False Discovery Rate in AFNI

- Situation: making many statistical tests at once
 - e.g, Image voxels in FMRI; associating genes with disease
- Want to set threshold on statistic (e.g., *F* or *t*-value) to control *false positive* error rate
- Traditionally: set threshold to control probability of making a single false positive detection
 - But if we are doing 1000s (or more) of tests at once, we have to be very stringent to keep this probability low
- **FDR**: accept the fact that there will be erroneous detections when making lots of decisions
 - Control the *fraction* of positive detections that are wrong o Of course, no way to tell which individual detections are right!
 - Or at least: control the expected value of this fraction

FDR: q and z(q)

- Given some collection of statistics (say, *F*-values from <u>3dDeconvolve</u>), set a threshold *h*
- The uncorrected *p*-value of *h* is the probability *F* > *h* when the null hypothesis is true (no activation)
 - "Uncorrected" means "per-voxel"
 - The "corrected" *p*-value is the probability that *any* voxel is above threshold in the case that they are all *un*activated
 - If have N voxels to test, p_{corrected} = 1−(1−p)^N ≈ Np (for small p) o Bonferroni: to keep p_{corrected} < 0.05, need p < 0.05 / N, which is very tiny
- The FDR *q*-value of *h* is the fraction of false positives expected when we set the threshold to *h*
 - Smaller q is "better" (more stringent = fewer false detections)
 - z(q) = conversion of q to Gaussian z-score: e.g, z(0.05)≈1.95996
 o So that larger is "better" (in the same sense): e.g, z(0.01)≈2.57583

How q is Calculated from Data

- Compute *p*-values of each statistic: *P*₁, *P*₂, *P*₃, …, *P*_N
- Sort these: $P_{(1)} \le P_{(2)} \le P_{(3)} \le \dots \le P_{(N)}$ {subscript₍₎ = sorted}
- For k = 1..N, $q_{(k)} = \min_{m \ge k} [N \cdot P_{(m)}/m]$
 - Easily computed from sorted *p*-values by looping downwards from *k* = *N* to *k* = 1
- By keeping track of voxel each P_(k) came from: can put *q*-values (or *z*(*q*) values) back into image
 - This is exactly how program 3dFDR works
- By keeping track of statistic value each P_(k) came from: can create curve of threshold h vs. z(q)
- N.B.: *q*-values depend on the data in all voxels, unlike these voxel-wise (uncorrected) *p*-values!

Graphical Calculation of q

• Graph $P_{(k)}$ vs. k/N and draw lines from origin

Same Data: threshold F vs. z(q)

Recent Changes to 3dFDR

- Don't include voxels with p=1 (e.g., F=0), even if they are in the -mask supplied on the command line
 - This changes decreases N, which will decrease q and so increase z(q): recall that q_(k) = min_{m≥k} [N·P_(m)/m]
- Sort with Quicksort algorithm
 - Faster than the bin-based sorting in the original code
 - Makes a big speed difference on large 1 mm³ datasets

 Not much speed difference on small 3 mm³ grids, since there aren't
 so many voxels to sort
- Default mode of operation is '-new' method
 - Prints a warning message to let user know things have changed from the olden days
 - User can use '-old' method if desired

FDR curves: h vs. z(q)

- 3dDeconvolve, 3dANOVAx, 3dttest, and 3dNLfim now compute FDR curves for all statistical sub-bricks and store them in output header
 - THD_create_all_fdrcurves(dset) does the work
- **3drefit** -addFDR does same for older datasets
 - 3drefit -unFDR can be used to delete such info
- **AFNI** now shows *p* and *q*values below the threshold slider bar
 - Interpolates FDR curve from header (threshold $\rightarrow z \rightarrow q$)

FDR Statistical Issues

- FDR is conservative (*q*-values are too large) when voxels are positively correlated (e.g., from spatially smoothing)
 - Correcting for this is not so easy, since q depends on data, so a simulation like AlphaSim is hard to conceptualize
 - At present, FDR is alternative way of controlling false positives, vs. clustering and AlphaSim
 o Working on combining FDR and clustering (e.g., Pacifico, JASA 2004)
- Accuracy of FDR calculation depends on *p*-values being uniformly distributed under the null hypothesis
 - Statistic-to-p conversion should be accurate, which means that null F-distribution (say) should be correctly estimated
 - Serial correlation in FMRI time series means that 3dDeconvolve denominator DOF is too large
 - ⇒ p-values will be too small, so q-values will be too small o Trial calculations show that this may not be a significant effect, compared to spatial smoothing (which tends to make q too large)