

* What is multiplicity, multiple comparisons, or multiple testing?

—Making a set of statistical inferences that are considered simultaneously

e Situations where multiplicity is a concern

— Spatial units (voxels, regions, surface node) in FMRI

— Parameters or effects of interest in a model (GLM, ANOVA, LME)
— Similar studies for an effect of interest

— All studies in a journal, a field (neuroimaging) or entire history

e Current solutions to multiplicity: diluting statistical evidence

— Principle: Bonferroni adjustment - equally diluting /penalizing p-values

— Variants: trade-off spatial extent against statistical evidence in neuroimaging
+* Monte Carlo simulations; random field theorem; permutations

— Solving the problem via post-hoc patching-up, not modeling

* Big problems

— Unbearable penalization: wasting too much info

— Artificial dichotomization

— Discrimination against small regions

— High sensitivity to amount of data (eg, small volume correction)

— Absence of effect estimation: 1) statistics # effect; 2) no adjustment for effect uncertainty
— Disconnection with anatomy: from statistically-defined cluster to peak voxel

— Biased selection: exaggeration and incorrect sign; winner’s curse, publication bias

Learning from meta-analysis

* NARPS (Botvinik-Nezer et al, 2020): 70 teams independently analyzed same data

— Teams rigorously followed rules & reported dichotomized results
— Another multiplicity issue: should team-level p-values be divided by number of teams, 707?

* 2 types of meta-analysis performed by NARPS

— Weighted average across teams using dichotomized results
+ Logistic model on binarized data (“activated” vs “not activated”)
+ Revealed ”sizeable variation in the results” across teams
+ Inconsistency: excessive penalty & artitical dichotomization from mass univariate mod-
eling?
— Weighted average across teams using “unthresholded” statistic values
+ Different conclusion: ”“yielded a significant consensus”
— Consistency: which meta-analysis is more reasonable?

+ Similarly, which result representation at beginning of this poster is more reasonable?

 What does meta-analysis mean in result summarization?

— Statistical evidence: not equal penalization/dilution

— Weighted summarization: info calibration/regularization/pooling/sharing
— Importance of full result reporting: reduction of publication bias

— Each effect, not p-value, is calibrated /adjusted relative to the ensemble

— Handling multiplicity via modeling, not post hoc patching up

* In handling multiplicity, can we borrow the strategy from meta-analysis?

— Multiplicity: as many models as the number of spatial units
— Local adjustment only: adopted to compensate for multiple testing problem
— Thersholding: artificially dichotomizing the continuum of statistical evidences
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e Implicit but questionable assumption: uniform distribution in (—oo, + 0o) (Chen et al, 2021)

— Far from reality: all effects assumed to have same probability of being observed

— Stance of complete ignorance: excessively heavy penalties, inetficient modeling, poor gen-
eralizability, overfitting and compromised predictability

* More accurate characterization of data distribution: centralized density (e.g., Gaussian)

Alternative framework: hierarchical modeling

e Embracing multiplicity: see the forest for the trees

— Integrative framework that incorporates all spatial units into one model
— Information partially pooled, regularized and leveraged across all space
— No multiplicity: one overall high-dimension posterior distribution obtained to infer effects

* Extending meta-analytic strategy

— Calibrating information, not assuming ignorance (melting, not diluting)
— Focusing on estimation, not making decision

— Reporting full results, not hiding ones with weak evidence

- Quantifying effect & uncertainty, not fighting nullity

— Emphasizing model quality, not following recipes

Demo: hierarchical modeling with a dataset

Data information
® 124 children watched Inscapes; 21 ROIs

e Explanatory variable: behavioral measure of overall theory of mind ability

Model formulations

e Conventional approach: mass univariate GLM with ~ 200, 000 voxels/GLMs
yi=a1+bx+e€, i=12 ..200000

* Heavy penalty: 2 regions survived multiple testing adjustment

e Hierarchical modeling (Chen et al, 2019)

— One integrative model for 21 regions

Yrs ~ Nrs, 02); r=1,2,..,21; s =1,2,...,124; pps = a + bas + ay + Bras + 05
—Notations

a, b:  etfects shared by all subjects/regions

ar, Br: unique effect of region r; 05: unique effects of subject s

— Explicit assumptions: 65 ~ N(0, ), (o, Br)L ~ N(0, Aoxa).
— Information sharing, self-regularization, partial pooling, shrinkage
* Region-level inference based on hierarchical modeling

— Transparency: full result reporting - highlight but not hide
— Focus: effect estimation rather than decision making decision through dichotomization
— Model quality: hierarchical model more closely fitting to original data!
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* Moral for massively univariate approach

— Adjustment based on spatial extent (clusters): excessively conservative
— Better presenting approach: highlight but not hide

Recommendations

* Region-based analysis: hierarchical modeling
* Whole-brain voxelwise analysis: highlight-but-not-hide
* Focusing on model quality

* Quantifying effect & uncertainty, not making decision via dichotomization
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