

SSCC

Analysis of Functional Neurolmages by Robert W Cox, PhD

Released under the GNU General Public License Version 2 (GPL)

AFNI is a research tool. Ikuko Muko AFNI User Clinical uses are not supported or advised.

http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSummer2004.html http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSpring2007.html

<u>Summary</u>

- Direct input of stimulus timing with -stim_times option
 - ★ With specification of a model for the BOLD response expected after each stimulus
 - * Amplitude modulated BOLD response option with -stim_times_AM2
- Master script to carry out entire single-subject analysis
 ★ Smoothing, registration, masking, scaling, statistics
- Generation of fitted BOLD response sub-models with the new 3dSynthesize program
- Smaller changes:
 - ★ More extensive checking for potential errors or problems
 - ★ -float option to output floating point format datasets
 - ★ -CENSORTR option to censor out individual time points
- Program 3dBlurToFWHM for controlled & masked blurring

-2-

Analysis Using Stimulus Timing

3dDeconvolve -input rall_vr+orig <mark>-concat '1D: 0 108 216 324'</mark>
-num_stimts 4 \indexes
<mark>-stim_times 1 '1D: 17.5 185.0 227.5 60.0 142.5 227.5'</mark> ◀ ∖ • τ's on command
'BLOCK (20,1) '
-stim_times 2 '1D: 100.0 17.5 185.0 227.5 17.5 100.0'
'BLOCK (20,1) '
-stim_times 3 '1D: 60.0 227.5 60.0 17.5 142.5 185.0'
'BLOCK (20,1) '
-stim_times 4 '1D: 142.5 185.0 100.0 142.5 100.0 60.0' \ response model
'BLOCK (20,1) ' \used after each
-stim_label 1 Actions -stim_label 2 Tools \stimulus time
-stim_label 3 HighC -stim_label 4 LowC \
-gltsym 'SYM: Actions -Tools' -glt_label 1 AvsT -generate
-gltsym 'SYM: HighC -LowC' -glt_label 2 HvsL \ Actions-Tools
-gltsym 'SYM: Actions Tools -HighC -LowC' -glt_label 3 ATvsHL \
-fout -tout
-bucket func_rall -fitts fitts_rall \
-xjpeg xmat_rall.jpg -x1D xmat_rall.x1D -cbucket coef_rall

-3-

Stimulus Timing Input

-num_stimts 4

• We have 4 stimulus classes, so need 4 -stim_times options

-stim_times 1 * '1D: 17.5 | 185.0 227.5 | 60.0 142.5 | 227.5' 'BLOCK(20,1)'

- "File" with 4 lines, each line specifying the start time in seconds for the stimuli within the corresponding imaging run, with the time measured relative to the start of the imaging run itself
- HRF for each block stimulus (stimulus duration = 20 s) is specified to go to maximum value of 1 (cf. graphs on next slide)
 - ★ This feature is useful when converting FMRI response magnitude to be in units of percent of the mean baseline

Two Possible Formats for -stim_times

- A single column of numbers (GLOBAL times)
 - \star One stimulus time per row

-6-

- \star Times are relative to first image in dataset being at t=0
- ★ May not be simplest to use if multiple runs are catenated
- One row for each run within a catenated dataset (LOCAL times)
 ★ Each time in jth row is relative to start of run #j being t=0
 - ★ If some run has NO stimuli in the given class, just put a single "*" in that row as a filler
 4.7 9.6 11.8
 - Different numbers of stimuli per run are OK
 - At least one row must have more than 1 time (so that the LOCAL type of timing file can be told from the GLOBAL)
- Two methods are available because of users' diverse desires
 - ★ N.B.: if you chop first few images off the start of each run, the inputs to -stim_times must be adjusted accordingly

4.7 9.6 11.8 19.4 * 8.3 10.6

. 6

19.4

The 'BLOCK() ' HRF Model

• **BLOCK (L)** is convolution of square wave of duration **L** with "gamma variate function" $t^4 e^{-t} / [4^4 e^{-4}]$ (peak value=1 at *t*=4):

$$h(t) = \int_0^{\min(t,L)} s^4 e^{-s} / [4^4 e^{-4}] ds$$

- "Hidden" option: **BLOCK5** replaces "4" with "5" in the above
 - Slightly more delayed rise and fall times
- BLOCK (L, 1) makes peak amplitude of *block* response = 1

- **AM** = **Amplitude Modulated** (or Modulation)
 - ★ Have some extra data measured about each response to a stimulus, and maybe the BOLD response amplitude is modulated by this
 - ★ Reaction time; Galvanic skin response; Pain level perception; Emotional valence (happy or sad or angry face?)
- Want to see if some brain activations vary proportionally to this ABI (Auxiliary Behaviorial Information)
- Discrete levels (2 or maybe 3) of ABI:
 - ★ Separate the stimuli into sub-classes that are determined by the ABI ("on" and "off", maybe?)
 - ★ Use a GLT to test if there is a difference between the FMRI responses in the sub-classes

```
3dDeconvolve ...
-stim_times 1 regressor_on.1D 'BLOCK(2,1)' -stim_label 1 'On' \
-stim_times 2 regressor_off.1D 'BLOCK(2,1)' -stim_label 2 'Off' \
-gltsym 'SYM: +On | +Off' -glt_label 1 'On+Off' \
-gltsym 'SYM: +On -Off' -glt_label 2 'On-Off' ...
```

- "On+Off" tests for any activation in *either* the "on" or "off" conditions
- "On-Off" tests for differences in activation between "on" and "off" conditions
- Can use 3dcalc to threshold on *both* statistics at once to find a conjunction

-8-

- Continuous (or several finely graded) ABI levels
 - ★ Want to find active voxels whose activation level also depends on ABI
 - ★ 3dDeconvolve is a linear program, so must make the assumption that the change in FMRI signal as ABI changes is linearly proportional to the changes in the ABI values
- Need to make 2 separate regressors
 - * One to find the mean FMRI response (the usual -stim_times analysis)
 - ★ One to find the variations in the FMRI response as the ABI data varies
- The second regressor should have the form

 $r_{\text{AM2}}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot (a_k - \overline{a})$

★ Where a_k = value of k^{th} ABI value, and \overline{a} is the average ABI value

- Response (β) for first regressor is standard activation map
- Statistics and β for second regressor make activation map of places whose BOLD response changes with changes in ABI
 - Using 2 regressors allows separation of voxels that are active but are not detectably modulated by the ABI from voxels that are ABI-sensitive

-9-

- New feature of 3dDeconvolve: -stim_times_AM2
- Use is very similar to standard -stim_times
 - * -stim_times_AM2 1 times_ABI.1D 'BLOCK(2,1)'
 - ★ The times_ABI.1D file has time entries that are "married" to ABI values: 10*5 23*4 27*2 39*5

```
10*5 23*4 27*2 39*5
17*2 32*5
*
16*2 24*3 37*5 41*4
```

- ★ Such files can be created from 2 standard ASCII .1D files using the new 1dMarry program
 - The -divorce option can be used to split them up
- **3dDeconvolve** automatically creates the two regressors (unmodulated and amplitude modulated)
 - ★ Use -fout option to get statistics for activation of the pair of regressors (i.e., testing null hypothesis that both β weights are zero: that there is no ABI-independent or ABI-proportional signal change)
 - * Use -tout option to test each β weight separately
 - ★ Can 1dplot X matrix columns to see each regressor

-10-

- The AM feature is new, and so needs some practical user experiences before it can be considered "standard practice"
 - ★ In particular: don't know how much data or how many events are needed to get good ABI-dependent statistics
- If you want, -stim_times_AM1 is also available
 - ★ It only builds the regressor proportional to ABI data directly, with no mean removed: $r_{AM1}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot a_k$
 - ★ Can't imagine what value this option has, but you never know ... (if you can think of a good use, let me know)

• Future directions:

- ★ Allow more than one amplitude to be married to each stimulus time (insert obligatory polygamy/polyandry joke here)
 - How many ABI types at once is too many? I don't know.
- ★ How to deal with unknown nonlinearities in the BOLD response to ABI values? I don't know. (Regress each event separately, then compute MI?)
- ★ Deconvolution with amplitude modulation? Requires more thought.

-11-

Timing: AM.1D = 10*1 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1

-12-

- First actual user: Whitney Postman (NIDCD; PI=AI Braun)
- Image naming stimulus in stroke (partially aphasic) patient
- ABI data = number of common alternative names for each image (e.g., "balcony", "porch", "veranda"), from 1 to 9
 - 9 imaging runs, 144 stimulus events
- 2 slices showing activation map for BOLD responses proportional to ABI

-13-

Deconvolution Signal Models

- Simple or Fixed-shape regression:
 - \star We fix the shape of the HRF amplitude varies
 - ★ Use -stim_times to generate the signal model from the stimulus timing
 - * Find the amplitude of the signal model in each voxel solution to the set of linear equations = β weights
- <u>Deconvolution or Variable-shape regression</u>:
 - ★ We allow the shape of the HRF to vary in each voxel, for each stimulus class
 - ★ Appropriate when you don't want to overconstrain the solution by assuming an HRF shape
 - ★ *Caveat*: need to have enough time points during the HRF in order to resolve its shape (e.g., $TR \le 3 s$)

-14-

Deconvolution: Pros & Cons (+ & -)

- + Letting HRF shape varies allows for subject and regional variability in hemodynamics
- + Can test HRF estimate for different shapes (e.g., are later time points more "active" than earlier?)
- Need to estimate more parameters for each stimulus class than a fixed-shape model (e.g., 8 shape parameters vs. 1 parameter=amplitude of HRF)
- Which means you need more data to get the same statistical power (assuming that the fixed-shape model you would otherwise use was in fact "correct")
- Freedom to get any shape in HRF results can give weird shapes that are difficult to interpret

Expressing HRF via Regression Unknowns

-16-

 The tool for expressing an unknown function as a finite set of numbers that can be fit via linear regression is an <u>expansion in basis functions</u>

 $h(t) = \beta_0 \psi_0(t) + \beta_1 \psi_1(t) + \beta_2 \psi_2(t) + \dots = \sum_{q=0}^{q=p} \beta_q \psi_q(t)$

- ★ The basis functions ψ_q(t) & expansion order p are known
 o Larger p ⇒ more complex shapes & more parameters
 ★ The unknowns to be found (in each voxel) comprises the set of weights β_q for each ψ_q(t)
- B weights appear only by multiplying known values, and HRF only appears in signal model by linear convolution (addition) with known stimulus timing
 - Resulting signal model still solvable by linear regression

3dDeconvolve with "Tent Functions"

- Need to describe HRF shape and magnitude with a finite number of parameters
 - * And allow for calculation of h(t) at any arbitrary point in time after the stimulus times:

$$r_n = \sum_{k=1}^{K} h(t_n - \tau_k) = \text{sum of HRF copies}$$

Simplest set of such functions are <u>tent functions</u>
 * Also known as "piecewise linear splines"

Tent Functions = Linear Interpolation

• Expansion of HRF in a set of spaced-apart tent functions is the same as linear interpolation between "knots"

$$h(t) = \beta_0 \cdot T\left(\frac{t}{L}\right) + \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2\cdot L}{L}\right) + \beta_3 \cdot T\left(\frac{t-3\cdot L}{L}\right) + \cdots$$

N.B.: 5 intervals = 6 β weights

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing *L* and time grid spacing TR (usually would choose *L* ≥ TR)
- In <u>3dDeconvolve</u>: specify duration of HRF and number of β parameters

-18-

Master Script for Data Analysis

```
afni proc.py
                                                          \ Master script program
                                                         ↓ 10 input datasets
 -dsets ED/ED r??+orig.HEAD
 -subj id ED.8.glt
                                                         Set output filenames <</p>
 -copy anat ED/EDspgr
                                                         \ Copy anat to output dir
                                                         Second First 2 TRs
 -tcat remove first trs 2
 -volreg align to first
                                                         \land \bullet Where to align all EPIs
                                                         √ Stimulus timing files (4)
 -regress stim times misc files/stim times.*.1D
                                                         Stimulus labels
 -regress stim labels ToolMovie HumanMovie
                        ToolPoint HumanPoint
 -regress basis 'TENT(0,14,8)'
                                                          \mathbb{A} \to \mathsf{HRF} model
 -regress opts 3dD
                                                          Specifies that next
                                                             lines are options to be
 -gltsym ../misc files/glt1.txt -glt label 1 FullF
                                                             passed to
 -gltsym ../misc files/glt2.txt -glt label 2 HvsT
                                                             3dDeconvolve
 -gltsym ../misc files/glt3.txt -glt label 3 MvsP
                                                             directly (in this case,
 -gltsym ../misc files/glt4.txt -glt label 4 HMvsHP
                                                             the GLTs we want
                                                             computed)
 -gltsym ../misc files/glt5.txt -glt label 5 TMvsTP \
 -gltsym ../misc files/glt6.txt -glt label 6 HPvsTP \
 -gltsym ../misc files/glt7.txt -glt label 7 HMvsTM
```

This script generates file proc.ED.8.glt (180 lines), which contains all the AFNI commands to produce analysis results into directory ED.8.glt.results/ (148 files)

Shell Script for Deconvolution - Outline

- Copy datasets into output directory for processing
- Examine each imaging run for outliers: 3dToutcount
- Time shift each run's slices to a common origin: 3dTshift
- Registration of each imaging run: 3dvolreg

-20-

- Smooth each volume in space (136 sub-bricks per run): 3dmerge
- Create a brain mask: 3dAutomask and 3dcalc
- Rescale each voxel time series in each imaging run so that its average through time is 100: 3dTstat and 3dcalc
 - ★ If baseline is 100, then a β_q of 5 (say) indicates a 5% signal change in that voxel at tent function knot #q after stimulus
 - ★ Biophysics: believe % signal change is relevant physiological parameter
- Catenate all imaging runs together into one big dataset (1360 time points): 3dTcat
 - ★ This dataset is useful for plotting -fitts output from 3dDeconvolve and visually examining time series fitting
- Compute HRFs and statistics: 3dDeconvolve

Script - 3dDeconvolve

-21-

Script - Image of the X Matrix

Via 1grayplot -sep Xmat.x1D Or -xjpeg option

-22-

Smaller Changes to 3dDeconvolve

- Equation solver: Program computes condition number for X matrix (measures of how sensitive regression results are to changes in X)
 - ★ If the condition number is "bad" (too big), then the program will not actually proceed to compute the results
 - **\star** You can use the **-GOFORIT** option on the command line to force the program to run despite X matrix warnings
 - But you should strive to <u>understand</u> why you are getting these warnings!!
- Other matrix checks:
 - ★ Duplicate stimulus filenames, collinear pairs of regression matrix columns, all zero matrix columns
- Check the screen output for WARNINGs and ERRORS
 - * Such messages also saved into file 3dDeconvolve.err

Smaller Changes - 2

- All-zero regressors *are* allowed (with -GOFORIT)
 - ★ Will get zero weight in the solution
 - ★ Example: task where subject makes a choice for each stimulus (e.g., male or female face?)
 - You want to analyze correct and incorrect trials as separate cases
 - What if some subject makes no mistakes? Hmmm...
 - ➡ Can keep the all-zero regressor (e.g., all -stim_times = *)
 - Input files and output datasets for error-making and perfectperforming subjects will be organized the same way
- **3dDeconvolve_f** program can be used to compute linear regression results in single precision (7 decimal places) rather than double precision (16 places)
 - ★ For better speed, but with lower numerical accuracy
 - ★ Best to do at least one run *both* ways to check if results differ significantly (Equation solver *should* be safe, but ...)

-24-

- Default output format is 16-bit short integers, with a scaling factor for each 3D volume to convert it to floating point values
 float option can be used to get 32-bit floating point format output more precision, *and* more disk space
- 3dDeconvolve recommends a -polort value, and prints that out as well as the value you chose (or defaulted to)
 * -polort A can be used to let the program set the detrending (AKA "high pass filtering") level automatically
- -CENSORTR 2:37-39 can be used to censor out time indexes 37, 38, 39 from run #2
 - ★ Simpler to use than the older -censor option
 - ★ -CENSORTR '*:0-1' removes time pts 0 & 1 from all runs
 - ★ run boundaries specifed by -concat

-25-

Smaller Changes - 4

- -stim_times has some other basis function options for the HRF model besides **BLOCK** and **TENT**
 - * most recent: **CSPLIN** = cardinal cubic spline (for smoother HRFs)
 - ★ instead of **TENT** = linear spline

-26-

- o Same parameters: (start,stop,number of regressors)
- Can be used as a "drop in" replacement for **TENT**

Smaller Changes - 5

- -fitts option is used to create a synthetic dataset
 * each voxel time series is full (signal+baseline) model as fitted to the data time series in the corresponding voxel location
- 3dSynthesize program can be used to create synthetic datasets from *subsets* of the full model
 - ★ Uses -x1D and -cbucket outputs from 3dDeconvolve
 - -cbucket stores β coefficients for each X matrix column into dataset
 - -x1D stores the matrix columns (and -stim_labels)
 - ★ Potential uses:
 - Baseline only dataset
 - 3dSynthesize -cbucket fred+orig -matrix fred.x1D -select baseline -prefix fred_base
 - Could subtract this dataset from original data to get signal+noise dataset that has no baseline component left
 - Just one stimulus class model (+ baseline) dataset
 - Solution Solution Solution Select baseline Faces prefix fred_Faces

Even Smaller Changes - 6

- Defaults are changed:
 - * -nobout & -full_first & -bucket & -x1D
 are always implied
 - ★ Names of statistics sub-bricks are slightly altered (to be more consistent)
- Checks if -stim_times inputs are out of range (AKA: the PSFB syndrome)
 - ★ Prints **WARNING** message, but continues analysis
- When using -nodata with -stim_times, important to give the number of time points and the TR, as in -nodata 250 2.3
 - * With -input1D, use -TR_1D 2.3 to specify TR

-28-

3dBlurToFWHM

- New program to smooth FMRI time series datasets to a specified smoothness (as estimated by FWHM of noise spatial correlation function)
 - ★ Don't just add smoothness (à la 3dmerge) but control it (locally and globally)
 - ★ Goal: use datasets from diverse scanners
- Why blur FMRI time series?
 - ★ Averaging neighbors will reduce noise
 - ★ Activations are (usually) blob-ish (several voxels across)
 - ★ Diminishes the multiple comparisons problem
- **3dBlurToFWHM** blurs only inside a mask
 - ★ To avoid mixing air (noise-only) and brain voxels
 - Partial Differential Equation (PDE) based blurring method
 2D (intra-slice) or 3D blurring

-29-

In the Planning Stages

- "Area under curve" addition to -gltsym to allow testing of pieces of HRF models from -stim_times
- Slice- and/or voxel-dependent regressors
 - ★ For physiological noise cancellation, etc.
 - ★ To save memory? (Could process each slice separately)
 - One slice-at-a-time regression can be done in a Unix script, using 3dZcutup and 3dZcat programs
- Extend AM regression to allow for more than 1 piece of auxiliary information at each stimulus time
- Interactive tool to examine -x1D matrix for problems
 - ★ and 3dDeconvolve testing of GLT submatrices

-30-