AFNI program: 3dIntracranial

Output of -help


++ 3dIntracranial: AFNI version=AFNI_18.3.03 (Oct 19 2018) [64-bit]
++ Authored by: B. D. Ward
*+ WARNING: This program (3dIntracranial) is old, obsolete, and not maintained!
++ 3dSkullStrip is almost always superior to 3dIntracranial :)
3dIntracranial - performs automatic segmentation of intracranial region.
                                                                        
   This program will strip the scalp and other non-brain tissue from a  
   high-resolution T1 weighted anatomical dataset.                      
                                                                        
** Nota Bene: the newer program 3dSkullStrip should also be considered  
**            for this functionality -- it usually works better.        
                                                                        
----------------------------------------------------------------------- 
                                                                        
Usage:                                                                  
-----                                                                   
                                                                        
3dIntracranial                                                          
   -anat filename   => Filename of anat dataset to be segmented         
                                                                        
   [-min_val   a]   => Minimum voxel intensity limit                    
                         Default: Internal PDF estimate for lower bound 
                                                                        
   [-max_val   b]   => Maximum voxel intensity limit                    
                         Default: Internal PDF estimate for upper bound 
                                                                        
   [-min_conn  m]   => Minimum voxel connectivity to enter              
                         Default: m=4                                   
                                                                        
   [-max_conn  n]   => Maximum voxel connectivity to leave              
                         Default: n=2                                   
                                                                        
   [-nosmooth]      => Suppress spatial smoothing of segmentation mask  
                                                                        
   [-mask]          => Generate functional image mask (complement)      
                         Default: Generate anatomical image            
                                                                        
   [-quiet]         => Suppress output to screen                        
                                                                        
   -prefix pname    => Prefix name for file to contain segmented image  
                                                                        
   ** NOTE **: The newer program 3dSkullStrip will probably give        
               better segmentation results than 3dIntracranial!         
----------------------------------------------------------------------- 
                                                                        
Examples:                                                               
--------                                                                
                                                                        
   3dIntracranial -anat elvis+orig -prefix elvis_strip                 
                                                                        
   3dIntracranial -min_val 30 -max_val 350 -anat elvis+orig -prefix strip
                                                                        
   3dIntracranial -nosmooth -quiet -anat elvis+orig -prefix elvis_strip 
                                                                        
----------------------------------------------------------------------- 

++ Compile date = Oct 19 2018 {AFNI_18.3.03:linux_openmp_64}


This page auto-generated on Fri Oct 19 17:21:28 EDT 2018