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Current status of trial sample size in neuroimaging
• Inconvenient parameter when designing an experiment

– Little attention; chosen for convenience: usually in the range of [10, 40] per condition
– Implicit assumption: of little importance compared to subject sample size

• Questions

– Is the lack of attention to trial sample size justifiable?
– How to quantify the role of trial sample size?
– How to effectively leverage trial sample size to gain statistical efficiency?
– How is the trial sample size related to the summary-statistics modeling approach?

Conventional power analysis
• Largely focusing on the number of subjects

– Tools: fMRIPower; Neurodesign
– Rarely used; mainly to pacify reviewers

• Difficulties of power analysis
– Poor practice: effect magnitude usually not reported in literature
– Not one, but many regions involved
– Complexity: multiple testing adjustment

• Justifications for Big Data initiatives
– Small effects
– Large heterogeneity across subjects
– Straightforward: more subjects always improve statistical efficiency
– Only and most cost-effective approach to increase statistical efficiency?

Overview
• Adopt a hierarchical model to accurately map the data across multiple levels
• Derive theoretical relationship between trial and subject sample size
• Use simulations to gain insights
• Validate simulation results through an experimental dataset
• Make recommendation for future experimental designs

Theoretical framework
• Data ycst: trial-level effect with c, s and t indexing conditions, subjects and trials

• Model formulation
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; c = 1, 2; s = 1, 2, . . . , S; t = 1, 2, . . . , T.

• Model parameters
– µc: cth condition effect
– πcs: sth subject’s effect under cth condition
– σ2πc: cross-subject variances under cth condition
– σ2τ : cross-trial variances
– ρ: correlation between the two conditions

• Variance for effect of interest (contrast between two conditions)

– σ2 = 2(1− ρ)
σ2
π
S +

2σ2
τ

ST
– Revealing relationship between the two sample sizes S and T : hyperbolic
– Variability ratio Rv = στ/σπ - indicator for relative magnitude of cross-trial variability

subjects: 20 subjects: 40 subjects: 60 subjects: 80 subjects: 180
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Highlighting cases with equal efficiency

• Insights from simulations

– Subject sample size always plays a crucial role in statistical efficiency
– Impact of trial sample size: varying

* negligible: small cross-trial variability (eg, Rv ⪅ 1): implicitly assumed in practice

* as important as subjects: large cross-trial variability (eg, Rv ⪆ 10): symmetric hyperbola

* moderate but less impactful than subjects when cross-trial variability is moderate

• Crucial question: what is the typical magnitude of cross-trial variability in real data?

Validation of hyperbolic relationship with experimental dataset

Data information
• 42 subjects

• Eriksen Flanker task with two trial types: congruent and incongruent

• 8 runs, ∼380 trials per condition per subject (350± 36 incongruent, 412± 19 congruent trials)

• 4 trial sample sizes

– 12.5%: ≈ 48 trials from the first run
– 25%: ≈ 95 trials from two runs
– 50%: ≈ 190 trials from four runs
– 100%: ≈ 380 trials from full dataset

• 2 modeling approaches

– Hierarchical framework with trial-level modeling (TLM)
– Conventional summary statistics approach through condition-level modeling (CLM)

• Questions to be addressed

– Relative importance of trial sample size compared to subjects
– Relative magnitude of cross-trial variability: variability ratio Rv

– Performance of conventional summary statistics approach

Cross-trial variability Rv

• Typical range of cross-trial variability: Rv > 5

Impact of trial sample size
• Hyperbolically symmetric: With moderate to large Rv, trials almost as important as subjects

• More cost-effective to increase both trials and subjects

• TLM vs CLM: quite similar statistical results in most regions

Revelations from experimental data

Conclusions
• Trial sample size: nearly similar impact as subject sample size on statistical efficiency

• More effectively to increase both trials and subjects simultaneously

• Trials can be leveraged alongside subjects to improve cost-effectiveness

• Trial-level modeling is preferred especially when trial sample size is small
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