AFNI program: 3dWarpDrive

Output of -help



Usage: 3dWarpDrive [options] dataset
Warp a dataset to match another one (the base).

This program is a generalization of 3dvolreg.  It tries to find
a spatial transformation that warps a given dataset to match an
input dataset (given by the -base option).  It will be slow.

 *** Also see the script align_epi_anat.py for a more general ***
 **  alignment procedure, which does not require that the two  **
 **  datasets be defined on the same 3D grid.                  **
 **  align_epi_anat.py uses program 3dAllineate, which can     **
 *** also do nonlinear (polynomial) warping for registration. ***

--------------------------
Transform Defining Options: [exactly one of these must be used]
--------------------------
  -shift_only         =  3 parameters (shifts)
  -shift_rotate       =  6 parameters (shifts + angles)
  -shift_rotate_scale =  9 parameters (shifts + angles + scale factors)
  -affine_general     = 12 parameters (3 shifts + 3x3 matrix)
  -bilinear_general   = 39 parameters (3 + 3x3 + 3x3x3)

  N.B.: At this time, the image intensity is NOT 
         adjusted for the Jacobian of the transformation.
  N.B.: -bilinear_general is not yet implemented.

-------------
Other Options:
-------------
  -linear   }
  -cubic    } = Chooses spatial interpolation method.
  -NN       } =   [default = linear; inaccurate but fast]
  -quintic  }     [for accuracy, try '-cubic -final quintic']

  -base bbb   = Load dataset 'bbb' as the base to which the
                  input dataset will be matched.
                  [This is a mandatory option]

  -verb       = Print out lots of information along the way.
  -prefix ppp = Sets the prefix of the output dataset.
                If 'ppp' is 'NULL', no output dataset is written.
  -input ddd  = You can put the input dataset anywhere in the
                  command line option list by using the '-input'
                  option, instead of always putting it last.
  -summ sss   = Save summary of calculations into text file 'sss'.
                  (N.B.: If 'sss' is '-', summary goes to stdout.)

-----------------
Technical Options:
-----------------
  -maxite    m  = Allow up to 'm' iterations for convergence.
  -delta     d  = Distance, in voxel size, used to compute
                   image derivatives using finite differences.
                   [Default=1.0]
  -weight  wset = Set the weighting applied to each voxel
                   proportional to the brick specified here.
                   [Default=computed by program from base]
  -thresh    t  = Set the convergence parameter to be RMS 't' voxels
                   movement between iterations.  [Default=0.03]
  -twopass      = Do the parameter estimation in two passes,
                   coarse-but-fast first, then fine-but-slow second
                   (much like the same option in program 3dvolreg).
                   This is useful if large-ish warping is needed to
                   align the volumes.
  -final 'mode' = Set the final warp to be interpolated using 'mode'
                   instead of the spatial interpolation method used
                   to find the warp parameters.
  -parfix n v   = Fix the n'th parameter of the warp model to
                   the value 'v'.  More than one -parfix option
                   can be used, to fix multiple parameters.
  -1Dfile ename = Write out the warping parameters to the file
                   named 'ename'.  Each sub-brick of the input
                   dataset gets one line in this file.  Each
                   parameter in the model gets one column.
  -float        = Write output dataset in float format, even if
                   input dataset is short or byte.
  -coarserot    = Initialize shift+rotation parameters by a
                   brute force coarse search, as in the similar
                   3dvolreg option.

  -1Dmatrix_save ff = Save base-to-input transformation matrices
                      in file 'ff' (1 row per sub-brick in the input
                      dataset).  If 'ff' does NOT end in '.1D', then
                      the program will append '.aff12.1D' to 'ff' to
                      make the output filename.
          *N.B.: This matrix is the coordinate transformation from base
                 to input DICOM coordinates.  To get the inverse matrix
                 (input-to-base), use the cat_matvec program, as in
                   cat_matvec fred.aff12.1D -I

----------------------
AFFINE TRANSFORMATIONS:
----------------------
The options below control how the affine tranformations
(-shift_rotate, -shift_rotate_scale, -affine_general)
are structured in terms of 3x3 matrices:

  -SDU or -SUD }= Set the order of the matrix multiplication
  -DSU or -DUS }= for the affine transformations:
  -USD or -UDS }=   S = triangular shear (params #10-12)
                    D = diagonal scaling matrix (params #7-9)
                    U = rotation matrix (params #4-6)
                  Default order is '-SDU', which means that
                  the U matrix is applied first, then the
                  D matrix, then the S matrix.

  -Supper      }= Set the S matrix to be upper or lower
  -Slower      }= triangular [Default=lower triangular]

  -ashift OR   }= Apply the shift parameters (#1-3) after OR
  -bshift      }= before the matrix transformation. [Default=after]

The matrices are specified in DICOM-ordered (x=-R+L,y=-A+P,z=-I+S)
coordinates as:

  [U] = [Rotate_y(param#6)] [Rotate_x(param#5)] [Rotate_z(param #4)]
        (angles are in degrees)

  [D] = diag( param#7 , param#8 , param#9 )

        [    1        0     0 ]        [ 1 param#10 param#11 ]
  [S] = [ param#10    1     0 ]   OR   [ 0    1     param#12 ]
        [ param#11 param#12 1 ]        [ 0    0        1     ]

 For example, the default (-SDU/-ashift/-Slower) has the warp
 specified as [x]_warped = [S] [D] [U] [x]_in + [shift].
 The shift vector comprises parameters #1, #2, and #3.

 The goal of the program is to find the warp parameters such that
   I([x]_warped) = s * J([x]_in)
 as closely as possible in a weighted least squares sense, where
 's' is a scaling factor (an extra, invisible, parameter), J(x)
 is the base image, I(x) is the input image, and the weight image
 is a blurred copy of J(x).

 Using '-parfix', you can specify that some of these parameters
 are fixed.  For example, '-shift_rotate_scale' is equivalent
 '-affine_general -parfix 10 0 -parfix 11 0 -parfix 12 0'.
 Don't attempt to use the '-parfix' option unless you understand
 this example!

-------------------------
  RWCox - November 2004
-------------------------

++ Compile date = Oct 19 2018 {AFNI_18.3.03:linux_openmp_64}


This page auto-generated on Fri Oct 19 17:21:56 EDT 2018