False Discovery Rate in

- **Situation:** making *many* statistical tests at once
 - e.g., Image voxels in FMRI; associating genes with disease
- **Want to set threshold on statistic** (e.g., F- or t-value) to control *false positive* error rate
- **Traditionally:** set threshold to control probability of making a *single* false positive detection
 - But if we are doing 1000s (or more) of tests at once, we have to be very stringent to keep this probability low
- **FDR:** accept the fact that there will be erroneous detections when making lots of decisions
 - Control the *fraction* of positive detections that are wrong
 - Of course, no way to tell which individual detections are right!
 - Or at least: control the expected value of this fraction

AFNI!

RWCox – Jan 2008
FDR: q and $z(q)$

- Given some collection of statistics (say, F-values from 3dDeconvolve), set a threshold h.

- The **uncorrected** p-value of h is the probability $F > h$ when the null hypothesis is true (no activation).
 - “Uncorrected” means “per-voxel”.
 - The “corrected” p-value is the probability that any voxel is above threshold in the case that they are all unactivated.
 - If have N voxels to test, $p_{\text{corrected}} = 1 - (1 - p)^N \approx Np$ (for small p).
 - Bonferroni: to keep $p_{\text{corrected}} < 0.05$, need $p < 0.05 / N$, which is very tiny.

- The FDR **q-value** of h is the fraction of false positives expected when we set the threshold to h.
 - Smaller q is “better” (more stringent = fewer false detections).
 - $z(q) = \text{conversion of } q \text{ to Gaussian } z\text{-score}$: e.g., $z(0.05) \approx 1.95996$.
 - So that larger is “better” (in the same sense): e.g., $z(0.01) \approx 2.57583$.

How q is Calculated from Data

- Compute p-values of each statistic: $P_1, P_2, P_3, \ldots, P_N$
- Sort these: $P_{(1)} \leq P_{(2)} \leq P_{(3)} \leq \cdots \leq P_{(N)}$ \{subscript() \equiv sorted\}
- For $k = 1..N$, $q_{(k)} = \min_{m \geq k} \left[N \cdot P_{(m)}/m \right]$
 - Easily computed from sorted p-values by looping downwards from $k = N$ to $k = 1$
- By keeping track of voxel each $P_{(k)}$ came from: can put q-values (or $z(q)$ values) back into image
 - This is exactly how program \texttt{3dFDR} works
- By keeping track of statistic value each $P_{(k)}$ came from: can create curve of threshold h vs. $z(q)$
- **N.B.**: q-values depend on the data in all voxels, unlike these voxel-wise (uncorrected) p-values!
Graphical Calculation of q

- Graph $P(k)$ vs. k/N and draw lines from origin

Real data: Full-F from speed_test2

Ideal sorted p if no true positives at all (uniform distribution)

$q=0.10$ cutoff

Very small $p = \text{very significant}$

Slope=0.10
Same Data: threshold F vs. $z(q)$

- $z = 9$ is $q \approx 10^{-19}$: larger values of z aren’t useful.
- $z \approx 1.96$ is $q \approx 0.05$; corresponds (for this data) to $F \approx 1.5$.

FDR curve
Recent Changes to 3dFDR

• Don’t include voxels with \(p=1 \) (e.g., \(F=0 \)), even if they are in the \(-\text{mask}\) supplied on the command line
 ▪ This changes decreases \(N \), which will decrease \(q \) and so increase \(z(q) \): recall that \(q(k) = \min_{m \geq k} [N \cdot P(m)/m] \)

• Sort with Quicksort algorithm
 ▪ Faster than the bin-based sorting in the original code
 ▪ Makes a big speed difference on large 1 mm\(^3\) datasets
 o Not much speed difference on small 3 mm\(^3\) grids, since there aren’t so many voxels to sort

• Default mode of operation is ‘\(-\text{new}\)’ method
 ▪ Prints a warning message to let user know things have changed from the olden days
 ▪ User can use ‘\(-\text{old}\)’ method if desired
FDR curves: h vs. $z(q)$

- **3dDeconvolve**, **3dANOVAX**, **3dttest**, and **3dNLfim** now compute FDR curves for all statistical sub-bricks and store them in output header
 - THD_create_all_fdrcurves(dset) does the work

- **3drefit -addFDR** does same for older datasets
 - **3drefit -unFDR** can be used to delete such info

- **AFNI** now shows p- and q-values below the threshold slider bar
 - Interpolates FDR curve from header (threshold→z→q)
FDR Statistical Issues

• FDR is conservative (q-values are too large) when voxels are positively correlated (e.g., from spatially smoothing)
 - Correcting for this is not so easy, since q depends on data, so a simulation like AlphaSim is hard to conceptualize
 - At present, FDR is alternative way of controlling false positives, vs. clustering and AlphaSim
 - Working on combining FDR and clustering (e.g., Pacifico, JASA 2004)

• Accuracy of FDR calculation depends on p-values being uniformly distributed under the null hypothesis
 - Statistic-to-p conversion should be accurate, which means that null F-distribution (say) should be correctly estimated
 - Serial correlation in FMRI time series means that 3dDeconvolve denominator DOF is too large
 - $\Rightarrow p$-values will be too small, so q-values will be too small
 - Trial calculations show that this may not be a significant effect, compared to spatial smoothing (which tends to make q too large)