AFNI program: SurfMesh

Output of -help



Usage:
  SurfMesh <-i_TYPE SURFACE> <-o_TYPE OUTPUT> <-edges FRAC> 
           [-sv SURF_VOL]
 
  Example:
  SurfMesh -i_ply surf1.ply -o_ply surf1_half -edges 0.5

  Mandatory parameters:
     -i_TYPE SURFACE: Input surface. See below for details. 
              You can also use the -t* method or
              the -spec SPECFILE -surf SURFACE method.
     -o_TYPE OUTPUT: Output surface, see below.
     -edges FRAC: surface will be simplified to number of
              edges times FRAC (fraction). Default is .5
              refines surface if edges > 1

 Specifying input surfaces using -i or -i_TYPE options: 
    -i_TYPE inSurf specifies the input surface,
            TYPE is one of the following:
       fs: FreeSurfer surface. 
           If surface name has .asc it is assumed to be
           in ASCII format. Otherwise it is assumed to be
           in BINARY_BE (Big Endian) format.
           Patches in Binary format cannot be read at the moment.
       sf: SureFit surface. 
           You must specify the .coord followed by the .topo file.
       vec (or 1D): Simple ascii matrix format. 
            You must specify the coord (NodeList) file followed by 
            the topo (FaceSetList) file.
            coord contains 3 floats per line, representing 
            X Y Z vertex coordinates.
            topo contains 3 ints per line, representing 
            v1 v2 v3 triangle vertices.
       ply: PLY format, ascii or binary.
            Only vertex and triangulation info is preserved.
       stl: STL format, ascii or binary.
            This format of no use for much of the surface-based
            analyses. Objects are defined as a soup of triangles
            with no information about which edges they share. STL is only
            useful for taking surface models to some 3D printing 
            software.
       mni: MNI .obj format, ascii only.
            Only vertex, triangulation, and node normals info is preserved.
       byu: BYU format, ascii.
            Polygons with more than 3 edges are turned into
            triangles.
       bv: BrainVoyager format. 
           Only vertex and triangulation info is preserved.
       dx: OpenDX ascii mesh format.
           Only vertex and triangulation info is preserved.
           Requires presence of 3 objects, the one of class 
           'field' should contain 2 components 'positions'
           and 'connections' that point to the two objects
           containing node coordinates and topology, respectively.
       gii: GIFTI XML surface format.
       obj: OBJ file format for triangular meshes only. The following
            primitives are preserved: v (vertices),   (faces, triangles
            only), and p (points)
 Note that if the surface filename has the proper extension, 
 it is enough to use the -i option and let the programs guess
 the type from the extension.

 You can also specify multiple surfaces after -i option. This makes
 it possible to use wildcards on the command line for reading in a bunch
 of surfaces at once.

     -onestate: Make all -i_* surfaces have the same state, i.e.
                they all appear at the same time in the viewer.
                By default, each -i_* surface has its own state. 
                For -onestate to take effect, it must precede all -i
                options with on the command line. 
     -anatomical: Label all -i surfaces as anatomically correct.
                Again, this option should precede the -i_* options.

 More variants for option -i:
-----------------------------
 You can also load standard-mesh spheres that are formed in memory
 with the following notation
     -i ldNUM:  Where NUM is the parameter controlling
                the mesh density exactly as the parameter -ld linDepth
                does in CreateIcosahedron. For example: 
                    suma -i ld60
                create on the fly a surface that is identical to the
                one produced by: CreateIcosahedron -ld 60 -tosphere
     -i rdNUM: Same as -i ldNUM but with NUM specifying the equivalent
               of parameter -rd recDepth in CreateIcosahedron.

 To keep the option confusing enough, you can also use -i to load
 template surfaces. For example:
           suma -i lh:MNI_N27:ld60:smoothwm 
 will load the left hemisphere smoothwm surface for template MNI_N27 
 at standard mesh density ld60.
 The string following -i is formatted thusly:
     HEMI:TEMPLATE:DENSITY:SURF where:
     HEMI specifies a hemisphere. Choose from 'l', 'r', 'lh' or 'rh'.
          You must specify a hemisphere with option -i because it is 
          supposed to load one surface at a time. 
          You can load multiple surfaces with -spec which also supports 
          these features.
     TEMPLATE: Specify the template name. For now, choose from MNI_N27 if
               you want to use the FreeSurfer reconstructed surfaces from
               the MNI_N27 volume, or TT_N27
               Those templates must be installed under this directory:
                 /home/afniHQ/.afni/data/
               If you have no surface templates there, download
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI_N27.tgz
               and/or
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_TT_N27.tgz
               and/or
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz
               and untar them under directory /home/afniHQ/.afni/data/
     DENSITY: Use if you want to load standard-mesh versions of the template
              surfaces. Note that only ld20, ld60, ld120, and ld141 are in
              the current distributed templates. You can create other 
              densities if you wish with MapIcosahedron, but follow the
              same naming convention to enable SUMA to find them.
     SURF: Which surface do you want. The string matching is partial, as long
           as the match is unique. 
           So for example something like: suma -i l:MNI_N27:ld60:smooth
           is more than enough to get you the ld60 MNI_N27 left hemisphere
           smoothwm surface.
     The order in which you specify HEMI, TEMPLATE, DENSITY, and SURF, does
     not matter.
     For template surfaces, the -sv option is provided automatically, so you
     can have SUMA talking to AFNI with something like:
             suma -i l:MNI_N27:ld60:smooth &
             afni -niml /home/afniHQ/.afni/data/suma_MNI_N27 

 Specifying surfaces using -t* options: 
   -tn TYPE NAME: specify surface type and name.
                  See below for help on the parameters.
   -tsn TYPE STATE NAME: specify surface type state and name.
        TYPE: Choose from the following (case sensitive):
           1D: 1D format
           FS: FreeSurfer ascii format
           PLY: ply format
           MNI: MNI obj ascii format
           BYU: byu format
           SF: Caret/SureFit format
           BV: BrainVoyager format
           GII: GIFTI format
        NAME: Name of surface file. 
           For SF and 1D formats, NAME is composed of two names
           the coord file followed by the topo file
        STATE: State of the surface.
           Default is S1, S2.... for each surface.
 Specifying a Surface Volume:
    -sv SurfaceVolume [VolParam for sf surfaces]
       If you supply a surface volume, the coordinates of the input surface.
        are modified to SUMA's convention and aligned with SurfaceVolume.
        You must also specify a VolParam file for SureFit surfaces.
 Specifying a surface specification (spec) file:
    -spec SPEC: specify the name of the SPEC file.
     As with option -i, you can load template
     spec files with symbolic notation trickery as in:
                    suma -spec MNI_N27 
     which will load the all the surfaces from template MNI_N27
     at the original FreeSurfer mesh density.
  The string following -spec is formatted in the following manner:
     HEMI:TEMPLATE:DENSITY where:
     HEMI specifies a hemisphere. Choose from 'l', 'r', 'lh', 'rh', 'lr', or
          'both' which is the default if you do not specify a hemisphere.
     TEMPLATE: Specify the template name. For now, choose from MNI_N27 if
               you want surfaces from the MNI_N27 volume, or TT_N27
               for the Talairach version.
               Those templates must be installed under this directory:
                 /home/afniHQ/.afni/data/
               If you have no surface templates there, download one of:
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI_N27.tgz
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_TT_N27.tgz
                 https://afni.nimh.nih.gov/pub/dist/tgz/suma_MNI152_2009.tgz
               and untar them under directory /home/afniHQ/.afni/data/
     DENSITY: Use if you want to load standard-mesh versions of the template
              surfaces. Note that only ld20, ld60, ld120, and ld141 are in
              the current distributed templates. You can create other 
              densities if you wish with MapIcosahedron, but follow the
              same naming convention to enable SUMA to find them.
              This parameter is optional.
     The order in which you specify HEMI, TEMPLATE, and DENSITY, does
     not matter.
     For template surfaces, the -sv option is provided automatically, so you
     can have SUMA talking to AFNI with something like:
             suma -spec MNI_N27:ld60 &
             afni -niml /home/afniHQ/.afni/data/suma_MNI_N27 

 Specifying a surface using -surf_? method:
    -surf_A SURFACE: specify the name of the first
            surface to load. If the program requires
            or allows multiple surfaces, use -surf_B
            ... -surf_Z .
            You need not use _A if only one surface is
            expected.
            SURFACE is the name of the surface as specified
            in the SPEC file. The use of -surf_ option 
            requires the use of -spec option.
 Specifying output surfaces using -o or -o_TYPE options: 
    -o_TYPE outSurf specifies the output surface, 
            TYPE is one of the following:
       fs: FreeSurfer ascii surface. 
       fsp: FeeSurfer ascii patch surface. 
            In addition to outSurf, you need to specify
            the name of the parent surface for the patch.
            using the -ipar_TYPE option.
            This option is only for ConvertSurface 
       sf: SureFit surface. 
           For most programs, you are expected to specify prefix:
           i.e. -o_sf brain. In some programs, you are allowed to 
           specify both .coord and .topo file names: 
           i.e. -o_sf XYZ.coord TRI.topo
           The program will determine your choice by examining 
           the first character of the second parameter following
           -o_sf. If that character is a '-' then you have supplied
           a prefix and the program will generate the coord and topo names.
       vec (or 1D): Simple ascii matrix format. 
            For most programs, you are expected to specify prefix:
            i.e. -o_1D brain. In some programs, you are allowed to 
            specify both coord and topo file names: 
            i.e. -o_1D brain.1D.coord brain.1D.topo
            coord contains 3 floats per line, representing 
            X Y Z vertex coordinates.
            topo contains 3 ints per line, representing 
            v1 v2 v3 triangle vertices.
       ply: PLY format, ascii or binary.
       stl: STL format, ascii or binary (see also STL under option -i_TYPE).
       byu: BYU format, ascii or binary.
       mni: MNI obj format, ascii only.
       gii: GIFTI format, ascii.
            You can also enforce the encoding of data arrays
            by using gii_asc, gii_b64, or gii_b64gz for 
            ASCII, Base64, or Base64 Gzipped. 
            If AFNI_NIML_TEXT_DATA environment variable is set to YES, the
            the default encoding is ASCII, otherwise it is Base64.
       obj: No support for writing OBJ format exists yet.
 Note that if the surface filename has the proper extension, 
 it is enough to use the -o option and let the programs guess
 the type from the extension.

   [-novolreg]: Ignore any Rotate, Volreg, Tagalign, 
                or WarpDrive transformations present in 
                the Surface Volume.
   [-noxform]: Same as -novolreg
   [-setenv "'ENVname=ENVvalue'"]: Set environment variable ENVname
                to be ENVvalue. Quotes are necessary.
             Example: suma -setenv "'SUMA_BackgroundColor = 1 0 1'"
                See also options -update_env, -environment, etc
                in the output of 'suma -help'
  Common Debugging Options:
   [-trace]: Turns on In/Out debug and Memory tracing.
             For speeding up the tracing log, I recommend 
             you redirect stdout to a file when using this option.
             For example, if you were running suma you would use:
             suma -spec lh.spec -sv ... > TraceFile
             This option replaces the old -iodbg and -memdbg.
   [-TRACE]: Turns on extreme tracing.
   [-nomall]: Turn off memory tracing.
   [-yesmall]: Turn on memory tracing (default).
  NOTE: For programs that output results to stdout
    (that is to your shell/screen), the debugging info
    might get mixed up with your results.


Global Options (available to all AFNI/SUMA programs)
  -h: Mini help, at time, same as -help in many cases.
  -help: The entire help output
  -HELP: Extreme help, same as -help in majority of cases.
  -h_view: Open help in text editor. AFNI will try to find a GUI editor
  -hview : on your machine. You can control which it should use by
           setting environment variable AFNI_GUI_EDITOR.
  -h_web: Open help in web browser. AFNI will try to find a browser.
  -hweb : on your machine. You can control which it should use by
          setting environment variable AFNI_GUI_EDITOR. 
  -h_find WORD: Look for lines in this programs's -help output that match
                (approximately) WORD.
  -h_raw: Help string unedited
  -h_spx: Help string in sphinx loveliness, but do not try to autoformat
  -h_aspx: Help string in sphinx with autoformatting of options, etc.
  -all_opts: Try to identify all options for the program from the
             output of its -help option. Some options might be missed
             and others misidentified. Use this output for hints only.
  


Compile Date:
   Dec  5 2018

 Originally written by Jakub Otwinowski.
 Now maintained by Ziad S. Saad SSCC/NIMH/NIH saadz@mail.nih.gov     
 This program uses the GTS library gts.sf.net
 for fun read "Fast and memory efficient polygonal simplification" (1998) 
 and "Evaluation of memoryless simplification" (1999) by Lindstrom and Turk.

This page auto-generated on Wed Dec 5 10:06:12 EST 2018