:orphan: .. _ahelp_SpharmReco: ********** SpharmReco ********** .. contents:: :local: | .. code-block:: none Spherical Harmonics Reconstruction from a set of harmonics and their corresponding coefficients. Usage: SpharmReco <-i_TYPE S> <-l L> <-bases_prefix BASES> <-coef BETA.0> <-coef BETA.1> ... [<-prefix PREFIX>] [<-o_TYPE SDR> ...] [-debug DBG] [-sigma s] Input: -i_TYPE SURF: SURF is a surface that is only used to provide the topology of the mesh (the nodes' connections) -l L: Decomposition order -bases_prefix BASES_PREFIX: Files containing the bases functions (spherical harmonics). See SpharmDeco for generating these files. -coef COEF.n: BETA.n is the coefficients file that is used to recompose the nth data column. These files are created with SpharmDeco. You can specify N coefficient files by repeating the option on command line. If N is a multiple of three AND you use -o_TYPE option, then each three consecutive files are considered to form the XYZ coordinates of a surface. See sample commands in @Spharm.examples -prefix PREFIX: Write out the reconstructed data into dataset PREFIX. the output dataset contains N columns; one for each of the COEF.n files. -o_TYPE SDR: Write out a new surface with reconstructed coordinates. This requires N to be a multiple of 3, so 6 -coef options will result in 2 surfaces written to disk. The naming of the surfaces depends on the number of -o_TYPE options used, much like in SpharmDeco -debug DBG: Debug levels (1-3) -sigma s: Smoothing parameter (0 .. 0.001) which weighs down the contribution of higher order harmonics. ----------------------------------------------------------------------- For more detail, references, and examples, see script @Spharm.examples ----------------------------------------------------------------------- Specifying input surfaces using -i or -i_TYPE options: -i_TYPE inSurf specifies the input surface, TYPE is one of the following: fs: FreeSurfer surface. If surface name has .asc it is assumed to be in ASCII format. Otherwise it is assumed to be in BINARY_BE (Big Endian) format. Patches in Binary format cannot be read at the moment. sf: SureFit surface. You must specify the .coord followed by the .topo file. vec (or 1D): Simple ascii matrix format. You must specify the coord (NodeList) file followed by the topo (FaceSetList) file. coord contains 3 floats per line, representing X Y Z vertex coordinates. topo contains 3 ints per line, representing v1 v2 v3 triangle vertices. ply: PLY format, ascii or binary. Only vertex and triangulation info is preserved. stl: STL format, ascii or binary. This format of no use for much of the surface-based analyses. Objects are defined as a soup of triangles with no information about which edges they share. STL is only useful for taking surface models to some 3D printing software. mni: MNI .obj format, ascii only. Only vertex, triangulation, and node normals info is preserved. byu: BYU format, ascii. Polygons with more than 3 edges are turned into triangles. bv: BrainVoyager format. Only vertex and triangulation info is preserved. dx: OpenDX ascii mesh format. Only vertex and triangulation info is preserved. Requires presence of 3 objects, the one of class 'field' should contain 2 components 'positions' and 'connections' that point to the two objects containing node coordinates and topology, respectively. gii: GIFTI XML surface format. obj: OBJ file format for triangular meshes only. The following primitives are preserved: v (vertices), f (faces, triangles only), and p (points) Note that if the surface filename has the proper extension, it is enough to use the -i option and let the programs guess the type from the extension. You can also specify multiple surfaces after -i option. This makes it possible to use wildcards on the command line for reading in a bunch of surfaces at once. -onestate: Make all -i_* surfaces have the same state, i.e. they all appear at the same time in the viewer. By default, each -i_* surface has its own state. For -onestate to take effect, it must precede all -i options with on the command line. -anatomical: Label all -i surfaces as anatomically correct. Again, this option should precede the -i_* options. More variants for option -i: ----------------------------- You can also load standard-mesh spheres that are formed in memory with the following notation -i ldNUM: Where NUM is the parameter controlling the mesh density exactly as the parameter -ld linDepth does in CreateIcosahedron. For example: suma -i ld60 create on the fly a surface that is identical to the one produced by: CreateIcosahedron -ld 60 -tosphere -i rdNUM: Same as -i ldNUM but with NUM specifying the equivalent of parameter -rd recDepth in CreateIcosahedron. To keep the option confusing enough, you can also use -i to load template surfaces. For example: suma -i lh:MNI_N27:ld60:smoothwm will load the left hemisphere smoothwm surface for template MNI_N27 at standard mesh density ld60. The string following -i is formatted thusly: HEMI:TEMPLATE:DENSITY:SURF where: HEMI specifies a hemisphere. Choose from 'l', 'r', 'lh' or 'rh'. You must specify a hemisphere with option -i because it is supposed to load one surface at a time. You can load multiple surfaces with -spec which also supports these features. TEMPLATE: Specify the template name. For now, choose from MNI_N27 if you want to use the FreeSurfer reconstructed surfaces from the MNI_N27 volume, or TT_N27 Those templates must be installed under this directory: /home/afniHQ/.afni/data/ If you have no surface templates there, download https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI_N27.tgz and/or https://afni.nimh.nih.gov/pub/dist/tgz/suma_TT_N27.tgz and/or https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz and untar them under directory /home/afniHQ/.afni/data/ DENSITY: Use if you want to load standard-mesh versions of the template surfaces. Note that only ld20, ld60, ld120, and ld141 are in the current distributed templates. You can create other densities if you wish with MapIcosahedron, but follow the same naming convention to enable SUMA to find them. SURF: Which surface do you want. The string matching is partial, as long as the match is unique. So for example something like: suma -i l:MNI_N27:ld60:smooth is more than enough to get you the ld60 MNI_N27 left hemisphere smoothwm surface. The order in which you specify HEMI, TEMPLATE, DENSITY, and SURF, does not matter. For template surfaces, the -sv option is provided automatically, so you can have SUMA talking to AFNI with something like: suma -i l:MNI_N27:ld60:smooth & afni -niml /home/afniHQ/.afni/data/suma_MNI_N27 Specifying a surface specification (spec) file: -spec SPEC: specify the name of the SPEC file. As with option -i, you can load template spec files with symbolic notation trickery as in: suma -spec MNI_N27 which will load the all the surfaces from template MNI_N27 at the original FreeSurfer mesh density. The string following -spec is formatted in the following manner: HEMI:TEMPLATE:DENSITY where: HEMI specifies a hemisphere. Choose from 'l', 'r', 'lh', 'rh', 'lr', or 'both' which is the default if you do not specify a hemisphere. TEMPLATE: Specify the template name. For now, choose from MNI_N27 if you want surfaces from the MNI_N27 volume, or TT_N27 for the Talairach version. Those templates must be installed under this directory: /home/afniHQ/.afni/data/ If you have no surface templates there, download one of: https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI_N27.tgz https://afni.nimh.nih.gov/pub/dist/tgz/suma_TT_N27.tgz https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz and untar them under directory /home/afniHQ/.afni/data/ DENSITY: Use if you want to load standard-mesh versions of the template surfaces. Note that only ld20, ld60, ld120, and ld141 are in the current distributed templates. You can create other densities if you wish with MapIcosahedron, but follow the same naming convention to enable SUMA to find them. This parameter is optional. The order in which you specify HEMI, TEMPLATE, and DENSITY, does not matter. For template surfaces, the -sv option is provided automatically, so you can have SUMA talking to AFNI with something like: suma -spec MNI_N27:ld60 & afni -niml /home/afniHQ/.afni/data/suma_MNI_N27 Specifying output surfaces using -o or -o_TYPE options: -o_TYPE outSurf specifies the output surface, TYPE is one of the following: fs: FreeSurfer ascii surface. fsp: FeeSurfer ascii patch surface. In addition to outSurf, you need to specify the name of the parent surface for the patch. using the -ipar_TYPE option. This option is only for ConvertSurface sf: SureFit surface. For most programs, you are expected to specify prefix: i.e. -o_sf brain. In some programs, you are allowed to specify both .coord and .topo file names: i.e. -o_sf XYZ.coord TRI.topo The program will determine your choice by examining the first character of the second parameter following -o_sf. If that character is a '-' then you have supplied a prefix and the program will generate the coord and topo names. vec (or 1D): Simple ascii matrix format. For most programs, you are expected to specify prefix: i.e. -o_1D brain. In some programs, you are allowed to specify both coord and topo file names: i.e. -o_1D brain.1D.coord brain.1D.topo coord contains 3 floats per line, representing X Y Z vertex coordinates. topo contains 3 ints per line, representing v1 v2 v3 triangle vertices. ply: PLY format, ascii or binary. stl: STL format, ascii or binary (see also STL under option -i_TYPE). byu: BYU format, ascii or binary. mni: MNI obj format, ascii only. gii: GIFTI format, ascii. You can also enforce the encoding of data arrays by using gii_asc, gii_b64, or gii_b64gz for ASCII, Base64, or Base64 Gzipped. If AFNI_NIML_TEXT_DATA environment variable is set to YES, the the default encoding is ASCII, otherwise it is Base64. obj: No support for writing OBJ format exists yet. Note that if the surface filename has the proper extension, it is enough to use the -o option and let the programs guess the type from the extension. SUMA communication options: -talk_suma: Send progress with each iteration to SUMA. -refresh_rate rps: Maximum number of updates to SUMA per second. The default is the maximum speed. -send_kth kth: Send the kth element to SUMA (default is 1). This allows you to cut down on the number of elements being sent to SUMA. -sh : Name (or IP address) of the computer running SUMA. This parameter is optional, the default is 127.0.0.1 -ni_text: Use NI_TEXT_MODE for data transmission. -ni_binary: Use NI_BINARY_MODE for data transmission. (default is ni_binary). -feed_afni: Send updates to AFNI via SUMA's talk. -np PORT_OFFSET: Provide a port offset to allow multiple instances of AFNI <--> SUMA, AFNI <--> 3dGroupIncorr, or any other programs that communicate together to operate on the same machine. All ports are assigned numbers relative to PORT_OFFSET. The same PORT_OFFSET value must be used on all programs that are to talk together. PORT_OFFSET is an integer in the inclusive range [1025 to 65500]. When you want to use multiple instances of communicating programs, be sure the PORT_OFFSETS you use differ by about 50 or you may still have port conflicts. A BETTER approach is to use -npb below. -npq PORT_OFFSET: Like -np, but more quiet in the face of adversity. -npb PORT_OFFSET_BLOC: Similar to -np, except it is easier to use. PORT_OFFSET_BLOC is an integer between 0 and MAX_BLOC. MAX_BLOC is around 4000 for now, but it might decrease as we use up more ports in AFNI. You should be safe for the next 10 years if you stay under 2000. Using this function reduces your chances of causing port conflicts. See also afni and suma options: -list_ports and -port_number for information about port number assignments. You can also provide a port offset with the environment variable AFNI_PORT_OFFSET. Using -np overrides AFNI_PORT_OFFSET. -max_port_bloc: Print the current value of MAX_BLOC and exit. Remember this value can get smaller with future releases. Stay under 2000. -max_port_bloc_quiet: Spit MAX_BLOC value only and exit. -num_assigned_ports: Print the number of assigned ports used by AFNI then quit. -num_assigned_ports_quiet: Do it quietly. Port Handling Examples: ----------------------- Say you want to run three instances of AFNI <--> SUMA. For the first you just do: suma -niml -spec ... -sv ... & afni -niml & Then for the second instance pick an offset bloc, say 1 and run suma -niml -npb 1 -spec ... -sv ... & afni -niml -npb 1 & And for yet another instance: suma -niml -npb 2 -spec ... -sv ... & afni -niml -npb 2 & etc. Since you can launch many instances of communicating programs now, you need to know wich SUMA window, say, is talking to which AFNI. To sort this out, the titlebars now show the number of the bloc of ports they are using. When the bloc is set either via environment variables AFNI_PORT_OFFSET or AFNI_PORT_BLOC, or with one of the -np* options, window title bars change from [A] to [A#] with # being the resultant bloc number. In the examples above, both AFNI and SUMA windows will show [A2] when -npb is 2. [-novolreg]: Ignore any Rotate, Volreg, Tagalign, or WarpDrive transformations present in the Surface Volume. [-noxform]: Same as -novolreg [-setenv "'ENVname=ENVvalue'"]: Set environment variable ENVname to be ENVvalue. Quotes are necessary. Example: suma -setenv "'SUMA_BackgroundColor = 1 0 1'" See also options -update_env, -environment, etc in the output of 'suma -help' Common Debugging Options: [-trace]: Turns on In/Out debug and Memory tracing. For speeding up the tracing log, I recommend you redirect stdout to a file when using this option. For example, if you were running suma you would use: suma -spec lh.spec -sv ... > TraceFile This option replaces the old -iodbg and -memdbg. [-TRACE]: Turns on extreme tracing. [-nomall]: Turn off memory tracing. [-yesmall]: Turn on memory tracing (default). NOTE: For programs that output results to stdout (that is to your shell/screen), the debugging info might get mixed up with your results. Global Options (available to all AFNI/SUMA programs) -h: Mini help, at time, same as -help in many cases. -help: The entire help output -HELP: Extreme help, same as -help in majority of cases. -h_view: Open help in text editor. AFNI will try to find a GUI editor -hview : on your machine. You can control which it should use by setting environment variable AFNI_GUI_EDITOR. -h_web: Open help in web browser. AFNI will try to find a browser. -hweb : on your machine. You can control which it should use by setting environment variable AFNI_GUI_EDITOR. -h_find WORD: Look for lines in this programs's -help output that match (approximately) WORD. -h_raw: Help string unedited -h_spx: Help string in sphinx loveliness, but do not try to autoformat -h_aspx: Help string in sphinx with autoformatting of options, etc. -all_opts: Try to identify all options for the program from the output of its -help option. Some options might be missed and others misidentified. Use this output for hints only. Compile Date: Mar 28 2024