AFNI program: MBA

Output of -help



                      Welcome to MBA ~1~
    Matrix-Based Analysis Program through Bayesian Multilevel Modeling 
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Version 0.0.15, May 11, 2020
Author: Gang Chen (gangchen@mail.nih.gov)
Website - https://afni.nimh.nih.gov/gangchen_homepage
SSCC/NIMH, National Institutes of Health, Bethesda MD 20892
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Usage: ~1~
------ 
 MBA performs matrix-based analysis (MBA) as theoretically elaborated in the
 manuscript: https://www.biorxiv.org/content/10.1101/459545v1
 MBA is conducted with a shell script (as shown in the examples below). The
 input data should be formulated in a pure-text table that codes the regions
 and variables. The response variable is usually correlation values (with or
 without Fisher-transformation) or white-matter properties (e.g., fractional
 anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, etc.),
 but it can also be any values from a symmetric matrix (e.g., coherence,
 mutual information, entropy). In other words, the effects are assumed to be
 non-directional or non-causal. Diagonals can be included in the input if
 sensible.

 Thanks to Zhihao Li for motivating me to start the MBA work, and to 
 Paul-Christian Bürkner and the Stan/R communities for their strong support.

 Citation: ~1~
 If you want to cite the approach for MBA, consider the following:~2~

 Chen, G., Bürkner, P.-C., Taylor, P.A., Li, Z., Yin, L., Glen, D.R., Kinnison, J.,
 Cox, R.W., Pessoa, L., 2019. An Integrative Approach to Matrix-Based Analyses in
 Neuroimaging. Human Brain Mapping. In press. https://doi.org/10.1101/459545

 =============================== 
 Read the following carefully!!!
 ===============================
 A data table in pure text format is needed as input for an MBA script. The
 data table should contain at least 4 columns that specify the information
 about subjects, region pairs and the response variable values with the
 following fixed header. The header lables are case-sensitive, and their order
 does not matter.

 Subj   ROI1   ROI2   Y      Age 
 S1     Amyg   SMA   0.2643  11
 S2     BNST   MPFC  0.3762  16 
 ...

 0) You are performing Bayesian analysis!!! So, you will directly obtain
    the probability of an effect being positive or negative with your data,
    instead of witch hunt - hunting the straw man of p-value (weirdness of your
    data when pretending that absolutely nothing exists).

 1) Avoid using pure numbers to code the labels for categorical variables. The
    column order does not matter. . You can specify those column names as you
    prefer, but it saves a little bit scripting if you adopt the default naming
    for subjects ('Subj'), regions ('ROI1' and 'ROI2') and response variable ('Y'). 
    The column labels ROI1 and ROI2 are meant to indicate the two regions
    associated with each response value, and they do not mean any sequence or
    directionality.

 2) Only provide half of the off-diagonals in the table (no duplicates allowed).
    Missing data are fine (e.g., white-matter property deemed nonexistent).

 3) Simple analysis can be done in a few minutes, but computational cost can be
    very high (e.g., weeks or even months) when the number of regions or subjects
    is large or when a few explanatory variables are involved. Be patient: there
    is hope in the near future that further parallelization can be implemented.

 4) Add more columns if explanatory variables are considered in the model. Currently
    only between-subjects variables (e.g., sex, patients vs. controls, age) are
    allowed. Each label in a between-subjects factor (categorical variable)
    should be coded with at least 1 character (labeling with pure numbers is fine
    but not recommended). If preferred, you can quantitatively code the levels of a
    factor yourself by creating k-1 columns for a factor with k levels. However, be
    careful with your coding strategy because it would impact how to interpret the
    results. Here is a good reference about factor coding strategies:
    https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/

 5) It is strongly suggested that a quantitative explanatory variable be
    standardized with option -stdz; that is, remove the mean and scale by
    the standard deviation. This will improve the chance of convergence
    with each Markov chain. If a between-subjects factor (e.g., sex) is
    involved, it may be better to standardize a quantitative variable
    within each group in terms of interpretability if the mean value differs
    substantially. However, do not standardize a between-subjects factor if
    you quantitatively code it. And do not standardize the response variable
    if the intercept is of interest!

 6) With within-subject variables, try to formulate the data as a contrast
    between two factor levels or as a linear combination of multiple levels.

 7) The results from MBA are effect estimates for each region pair and at each
    region. They can be slightly different across different runs or different
    computers and R package versions due to the nature of randomness involved
    in Monte Carlo simulations.

 8) The range in matrix plot may vary across different effects within an analysis.
    It is possible to force the same range for all plots through fine-tuning
    within R using the output of .RData. The criteria of color coding for the
    strength of evidence in matrix plots in the output is as follows:
     Green  - two-tailed 95% compatible/uncertainty interval (or probability of effect
              being positive >= 0.975 or <= 0.025)
     Yellow - one-tailed 95% compatible/uncertainty interval (or probability of effect
              being positive >= 0.95 or <= 0.05)
     Gray   - one-tailed 90% compatible/uncertainty interval (or probability of effect
              being positive >= 0.90 or <= 0.10)
     white  - anything else

 =========================
 
 Installation requirements: ~1~
 In addition to R installation, the R package "brms" is required for MBA. Make
 sure you have the most recent version of R. To install "brms", run the following
 command at the terminal:

 rPkgsInstall -pkgs "brms" -site http://cran.us.r-project.org"

 Alternatively you may install them in R:

 install.packages("brms")
 
 Running: ~1~
 Once the MBA command script is constructed, it can be run by copying and
 pasting to the terminal. Alternatively (and probably better) you save the 
 script as a text file, for example, called myMBA.txt, and execute it with the 
 following  (assuming on tcsh shell),
 
 nohup tcsh -x myMBA.txt > diary.txt &
 nohup tcsh -x myMBA.txt |& tee diary.txt &

 The advantage of the commands above is that the progression is saved into
 the text file diary.txt and, if anything goes awry, can be examined later.
 The 'nohup' command allows the analysis running in the background even if
 the terminal is killed.

--------------------------------
Examples: ~1~

Example 1 --- Simplest scenario. Values from region pairs are the input from
          each subject. No explanatory variables are considered. Research
   interest is about the population effect at each region pair plus
   the relative strength of each region.

   MBA -prefix output -r2z -dataTable myData.txt  \

   The above script is equivalent to

   MBA -prefix myWonderfulResult -chains 4 -iterations 1000 -model 1 -EOI 'Intercept' \
   -r2z -dataTable myData.txt  \

   The 2nd version is recommended because of its explicit specifications.

   The input file 'myData.txt' is a data table in pure text format as below: 
                                                             
     Subj  ROI1   ROI2      Y
     S01   lFFA lAmygdala  0.162
     S02   lFFA lAmygdala -0.598
     S03   lFFA lAmygdala  0.249
     S04   lFFA lAmygdala  0.568
     ...
 

--------------------------------
Example 2 --- 2 between-subjects factors (sex and group): ~2~

   MBA -prefix output -Subj subject -ROI1 region1 -ROI2 region2 -Y zscore\
   -chains 4 -iterations 1000 -model '1+sex+group' \
   -cVars 'sex,group' -r2z -EOI 'Intercept,sex,group' \
   -dataTable myData.txt

   The input file 'myData.txt' is formatted as below:
   
   subject region1 region2  zscore  sex group
   S1      DMNLAG  DMNLHC 0.274   F  patient
   S1      DMNLAG  DMNPCC 0.443   F  patient
   S2      DMNLAG  DMNRAG 0.455   M  contorl
   S2      DMNLAG  DMNRHC 0.265   M  control
   ...

   Notice that the interaction between 'sex' and 'group' is not modeled in this case.


---------------------------------
Example 3 --- one between-subjects factor (sex), one within-subject factor (two
   conditions), and one quantitative variable: ~2~
    
   MBA -prefix result -chains 4 -iterations 1000 -model '1+sex+age+SA' \
   -qVars 'sex,age,SA' -r2z -EOI 'Intercept,sex,age,SA' \
   -dataTable myData.txt

   The input file 'myData.txt' is formatted as below:
   
   Subj ROI1  ROI2    Y   sex  age    SA
   S1 DMNLAG DMNLHC 0.274  1  1.73  1.73
   S1 DMNLAG DMNPCC 0.443  1  1.73  1.73
   S2 DMNLAG DMNRAG 0.455 -1 -0.52 -0.52
   S2 DMNLAG DMNRHC 0.265 -1 -0.52 -0.52
   ...

   Notice

   1) the 'Y' column is the contrast between the two conditions.
   2) since we want to model the interaction between 'sex' and 'age', 'sex' is
      coded through deviation coding.
   3) 'age' has already been standardized within each sex due to large age
      difference between the two sexes.
   4) the 'SA' column codes for the interaction between 'sex' and 'age', which
      is the product of the two respective columns.
   
   Options: ~1~
   

Options in alphabetical order:
------------------------------

   -chains N: Specify the number of Markov chains. Make sure there are enough
         processors available on the computer. Most of the time 4 cores are good
         enough. However, a larger number of chains (e.g., 8, 12) may help achieve
         higher accuracy for posterior distribution. Choose 1 for a single-processor
         computer, which is only practical only for simple models.

   -cVars variable_list: Identify categorical (qualitive) variables (or
         factors) with this option. The list with more than one variable
         has to be separated with comma (,) without any other characters such
         as spaces and should be surrounded within (single or double) quotes.
         For example, -cVars "sex,site"

   -dataTable TABLE: List the data structure in a table of long format (cf. wide
         format) in R with a header as the first line. 

         NOTE:

         1) There should have at least four columns in the table. These minimum
         four columns can be in any order but with fixed and reserved with labels:
         'Subj', 'ROI1', 'ROI2', and 'Y'. The two columns 'ROI1' and 'ROI2' are
         meant to code the two regions that are associated with each value under the
         column Y, and they do not connotate any indication of directionality other
         than you may want to keep track of a consistent order, for example, in the
         correlation matrix. More columns can be added in the table for explanatory
         variables (e.g., groups, age, site) if applicable. Only subject-level
         (or between-subjects) explanatory variables are allowed at the moment. The 
         columns of 'Subj', 'ROI1' and 'ROI2' code each subject and the two regions 
         associated with each region pair, and these labels that can be any identifiable
         characters including numbers. The column 'Y' can be correlation value, 
         Fisher-transformed correlation value, or white-matter property between 
         grey-matter regions (e.g., mean diffusivity, fractional anisotropy, radial
         diffusivity and axial diffusivity).
         2) Each row is associated with one and only one 'Y' value, which is the
         response variable in the table of long format (cf. wide format) as
         defined in R. In the case of correlation matrix or white-matter property
         matrix, provide only half of the off-diagonals. With n regions, there
         should have at least n(n-1)/2 rows per subject, assuming no missing data. 
         3) It is fine to have variables (or columns) in the table that are
         not used in the current analysis.
         4) The context of the table can be saved as a separate file, e.g., called
         table.txt. In the script specify the data with '-dataTable table.txt'.
         This option is useful when: (a) there are many rows in the table so that
         the program complains with an 'Arg list too long' error; (b) you want to
         try different models with the same dataset.

   -dbgArgs: This option will enable R to save the parameters in a file called
         .MBA.dbg.AFNI.args in the current directory so that debugging can be
         performed.

   -EOI variable_list: Identify effects of interest in the output by specifying the
         variable names separated with comma (,). For example, -EOI "sex,age".
         By default the Intercept is considered to be an effect of interest.
         Currently only variables, not their interactions, can be directly
         requested for output. However, most interaction effects can be obtained by
         either properly coding the variables (see example 3) or post processing.

   -fullRes: Use the option to indicate that a full set of results is shown in the
         the report. When option is not invoked (default), only those region pairs
         whose effect reaches at least 90% quantile are shown. 

   -help: this help message

   -iterations N: Specify the number of iterations per Markov chain. Choose 1000 (default)
         for simple models (e.g., one or no explanatory variables). If convergence
         problem occurs as indicated by Rhat being great than 1.1, increase the number of
         iterations (e.g., 2000) for complex models, which will lengthen the runtime.
         Unfortunately there is no way to predict the optimum iterations ahead of time.

   -MD: This option indicates that there are missing data in the input. With n
         regions, at least n(n-1)/2 values are assumed from each subject in the
         input with no missing data (default). When missing data are present,
         invoke this option so that the program will handle it properly.

   -model FORMULA: This option specifies the effects associated with explanatory
         variables. By default (without user input) the model is specified as
         1 (Intercept). Currently only between-subjects factors (e.g., sex, 
         patients vs. controls) and quantitative variables (e.g., age) are
         allowed. When no between-subject factors are present, simply put 1
         (default) for FORMULA. The expression FORMULA with more than one
         variable has to be surrounded within (single or double) quotes (e.g.,
         '1+sex', '1+sex+age'. Variable names in the formula should be consistent
         with the ones used in the header of data table. A+B represents the
         additive effects of A and B, A:B is the interaction between A
         and B, and A*B = A+B+A:B. Subject as a variable should not occur in
         the model specification here.

   -prefix PREFIX: Prefix is used to specify output file names. The main output is
        a text with prefix appended with .txt and stores inference information 
        for effects of interest in a tabulated format depending on selected 
        options. The prefix will also be used for other output files such as 
        visualization plots such as matrix plot, and saved R data in binary
        mode. The .RData can be used for post hoc processing such as customized
        processing and plotting. Remove the .RData file to save disk space once
        you deem such a file is no longer useful.

   -qContr contrast_list: Identify comparisons of interest between quantitative
         variables in the output separated with comma (,). It only allows for
         pair-wise comparisons between two quantitative variables. For example,
         -qContr "age vs IQ, age vs weight, IQ vs weight", where V1, V2, and V3 are three
         quantitative variables and three comparisons, V1 - V2, V1 - V3 and V2 - V3
         will be provided in the output. Make sure that such comparisons are
         meaningful (e.g., with the same scale and unit. This can be used to
         formulate comparisons among factor levels if the user quantitatively
         codes the factor levels.

   -qVars variable_list: Identify quantitative variables (or covariates) with
         this option. The list with more than one variable has to be
         separated with comma (,) without any other characters such as
         spaces and should be surrounded within (single or double) quotes.
         For example, -qVars "Age,IQ"

   -r2z: This option performs Fisher transformation on the response variable
         (column Y) if it is correlation coefficient. Do not invoke the option
         if the transformation has already been applied or the variable is
         not correlation coefficient.

   -ROI1 var_name: var_name is used to specify the column name that is designated as
        as the region variable for the first set of each region pair. The default
        (when this option is not invoked) is 'ROI1'.

   -ROI2 var_name: var_name is used to specify the column name that is designated as
        as the region variable for the second set of each region pair. The default
        (when this option is not invoked) is 'ROI2'.

   -ROIlist file: List all the regions in a text file with one column in an order
         preferred in the the plots. When the option is not invoked, the region
         order in the plots may not be in a preferred order.

   -show_allowed_options: list of allowed options

   -stdz variable_list: Identify quantitative variables (or covariates) to be
         standardized. To obtain meaningful and interpretable results and to
         achieve better convergence of Markov chains with reasonable iterations,
         it is recommended that all quantitative variables be standardized
         except for the response variable and indicator variables that code for
         factors. For example, -stdz "Age,IQ". If the mean of a quantitative
         variables varies substantially between groups, it may make sense to
         standardize the variable within each group before plugging the values
         into the data table. Currently MBA does not offer the option to perform
         within-group standardization.

   -Subj var_name: var_name is used to specify the column name that is designated as
        as the measuring unit variable (usually subject). The default (when this
        option is not invoked) is 'Subj'.

   -verb VERB: Speicify verbose level.

   -Y var_name: var_name is used to specify the column name that is designated as
        as the response/outcome variable. The default (when this option is not
        invoked) is 'Y'.


This page auto-generated on Mon Oct 19 20:25:12 EDT 2020