
Chapter 7.  Functional Image Generation Techniques: Single Subject Data 
 
7.1.  Introduction 
Most of an fMRI researcher’s time is spent on data analysis.  There is a large amount of data.  There is a 
large number of steps needed to process the data.  There is a large number of different techniques for the 
production of functional activation maps, no one of which is clearly superior—several different analysis 
methods might be applied to one data set to make sure that the results aren’t sensitive to a particular 
procedure. 
Capsule Summary 
The basic unit of an fMRI data set is an image time series (2D or 3D), combined with knowledge of the 
stimuli applied to the subject during the imaging run.  At least 2 different stimuli must be used, since 
fMRI does not measure absolute neural activity.  Only changes in the MRI signal can be detected, so to 
create maps of neural activation, stimuli that will evoke different neural responses must be used.  This 
time series data itself does not comprise a functional image.  The techniques for deriving functional 
activation maps from such data fall into two broad categories: pattern matching methods, and pattern 
hunting methods.  Pattern matching methods presuppose some model for the MRI-measured response to 
neural activation.  The chosen model is fit to the data using some form of regression analysis.  The 
resulting activation map is the set of image voxels that fit the response model with some level of 
significance.  Pattern hunting methods look for spatio-temporal components that explain significant 
parts of the data, without imposing à priori constraints on the measurable response.  Before any analysis 
is carried out on the image time series, it is advisable to preprocess the data to minimize the effects of 
subject head motion and other sources of signal contamination. 
Data: Signals (Good) and Noise (Bad) 
In any detection and characterization problem, it is important to understand both the signal for which 
one is looking and the noise that is interfering with identification of the signal in the data.  In this 
context, “noise” refers to any component of the data that is not related to the phenomenon of interest.  
For example, in fMRI, the motion of the brainstem with each heartbeat can be considered to be noise, 
since it strongly interferes with the detection of neural activation in that region.  In a study that 
concentrated on quantifying brainstem movement, this “noise” would be the signal, and data changes 
due to neural activity would be the “noise” instead. 

Data analysis in fMRI is handicapped by the lack of widely accepted models for either the signal 
or the noise.  As discussed in Chapter 3, the detailed temporal features of the BOLD signal are still 
matters of controversy.  The extent to which these are constant in any given voxel, and the extent to 
which they vary between voxels and between subjects for non-neural reasons (e.g., venule size 
distribution, blood vessel pliability, partial volume effects) are active areas of research.  The noise in 
fMRI is principally caused by non-neural physiological effects such as the cardiac and respiratory 
cycles.  Understanding the temporal and spatial distribution of the noise, and its impact on the various 
signal detection techniques, is also an area of investigation. 

In most disciplines, signal detection is based on models of the signal and noise.  When these 
models are completely lacking, ad hoc methods must be used.  In fMRI, these models are not entirely 
lacking, but are still matters of controversy.  The result is the proliferation of fMRI data analysis 
methods, each of which is designed—perhaps implicitly—around some signal+noise models.  Each 
analysis method is also often designed with a particular type of stimulus paradigm in mind.  The upshot 
is that more than one analysis technique can be applied to any given data set, but it requires some 
understanding of the underlying assumptions and goals to choose among the analysis methods.  In many 
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cases, more than one method is applied to a data set in order to see if the activation map is very sensitive 
to the choice of analysis tool.  Fortunately, well-designed and well-executed fMRI experiments produce 
fairly robust data that give similar results from a variety of analytical methods. 
 
7.2.  Comparison to PET Activation Experiments 
15O-labeled H2O PET data are similar to fMRI data in that the signal contrast in both methods is due to 
changes in blood flow caused by changes in neuronal activity (Chapter 3).  PET images have lower 
spatial and temporal resolution than even coarse fMRI images, which affects the data analysis in several 
ways.  The principal source of noise in PET data is the random nature of radioactive counts, coupled 
with the limited dose of radiation that is compatible with subject safety.  This noise variance is 
approximately uniform across the brain.  To lower the noise level, PET images are usually spatially 
smoothed in the reconstruction software (10–20 mm of smoothing is commonly reported).  As a result, 
the image noise is highly correlated between voxels, which implies that the statistical tests for activation 
are not even approximately independent between voxels.  Coupled with the fact that the number of PET 
images per subject is usually small (10–20), this means that effective statistical tests must take into 
account the spatial correlation in the noise.  Techniques that have been developed to do this include the 
application of principal components methods [Friston, Strother] and of the theory of correlated Gaussian 
random fields [Worsley]. 
 The noise in fMRI is quite different from the noise in PET.  Its variance is quite nonuniform and 
depends strongly on the tissue composition of the voxel—for example, large blood vessels increase the 
variance due to the stronger effects of blood pulsations with the cardiac cycle.  However, the noise is not 
strongly correlated between voxels.  Since fMRI data are gathered much more rapidly than PET data, 
there are temporal correlations in the fMRI time series that are not present in the PET images.  These 
facts mean that fMRI data should be processed somewhat differently than PET data.  The lack of spatial 
correlation in the noise means that the effective spatial resolution of fMRI-derived activation maps can 
be much higher than PET-derived maps.  The strong spatial nonuniformity of the noise variance means 
that activation detection is harder in some brain regions than in others.  The temporal correlations in the 
noise means that it is hard to estimate accurately the statistical significance of fMRI-derived activation 
maps. 
 Both types of experiments manipulate the stimuli presented to the subject and expect to see a 
corresponding change in the image voxel values.  It is possible to apply PET data analysis methods to 
fMRI data, and this is sometimes done; however, the differences between PET and fMRI signal/noise 
properties has led to the further development of neuroimage analysis methods.  Characteristics that make 
fMRI data easier to analyze than PET data include: 

• the much larger number of time samples available for each stimulus condition and each 
subject; 

• the smaller correlation between noise values in spatially separated voxels; 
• echo-planar imaging methods can provide whole brain images that repeat faster than the 

hemodynamic response time. 
Characteristics that make the interpretation of fMRI data more difficult than PET data include: 

• higher spatial resolution means that small subject movements or small changes in the image 
will have proportionally larger effects on the signals measured from individual voxels 
(e.g., with spatial resolution of 10 mm, a 1 mm movement is only 10% of a voxel, but with 
spatial resolution of 2 mm, the same movement is 50% of a voxel); 

RWCox  –2–  7/2/2001 



• the BOLD effect is a complex interaction of NMR physics, physiology, and microscopic 
anatomy, which means that comparisons of the magnitudes of signal changes between 
voxels—intra- or inter-subject—are difficult to justify (not that this stops people from doing 
just that); this problem is one motivation for using arterial spin labeling methods for fMRI; 

• temporal correlations in the time series data—the fact that the noise is not “white”—make it 
hard to estimate how many degrees of freedom are actually present in a voxel time series; the 
temporal correlations are caused by physiological noise, which is quite spatially variable, 
further compounding the difficulty. 

 
7.3.  Practical Issues of Computation and Data Management 
A typical echo-planar fMRI imaging run acquires 10 images per second for 5 minutes, yielding 3000 
images.  If the images are reconstructed onto a 64×64 matrix with each voxel stored in 2 bytes, then this 
image data takes up 24 Mbytes of disk space—in essence, this is a single fMRI datum.  Ten such 
imaging runs per scanning session is a typical number, so that about ¼ Gbyte of data is generated in an 
hour.  (128×128 images are becoming more common, which take up four times as much space: 1 Gbyte 
per hour.)  This is the basic experimental session on a single subject.  A typical small study may have 20 
scanning sessions.  It is important to develop a systematic plan for archiving the raw data, for 
documenting its acquisition, and for keeping track of the processing steps applied to it.  Absent such a 
plan, investigators quickly come to feel that they are “drowning in data.”  Significant amounts of disk 
storage, tapes or other backup media, memory, and processing power are needed to process fMRI data.  
Fortunately, these things have become relatively inexpensive. 
fMRI Software Packages 
Several software packages for the statistical analysis and display of neuroimaging data sets are available.  
Some are commercial systems and some are distributed freely via the Internet.  These packages were 
recently compared [Gold 1998] (as usual, software reviews are mostly out-of-date by the time they 
appear in print).  The major analysis packages are: 

• AFNI  from the Medical College of Wisconsin.   [freeware] 
• FIASCO  from Carnegie Mellon University.    [freeware] 
• MED-X  from Sensor Systems, Inc.     [commercial] 
• SPM  from the Wellcome Neurological Institute.   [freeware] 
• Stimulate  from the University of Minnesota.   [freeware] 

Some software that performs specialized functions useful for fMRI include: 
• AIR from UCLA (image registration)   [freeware] 
• ???? from Harvard (cortical flattening)   [freeware] 
• ???? from Washington University (cortical flattening) [freeware] 

Most of these packages are designed to run under Unix (some including Linux), since only recently did 
personal computers acquire the power needed for processing fMRI data.  It is also possible to use 
general purpose image manipulation software such as Analyze (Mayo Clinic) for some parts of the data 
processing.  The usual statistical packages (e.g., SPSS) are not adequate for processing such large 
amounts of data, but can be very useful for analysis of a few selected data components (e.g., data 
averaged over regions of interest—ROIs). 

Our personal preference is for the AFNI package, but that is largely because it originates from 
the authors’ institution, is in daily use there, and is written by one of authors (RWC).  AFNI is described 
briefly in Appendix D.  SPM is very widely used: it was one of the first available software tools for 
neuroimage data analysis, and it has accumulated a large number of analysis options over the years. 
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The field of fMRI data analysis is changing rapidly, and each software system only incorporates 
a portion of all the published techniques.  For this reason, most sites that take fMRI seriously need to 
employ at least one scientific computer programmer to provide custom analysis options, even if one of 
the packages above can do the majority of the needed work. 
Choosing an Analysis Method 
The number of fMRI data analysis methods used in the literature is large and ever increasing.  In part, 
this state of affairs is due to the large number of  different experiment types possible with fMRI and 
human subjects.  One analysis paradigm cannot possibly fit the myriad classes of data that 
neuroscientists can generate.  However, many proposed analysis techniques overlap in their 
applicability.  Large scale systematic studies and comparisons of fMRI data analysis methods do not yet 
exist. Instead, each author of a new methods points out the shortcomings of the old techniques that his 
approach overcomes, and adduces a data set or two to back his claims.  The only practical approach that 
an fMRI research can take is to choose a couple of data analysis methods that are applicable to his data, 
use them both in parallel, and see if the results differ significantly. 
 
7.4.  Preprocessing the Image Time Series 
fMRI data sets are large and are sensitive to many effects besides the neural activation as measured 
through the BOLD response.  Some of the possible artifacts were described in Chapters 2 and 3.  The 
purpose of the preprocessing steps is to detect and/or minimize these effects, so as to improve the 
detectability of neurally induced image intensity changes. 
Image Reconstruction 
Image reconstruction is the first step in data processing.  Normally, this function is provided by the 
scanner manufacturer (the software tools above do not include reconstruction), but there may be some 
options that affect the image quality for fMRI purposes.  One example is the correction of image 
distortions that arise from large scale magnetic field inhomogeneities.  A special MRI pulse sequence 
can be used to gather a map of the magnetic field, and then this information can be used during the 
reconstruction of the fMRI time series.  Another example is the final reconstruction matrix.  The raw 
data can be reconstructed onto a finer grid than the actual spatial resolution of the data 
(e.g., reconstruction of 64×64 data onto a 128×128 grid).  This usually improves the visual appearance 
of the images, but does not add actual resolution.  Instead, it will introduce spatial correlation between 
the noise in each voxel.  If this is done, the selection of the statistical threshold for the activation 
detection should be altered appropriately (cf. §7.6). 
 At most sites, you will have to live with whatever image reconstruction the scanner manufacturer 
provides.  It is worth looking into the available options, especially with the guidance of an MRI 
physicist. 
Looking at the Images 
Simply scanning through the image time series is a good idea, although it can be time consuming.  MRI 
scanner hardware is very complex, and the malfunctioning of any component can significantly 
compromise image quality in ways that may not be detected by automatic algorithms.  For example, in 
one scanning session at the Medical College of Wisconsin, the gradient power supply subsystem lost 
part of its capacity halfway through an imaging run.  The weaker currents to one gradient coil produced 
weaker magnetic field gradients, which resulting in the images being distorted by about 40% in the 
anterior-posterior direction—that is, the subject’s head suddenly appeared to stretch out about 4 inches!  
The data from this scanning session had to be discarded. 
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It is impossible to anticipate all such possibilities in computer software, so it is important that the 
images be reviewed by a human.  Viewing the images in “cine mode” (like a movie, scanning through 
time) is relatively quick and will often highlight obvious problems, including subject head movement. 
Discarding the First Few Images 
 If TR is less than about 5⋅T1, then the first few images in the fMRI time series will be 
significantly different and brighter than the later images.  This is due to the time it takes the 
magnetization to reach an equilibrium state (to become saturated) when it is being subjected to a train of 
periodic RF excitations.  These bright images should not be used in the functional activation data 
analysis, since the signal changes caused by neural activation are much smaller than the brightness 
changes during this “warmup” period.  For this reason, it is usual to start an fMRI scanning run with a 
“rest” period rather than an active task/stimulus, since no useful activation results can be derived from 
this segment of the data. 
 In practice, it is easy to see how many images to discard by looking at a graph of the time series 
data from a few representative voxels.  About 10⋅T1/TR images is the usual number; for example, 
T1≈0.8 s at 1.5 T, so with TR=4 s, 2 or 3 images will show this effect. 
Image Time Series Registration 
One of the biggest practical problems in fMRI is subject head motion during an imaging run.  The signal 
changes from even tiny motions (under 1 mm) can be larger than the typical 2% BOLD response at 
1.5 Tesla.  If two voxels differ in intrinsic MRI signal by 10% (a typical value inside the brain), then a 
movement of 20% of a voxel dimension will cause a 2% change in voxel signal intensity.  For 3 mm 
voxels, this means a 600 µm motion can interfere with the detection of neurally-related changes in voxel 
signals.  At the edge of the brain, neighboring voxel intensities often differ by 70%, meaning that a 100 
µm movement could cause a 2% signal change. 
 

 
 

Figure 7.1.  Motion of 25% of a voxel edge size causes a 2.5% change in voxel intensity between neighboring voxels that 
have intrinsic NMR signal intensities that differ by 10%.  The squares above represent the original voxels.  The dashed 
square below represents the left voxel after the subject moves slightly to the right (the voxel grid remains fixed and the 

subject moves “beneath” it).  This signal change might be larger than the BOLD effect signal change, particularly in 
prefrontal and association cortex regions.  As discussed in the text, movement-induced signal changes might be confused 

with BOLD effect signal changes, and/or might mask the presence of the BOLD effect. 
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The amount of movement is quite variable between individuals.  Healthy subjects that have been 
scanned before are usually more comfortable in the magnet and will move less.  Children and patients 
generally make poorer subjects from this point of view.  Head restraints are commonly used, but most 
subjects do not like them.  Also, the skull and brain are not rigidly attached to the scalp, so that even 
very tight exterior restraints do not rule out movements of the brain. 
 If the subject’s movements occur at the same time as the stimulus, then the signal changes 
consequent to movement will have the same timing as the signal changes consequent to neural 
activation.  Such stimulus-correlated motion can be caused by sudden changes in visual illumination or 
by changes in responses required by the subject (e.g., changing from rest to hand motions).  When this 
type of motion occurs, a large number of false “activations” are detected [Hajnal].  Since the signal 
changes due to movement are largest near the edges of the brain, if a functional activation map shows a 
“halo” of activations along large portions of the perimeter of the cortex, you can be sure that motion is 
the culprit. 
 Contrariwise, if the subject movements occur randomly, the signal changes consequent to motion 
will be like an extra noise source, and will make it harder to detect true activations.  Unless the motions 
are large (more than 1 voxel size) and frequent, strong activity will be detectable; however, regions of 
smaller signal change will be masked by the movement noise.  This effect is most troublesome when 
comparing activation maps between groups of subjects.  It is important to determine if one group had 
more movements than the other.  For example, if a group of patients had more movements than a group 
of controls, it might be difficult to determine if smaller volumes of activations seen in the patients was 
due to movement noise or due to real neurological differences [Weinberg?]. 
 The most commonly used technique for reducing the effects of subject head movement is image 
registration.  Each target image (2D slice or 3D volume) needed to be registered is compared to a 
common “fiducial” (“base”) image, and the displacement—rotation and translation—from the base 
image is estimated.  This estimation is done by minimizing a measure of mismatch between the fiducial 
image and the target image as the displacements are varied.  (The base image should not be taken from 
the early images before the brightness reaches a steady state, since comparisons with later images would 
be inaccurate—early and later images don’t match.)  Each target image is then resampled from its 
original matrix to a new matrix that is aligned with the base image.  The various registration methods 
described in the image processing and fMRI literature differ in the details of how the images are 
compared to the base image (how the mismatch between two images is defined) and how the resampling 
to the new matrix is computed. 
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Figure 7.2.  The need for resampling when an image must be aligned to a new spatial matrix (grid) is illustrated.  Grid (I) is 
the original grid on which the image is defined; numerical values are associated with each horizontal-vertical grid 

intersection.  Grid (J) is the rotated grid onto which the image must be realigned.  Numerical values are needed at each 
slanted grid intersection (marked with heavy dots).  Resampling from the (I) grid to the (J) grid requires interpolating 

between the values given on the (I) grid.  At output point (L), the value is interpolated from its 4 nearest neighbors—this is 
bilinear interpolation.  At output point (C), the value is interpolated from 16 neighbors using bicubic interpolation.  Not 

shown is sinc interpolation, where each output value depends on each input value.  For most purposes, sinc interpolation is 
preferred; however, it is more complicated to program and sinc interpolation software is slower than other resampling 

methods.  (In general, images are 3D and resampling must be done between 3 dimensional grids.) 
 

 Image registration does not completely mitigate the effects of subject head movement.  It is 
impossible to estimate the parameters of the motion completely accurately.  Another problem is that EPI 
images are slightly distorted by nonuniformities in the static magnetic field.  MRI is analogous to taking 
a photograph through wavy glass.  If the subject moves behind the glass, the image could be moved back 
to the original position.  However, the result would not be identical to a photograph taken when the 
subject was at the original position, since the distortions induced by the wavy glass would depend on the 
details of the glass shape between the camera and subject, and these would be different between the two 
images.  Similarly, when the subject moves, the image will be distorted in a different way in the new 
position.  These changes in distortion may not be visible as a warping of the image, but they will cause 
changes in the voxel values that image registration will not fix. 
 Image registration can be done in 2D (slice by slice) or in 3D (volumetric).  In 2D, rigid 
movements are described by 3 parameters: x-translation, y-translation, and rotation.  In 3D, rigid 
movements are described by 6 parameters: translation along each coordinate axis, and rotation about 
each axis.  Generally, 3D registration has been preferred by the fMRI community, since subjects can 
move their heads in any direction.  However, the most common movement while lying supine is a 
nodding motion.  If the 2D slices are gathered in the sagittal plane, then most of the movement will be 
in-slice, and 2D registration may be sufficient. 
 One difficulty with 3D registration is that it is based on an obviously false model of the imaging 
process: 3D images are not gathered in a snapshot, but are assembled over several seconds.  It is 
artificial to assume that there is no motion during a TR interval, and then all the motion occurs before 
the 3D slice package acquisition starts over.  When movements are slow—such as when a subject’s head 
is slowly sinking into a pillow—this model is adequate.  For sudden head jerks, this model is clearly 
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inadequate; see Fig. 7.3.  For this reason, one strategy is to acquire the fMRI time series in the sagittal 
plane, where the motions are most likely to occur, and then use 2D registration on each slice separately.  
At present, there is no automated method to determine whether 2D or 3D registration is preferable for a 
given data set. 
 

 
 

Figure 7.3.  The effects of out-of-slice rotation partway through a single volume acquisition.  There are 9 slices, gathered in 
the usual interleaved order.  At the time of slices #7-9, the subject rotates his head out of plane (e.g., if the slices are axial, the 

subject nods his head).  The slices are viewed edge-on. 
 
 One method for dealing with the difficulty illustrated in Fig. 7.3 is to perform a slice-into-
volume registration; that is, to estimate separately for each 2D slice where in the whole 3D volume it 
came from [Kim].  It is not yet clear if this relatively new technique produces significantly superior 
results to volumetric registration. 
 If the out-of-slice movement is as large as depicted in Fig. 7.3, then an NMR effect comes into 
play to further alter the image intensity.  Note that slice #9, as acquired, overlaps with slice #4.  This 
means that the overlapping tissue will have been excited by RF twice within one TR period, unlike most 
locations.  When it is slice #4’s turn to be excited again, in the next 3D acquisition, the overlap region 
will have had less time to recover from the RF excitation.  This reduced recovery interval will diminish 
the NMR signal from that region.  Image registration alone does not fix this type of problem; at best, 
registration will merely straighten the slices out, but cannot correct for the scanner having measured the 
“wrong” values.  In general, this nonlinear effect would be hard to correct for; however, it is generally 
fairly small, and a linear approximation can be used if it desired to allow for this problem [Friston]. 
 Applying some image registration technique to the data time series is a good idea, and probably 
necessary if you want to get your results published.  At the least, you can use the movement parameter 
estimates to get a quantitative estimate of the size of the movements.  If the largest estimated movements 
are less than 10% of a voxel dimension, the registration process may not improve the data.  It is also 
useful to view the pre- and post-registration images in cine mode to see if the motion correction has been 
useful, or if something has gone wrong (e.g., a bad parameter estimate might end up adding motion to 
the data). 
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Registering to Anatomical Reference Images 
 A high-resolution (e.g., 1×1×1 mm3) 3D image with good gray-white matter contrast makes a 
very good anatomical reference image.  These images are usually acquired with a T1-weighted pulse 
sequence (e.g., SPGR or MP-RAGE).  It is almost universal to overlay functional activation maps on 
such images, since they provide structural information that the BOLD-sensitized T2*- or T2-weighted 
images cannot. 
 The fMRI time series is almost always gathered at a coarser spatial resolution than the 
anatomical reference data, and the two data sets may be gathered in different orientations as well 
(e.g., axial EPI and sagittal SPGR).  It is important that the software used for fMRI analysis be capable 
of dealing with this type of mismatch.  The most common method determining the proper overlap 
between two different MRI data sets is to use the scanner coordinate system, which is defined by the 
gradient coil.  Each slice acquisition is specified in terms of these coordinates.  If these coordinates are 
recorded, it is then “merely” a software problem to display two 3D data sets so that the same spatial 
coordinates are mapped to the same screen coordinates. 
 In some cases, there might be significant subject movement between the acquisition of the 
anatomical reference and the fMRI time series.  If nothing else, over a period of an hour or so, subjects 
tend to slide around a little bit (a few mm) on the scanner bed as they try to keep comfortable.  One 
simple method to deal with this problem is to use a fiducial image (for time series registration) that is 
gathered very close to the time that the anatomical image is acquired.  All the fMRI time series from a 
scanning session will be registered to the same fiducial.  This technique is generally adequate, unless the 
subject moves significantly in the time between the anatomical image acquisition and the closest fMRI 
time series acquisition.  This time should be minimized in order to reduce the likelihood of such motion. 
 Besides subject motion, subject-induced distortions in the magnetic field can cause the fMRI 
time series to be misaligned with the anatomical reference.  This effect is due to the fact the EPI 
methods are more sensitive to magnetic field imperfections than the commonly used anatomical imaging 
techniques.  The primary effect on echo-planar images is to shift the images in the phase encoding 
direction.  This problem is larger at higher magnetic field strengths; for example, displacements of up to 
3 mm might be seen at 3 Tesla. 
 Methods for registering un-alike (inter-modality) images have been developed.  They mainly 
differ from intra-modality methods in the way in which they compare images.  Intra-modality methods 
can subtract two images and try to find the motion parameters that make this difference small.  Inter-
modality registration methods typically try to match edges or other features in the images, rather than 
directly compare voxel values [ref]. 
 The distortion in echo-planar images in the phase encoding direction is usually not just a simple 
shift relative to the anatomical image.  The amount of displacement depends on the magnetic field 
change caused by local tissue susceptibility, and that will depend on location in the subject.  The effect 
is that echo-planar images can be warped relative to the underlying anatomy.  The best way to solve this 
problem is to acquire a magnetic field map using a special MRI pulse sequence, and use this extra data 
to undistort the images during reconstruction.  Unfortunately, this image acquisition and reconstruction 
option is not universally available. 
Trend Removal 
It is very common to see voxel time series that have slow drifts in signal intensity over the time of a 
scanning run.  The most likely cause of this effect is very slow subject movement, but it has also been 
seen in fMRI applied to anesthetized rats whose skulls are literally screwed into the gradient/RF coil 
assembly—a situation where movement is essentially impossible.  Other effects that can cause slow 
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changes in the NMR signal include (a) slight drifts in the scanner components if they heat up during the 
imaging run; (b) leakage of weak external RF signals into the scanner room; (c) changes in subject 
respiration, heartbeat, or posture during the imaging; and (d) accumulation of deoxyhemoglobin 
downstream from an active site, so that that the signal drifts downward during a set of stimuli, and then 
clears again when the stimuli cease for minute or so [Frahm]. 
 It is generally necessary to remove these slow drifts when processing the voxel time series.  
Conceptually, this is a preprocessing step, since it is separate from the activation analysis; however, in 
practice, trend removal and activation analyses are often carried out simultaneously.  The most common 
technique for trend removal is to fit a straight line (f(t)=a+b⋅t) to each voxel time series separately, using 
linear least squares, and to remove the constant and linear components.  The fluctuations that are left 
will be analyzed to determine if they correspond to neurally induced signal changes. 
 The reason for using a straight line is mostly that fMRI time series tend to be short, so that any 
slow curved trend (up for a while, then down) tends not to be seen fully.  For time series longer than 
several minutes, it is probably a good idea to detrend with a function that can allow for more complex 
trends (e.g., a quadratic polynomial in t) [Cox]. 
Filtering out Physiological Fluctuations 
After head movement, the biggest sources of noise in fMRI time series are usually the cardiac and 
respiratory cycles.  The heartbeat causes changes in the NMR signal by moving blood through slices at 
varying rates; blood flowing into a slice has not experienced the same RF excitation history as the 
stationary in-slice tissue, and so will have a different level of longitudinal magnetization available for 
conversion into transverse magnetization.  An additional effect is the vertical movement of the 
brainstem with each heartbeat: about 500 µm.  Respiration also causes brainstem movement.  The 
motion of the diaphragm muscle and other tissue in the chest causes the magnetic field in the brain to 
change slightly during the breathing cycle, which in turn causes the NMR signal to vary.  (A very large 
effect can be seen when the subject has any metallic object in or on the chest; for example, the motion of 
a steel underwire brassiere can produce quite noticeable signal changes in the subject’s brain due to the 
rhythmic changes in the magnetic field.) 
 It is possible to filter much of this physiological noise out of the fMRI time series data.  The 
simplest approach is to measure or estimate the frequencies of the subject’s heartbeat and breathing.  All 
data occurring at these frequencies can be removed from each voxel’s time series [Biswal].  The main 
difficulty with this method is the phenomenon of aliasing, which makes it impossible to distinguish 
frequencies in sampled data that differ by multiples of (∆t)−1, where ∆t is the data sampling interval.  For 
example, if ∆t=4 s (typical for fMRI), then heartbeat-related signals in the range 1.0–1.1 Hz will be 
indistinguishable from signals in the range 0.0–0.1 Hz.  This latter low frequency range is right where 
the fMRI-measurable activations will generally occur (e.g., with a stimulus cycle of 10 s “on” and 10 s 
“off”, the fMRI signals will be expected at 1/20=0.05 Hz).  One way to avoid this problem would be to 
measure each subject’s heart rate and adjust the scanning TR to avoid aliasing the heart rate to anywhere 
near the stimulus rate.  A strong objection to this procedure is that each subject’s data would be gathered 
using a somewhat different methodology, which would make inter-subject comparisons questionable. 
 A slightly more elaborate method for filtering out physiological noise requires measuring the 
subject’s cardiac and respiratory cycles throughout the imaging experiment.  The image time series data 
can be fit to these extra time series, and components in the image data that are correlated with the 
measured physiological cycles are subtracted out [Hu, Le].  This extra data can be gathered using 
external devices or can be inferred from some types of MRI data.  Using this technique requires 
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gathering an fMRI time series with the subject in the resting state only, in order to calibrate the fit 
between the physiological time series and the image time series in each voxel. 
 Physiological noise filtering methods have not yet become commonplace in the analysis of fMRI 
data.  The simpler method described above is not adequate for relatively slow whole brain imaging, 
although it works well for single- or few-slice experiments.  The second method requires the extra 
physiological data and more intricate signal processing software. 
 
7.5.  Functional Image Generation from Time Series Data: Temporal Pattern Matching Methods 
This class of methods for detecting “active” voxels in an image time series is based on positing a model 
for the NMR signals that would be expected from a neurally active region.  The data time series are fit to 
the model, and those voxels where the fit is statistically significant are declared active.  This description 
allows enough room for many different methods to be developed: various models are plausible, various 
fitting techniques can be used, and various methods for estimating significance are available. 
 Most of the methods discussed in this section are applied to each voxel time series in the brain 
separately; the discussion below will deal with the analysis of a single voxel.  Methods for assessing the 
overall significance of the results, and of spatially clustering “active” voxels together are discussed 
in §7.7. 
Application of Standard Statistical Tools 
The earliest—and still widely used—method for detecting stimulus-correlated signal changes is the 
application of a Student t-test.  This technique is applicable to experiments in which the stimulus 
alternates between two conditions—A and B, say.  All the values corresponding to A are pooled into one 
set of numbers, and all the values corresponding to B into another.  The difference between the means of 
the A set and the B set is calculated, as is the t-statistic for determining the significance of this difference 
in means.  Voxels with a t-statistic above some threshold are declared “active”. 
 If TR is significantly less than the hemodynamic response time of 5–6 s, then there will be some 
time points that occur during the transition between active and inactive.  These data points should not be 
used in the t-statistic analysis, since they don’t fit the implicit model response—a voxel value is either 
“on” or “off”, and there is no in-between state.  This difficulty can be resolved with a more realistic 
signal model—the straightforward generalization of the t-statistic method is the correlation method, 
described later. 
 Other standard statistical tools can be applied to voxel time series analysis.  If the “on-or-off” 
model is plausible for the experiment, nonparametric analogs to the t-test can be used (e.g., the 
Kolmogorov-Smirnov [Weisskoff] and Mann-Whitney tests).  These have the advantage that estimates 
of their significance are robust against non-Gaussianity in the noise.  They have the disadvantage that it 
is difficult to estimate their significance in the present of temporally correlated noise.  They also have 
the disadvantage that they do not calculate a statistical parameter that is plausibly related to 
neurophysiological activity level—see “What to Display”, below.  Instead, these methods directly 
determine only the significance of the difference between the A samples and the B samples. 
Time Shifting the Analysis 
The hemodynamic response to neural stimulation is relatively slow: the response doesn’t plateau until 5–
6 s after the stimulus begins.  fMRI signal analysis needs to allow for this, especially when TR is less 
than or equal to this time scale.  For “on-or-off” analyses such as the t-statistic, it is usually sufficient to 
group the “on” times starting 5–6 s after the stimulus starts and stopping 5–6 s after the stimulus ends. 

For more complex analyses—especially with a TR that resolves the hemodynamic response—it 
is best to explicitly include the signal delay into the model and its analysis, rather than simply time shift 

RWCox  –11–  7/2/2001 



the analysis by some fixed amount.  One reason for this is that most 3D imaging is actually done with 
interleaved 2D slices, as shown in Fig. 7.3.  If the slices are spread out uniformly across the TR interval 
(as is usually done), then two adjacent slices will be gathered about ½⋅TR apart.  This means that the 
time series from these slices will be shifted different amounts from the stimulus onset and cessation 
times.  Any time series model that includes the hemodynamic time delay, rise time, and fall time, must 
also properly deal with this inter-slice delay. 

One method to deal with this issue is to interpolate the slice data to some standard time point, 
and then pretend that it was all gathered simultaneously.  The only justification for this type of analysis 
is that it makes the computer software easier to write—one less thing to worry about.  Otherwise, this 
idea goes against the credo of statistical analysis, which is to model the acquisition as it actually occurs 
and process the data accordingly, rather than force the data into a more convenient form.  In addition, 
resampling the time series data to a standard time point will not completely solve the problem of inter-
voxel dispersion in the onset of the hemodynamic response.  Voxels may differ in the speed with which 
the BOLD signal accumulates because of “plumbing” differences: in the arterial supply and in the 
distribution of venous vessel sizes. 
What to Display; or, What is a Brain Activation Map? 
In the t-statistic method, two parameters are computed for each voxel: the difference in means between 
the two conditions, and the t-statistic corresponding to that difference.  Further values can be derived, 
such a nominal p-value based on the assumption of white Gaussian noise.  Images formed from any of 
these values can be displayed and further processed (e.g., averaged between subjects). 
 In our view, it is not appropriate to display images of statistical thresholds such as the t-statistic 
or a nominal p-value and use these as the primary brain activation maps derived from fMRI data.  (The 
situation is a little different in PET, where the noise level is more spatially uniform.)  The reason is that 
two components of the signal go into calculating the any statistical threshold: an estimate of the amount 
the signal changes with activation, and an estimate of the noise magnitude.  The noise level is highly 
variable across the brain in fMRI data.  This means that a voxel with a small BOLD signal change but 
that has a small amount of noise will have the same t-statistic as one with a large BOLD signal change 
and a larger noise level.  It is inappropriate to conclude that these voxels are equivalent—there is no 
reason to believe that the noise level has a great deal to do with neural activity, whereas there are many 
reasons to believe that the BOLD signal changes are strongly coupled to changes in neural activity.  We 
believe that primary brain activation maps should be made from statistics that are plausibly related to 
neurophysiological parameters.  In the case of the t-statistic method, this would be the difference in the 
means, since this is an estimate of the BOLD signal change, which is the closest thing we have in most 
fMRI data to a neurophysiological parameter.  (ASL data is probably closer; unfortunately, it also has a 
higher noise level). 
 By “primary” activation maps, we mean the derived images that are intended to serve as the most 
important representation of the experimental results—the images that will be published and the images 
that will be compared with other data.  For many purposes, it is useful to look at maps of t-statistics, p-
values, etc., but these are not appropriate statistics to use in comparisons with other results. 
The Correlation Method 
This is probably the most widely used method for fMRI activation analysis at this time.  It also applies 
to experiments in which the stimulus alternates between two conditions.  The basic idea is to choose a 
reference (“ideal”) time series that has the shape of the expected fMRI response, and then compute the 
correlation of each voxel time series to the ideal [Bandettini].  Voxels with a large correlation coefficient 
are deemed to be active.  To be explicit, some equations are necessary.  Define x(t)=data time series for 
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one voxel, and r(t)=reference time series; let x =the mean of x(t) and r =the mean of r(t).  The estimated 
correlation coefficient between these two time series is 

( )[ ] ( )[ ] 2/122/12
)()(

])(][)([

∑∑
∑

−−

−−
=

tt

t

rtrxtx

rtrxtx
ρ . 

This value will range between –1 and 1.  If the noise is x(t) is assumed to be Gaussian and uncorrelated, 
then ρ can be converted to an equivalent t-statistic via the formula ( ) n/1 2ρρ −=t , where n is the 
number of degrees of freedom in the estimate of ρ.  (n=N−m, where m is the number of nuisance 
parameters detrended from x(t); m=1 if only the mean is removed, as in the formula above; m=2 if a 
linear trend is also removed, as discussed earlier.)  In the case where r(t) comprises only zeros or ones, 
this t-statistic is exactly the same as would be computed using the direct t-statistic method to test the 
difference of means between the times where r(t)=1 and where r(t)=0.  The new feature of the 
correlation method relative to the t-statistic method is that the reference waveform can take into account 
the rise and fall times in the hemodynamic response. 
 It is necessary to allow for different hemodynamic delays in different voxels.  In part, this is due 
to the multi-slice nature of the imaging process, as mentioned earlier.  There is also some scatter in the 
intrinsic hemodynamic delays between voxels.  The reasons for this are not entirely clear.  One 
hypothesis is that voxels with longer delays contain more large venules, which are farther downstream 
from the activation site and so take longer to fill with oxyhemoglobin.  Whatever the case may be, the 
correlation method is often applied with several reference waveforms r(t−δ) for a range of delays δ—
spaced 1 s apart, say—and for each voxel the value of δ is chosen that maximizes ρ.  (This effectively 
reduces n by 1.) 
 DeYoe et al. have used time shifted correlation in a clever way to map the retinotopic 
organization of visual cortex [DeYoe].  The stimulus consisted of a flashing checkerboard pattern over a 
portion of the visual field.  The stimulus was presented continuously, but its location in the visual field 
was changed every 20? s.  Correlation was performed with a large number of delay times.  Voxels with 
maximum correlation (as a function of delay) larger than the threshold were included in the brain map.  
Each active voxel was marked as being mapped to the location in the visual field that corresponded to 
the stimulus at the voxel’s time of maximum correlation.  This continuous stimulation protocol and 
analysis method is an efficient use of scanner time.  The retinotopic organization of visual cortex is 
being used to provide “stimulus off” periods for some parts of the brain while “stimulus on” periods are 
being provided to other regions. 
 The correlation method is equivalent to linear least squares regression to the following model 
equation for the voxel data time series: 

noise white)()( ++⋅= atrtx α  
where α and a are the unknown parameters being fit by the least squares method.  The solution for α is 
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α is the best fit to the amplitude of r(t) in x(t).  Even though the use of a zero-one r(t) in the correlation 
method is equivalent to the t-statistic method, the linear regression form of the correlation method has 
one practical advantage over the t-statistic method: it is very easy to include extra regressors to remove 
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unwanted trends in the data at the same time the correlation is being computed (e.g., add b⋅t to remove a 
linear drift).  In the t-statistic method, detrending must be done as a separate preprocessing step. 

Since α does not depend on the noise level in x(t), unlike ρ, α is a reasonable candidate to use as 
a measure of the BOLD effect.  One drawback to this use of α is that its size depends on the scale 
chosen for r(t): if r(t) were doubled, then α would be halved.  The size of α also depends on the scale 
chosen for x(t): if x(t) were also doubled, then α would again be halved.  In the analysis of any one 
imaging run, this scale factor is unimportant, but it can be confusing when comparing results among 
multiple scanning sessions.  Even if the identical r(t) is used, the scaling factor for x(t) will probably not 
be the same.  This factor is set by the scanner operator (when he sets the RF receiver amplifier level), 
but is unlikely to be the exactly the same each time.  Some clinical scanners set this value automatically 
during pre-scan operations, and in this case the change in MRI scale factors may not even be known to 
the data analyst. 
 A better alternative is to calculate the percent signal change from the baseline.  This is most 
easily done by choosing the reference r(t) to range between 0 and 1; then the estimate of the baseline 
signal is a, and the percent change is 100%⋅α/a (this formula must be modified if detrending is included 
in the regression: the denominator must include the mean baseline of the extra detrending functions).  If 
the density and size distribution of blood vessels is approximately the same across gray matter, then the 
percent signal change in each voxel will be approximately proportional to the change in the 
oxyhemoglobin concentration in the voxel. 
Choosing the Reference Function 
The correlation method does not specify how the data analyst is to choose r(t).  In a block trial 
experiment, where the stimulus durations are several times longer than TR and when TR ≥ 4 s—so that 
the hemodynamic rise and fall times are not well sampled—then a zero-one r(t) is a reasonable choice, 
with r(t)=0 during the “off” periods and r(t)=1 during the “on” periods; the transitions between 0 and 1 
should be delayed about 5 s from the stimulus onset and cessation.  If TR < 4 s, then some intermediate 
values should be put in to smooth the transitions between 0 and 1. 
 Early work with fMRI data sometimes used smoothed and/or averaged data from “obviously 
active” voxels as the reference waveform [Bandettini].  The subjective nature of this approach has led to 
its falling out of favor.  In principal, though, this method could be made objective by using a two-pass 
approach: first, find voxels that are active using a 0-1 r(t) and a stringent statistical threshold; second, 
average these voxel time series, perhaps smooth them temporally, and then use the resulting time series 
as the new r(t) for the final analysis.  This technique is really a melding of the pattern matching methods 
(pass 1) and the pattern hunting methods (pass 2).  As far as we know, it has not been frequently used. 
 A widely used method for generating r(t) is based on the theory of shift-invariant linear systems.  
In this model, a brief input (the stimulus) to a system (a brain voxel) produces the same output response 
(the BOLD signal) no matter what the condition of the system or its past history—this is the shift-
invariance feature.  When multiple stimuli are present, the output response is taken to be the sum of the 
responses from the individual stimuli—this is the linearity feature.  In equations, suppose that a brief 
stimulus at t=0 produces the response h(t).  (This impulse response function must be zero for t < 0, 
otherwise the system would respond before the stimulus.)  Then if stimuli are actually applied at times 
t=a and t=b, the model response is h(t−a)+ h(t−b).  The subtraction of the stimulus times a and b in h() 
shifts the individual responses to start at those times.  If stimuli are applied continually over an interval 

a ≤ t ≤ b, then the analog to the sum of responses is an integral: . dqqth
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 The technique for generating the r(t) for data analysis requires two inputs: the impulse response 
h(t) and the stimulus timing function s(t), which is equal to 0 at times t when no stimulus is applied (or 
when the control stimulus is being applied) and is equal to 1 when the active stimulus is applied.  The 
response function can now be written in integral form (for continuous time) or summation for (for 
discrete time): 
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here, T is the duration of the experiment; in the summation form, the time step is taken to be 1 for 
convenience.  (Equations of this form are called convolutions; one says that r(t) is h(t) convolved 
with s(t).) 
 The choice of one function r(t) has now been pushed back to the choice of another function h(t).  
This may not seem like progress, but it is, since h(t) can be chosen without much regard for TR or 
stimulus timing; instead, h(t) is to be thought of as a universal function that mimics the response of 
brain+scanner system.  A popular function is  for tetth ctr /)( −=  > 0 and h(t)=0 for t < 0, with parameters  
r=8.6 and c=0.51 [Cohen].  This gamma variate function approximately reproduces the features of the 
hemodynamic response to brief stimuli.  The time for this h(t) to rise to its peak value is r⋅c after t=0; the 
full width of the response at half the maximum value (FWHM) is approximately 2.4⋅r½⋅c. 
 The neural networks in the brain obviously comprise a nonlinear system, and the hemodynamic 
response measured by fMRI is probably not strictly linear either.  Nevertheless, the linear system model 
described above has proven very useful for modeling fMRI time series data [Glover, Buckner].  There is 
some evidence of nonlinearity in the response to brief stimuli, in that the amplitude of the BOLD signal 
does not always add up as the model suggests [Vasquez].  There is also some evidence that previous 
stimuli may somewhat reduce the amplitude of the response to stimuli that occur within a few seconds 
[Friston(Volterra)].  It is unknown at present whether these two effects are neural or hemodynamic in 
origin (or both).  Both effects suggest caution when using linear system models in an experiment that 
mixes short and long stimuli, or has stimuli with overlapping responses mixed with well-separated 
stimuli.  However, practice suggests that the linear systems approach to generating r(t) works well.  
Unless TR is very short (1 s or less), the exact choice of h(t) doesn’t seem to matter much, since the 
shape of the hemodynamic rise and fall will not be sampled very accurately. 
Multiple Linear Regression 
It is a natural generalization of the correlation method to use multiple reference waveforms to fit the 
voxel time series.  In an experiment with three different stimulus conditions (rest, A, and B), the analysis 
would include separate response functions for the two active conditions: 

noise)()()( +⋅++⋅+⋅= tbatrtrtx BBAA αα ; 
each reference rA,B(t) could be generated using the convolution method described above.  For this model, 
four parameters are fit for each voxel: the two amplitudes αA and αB, the baseline a, and the baseline 
drift rate b.  Standard linear least squares analysis algorithms can be used to compute the best fit 
parameters.  At least two questions can be asked of the amplitudes: (a) is either αA or αB nonzero?  (b) is 
αA different from αB (e.g., is αA−αB nonzero)?  If the noise is assumed to be white and Gaussian, the 
statistical significance of the answers to these questions can be calculated using F- and t-tests.  Voxels 
where αA−αB > 0 was significant could be interpreted as regions where processing for stimulus A was 
more intense.  This type of analysis has been used to contrast the response to visual stimuli consisting of 
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human face (A) vs. nonface object (B) images [Haxby].  In primary visual cortex, there was little 
difference in the αA and αB amplitudes, but significant differences were detected in higher visual areas. 
 Multiple linear regression has many other potential applications in the analysis of fMRI time 
series data.  Uncertainty and/or inter-voxel differences in the shape h(t) of the hemodynamic response 
function could be modeled by using two different functions h1(t) and h2(t) to generate two stimulus 
response functions r1(t) and r2(t), using the convolution method, and then fitting the model 

noise)()()( 2211 +⋅++⋅+⋅= tbatrtrtx αα  
to each voxel.  In this case, the separate parameters α1 and α2 may or may not be important in 
themselves; the only question of interest might be “is either α1 or α2 nonzero?”  The purpose of the 
model is to allow the response function model to adapt (a little) to each voxel.  For example, time shifts 
can be approximately allowed for by taking h1(t) as the expected hemodynamic response function 
(e.g., a gamma variate function), and taking h2(t) to be its first derivative h .  Since 

, this is a linear method for dealing with unknown delays in the hemodynamic 
)(1 t′

)()()( 111 thuthuth ′⋅+≈+
response [Friston]. 
 One must be wary of using models with too many parameters.  As the number of fit parameters 
goes up, the number of data points needed to keep the same level of signal detectability and statistical 
significance also increases.  This point is particularly cogent for fMRI, since it is usually necessary to 
keep the significance level per voxel quite stringent (see §7.7).  Table 7.1 shows that the number of 
samples in time needed to have a given significance level per voxel increases with the number of model 
fit parameters 

 
Number of Fit Parameters in the Hemodynamic Response  

2 3 4 5 6 
1.0 % 50 57 64 70 75 BOLD Signal 

Change 0.5 % 180 206 229 251 271 
 
Table 7.1.  Entries in the body show the number of samples (N) in a time series needed to reject noise-only data at 
the level p=10−4

  per voxel, assuming noise standard deviation of 1% of baseline.  The BOLD signal change that is 
being searched for is assumed to be 1.0% or 0.5% of baseline, and is assumed to be “on” for half the samples.  

The number of fit parameters in the baseline is assumed to be two.  (These assumptions set the statistical 
threshold for detectability of the signal; the p-value of that threshold in the noise-only case was then determined 

for each N; the smallest N that has p < 10−4
  is the value in the table.)  For the simple correlation method as usually 

used, there are 2 fit parameters in the hemodynamic response (amplitude and time delay). 
 

 Multiple linear regression can also be used to remove more nuisance effects than a simple linear 
drift in the time series.  For long time series, more complex drifts can be allowed for [Cox].  The 
approximate method for dealing with inter-slice movement artifacts mentioned earlier is based on linear 
regression [Friston]. 
 More complex linear signal models can be analyzed with this tool.  The validity of the simple 
convolution model for the BOLD response has been tested using a second order convolution method 
known as a Volterra series [Friston].  Multiple linear regression is also a key tool in the analysis of 
event-related fMRI data, as will be discussed later. 
Nonlinear Regression (Shape Analysis) 
A further generalization of the regression methods is to allow the temporal pattern to depend nonlinearly 
on the parameters.  In this model, it is not only the amplitude of response that is fit to the data in each 

RWCox  –16–  7/2/2001 



voxel.  The shape of response is also allowed to vary, within some range given by model equations.  The 
model is allowed to be nonlinear (non-additive) in the parameters, unlike the case in multiple linear 
regression.  One example is to define 
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In each voxel, the parameters r, c, α, a, and b are estimated from the voxel time series data (typically 
using a least squares criterion).  Parameters r and c determine the shape of the impulse response, 
parameter α determines the amplitude of the response, and parameters a and b determine the baseline 
and temporal trend.  With models of this type, the shape of the response being searched for in each voxel 
is not completely specified, but is also not completely free.  (The model is called nonlinear because the 
output x(t) does not depend linearly on some of the parameters; in this example, r and c appear 
nonlinearly.) 
 One reason that nonlinear regression has not been widely used in fMRI analyses is that nonlinear 
fitting routines are much slower than linear fitting routines.  It is also much more difficult to be sure that 
the “best” (truly least squares) fit has been found—it is possible that a false minimum will be found: one 
that is better than any other set of parameters nearby, but is not as good as some more distant possibility.  
In linear regression, the algorithms are much better established, executed quickly, and are guaranteed to 
find the global best fit parameters.  Linear system models have worked well for many classes of fMRI 
experimental paradigms.  Nonlinear regression will be useful in situations where the shape of the 
response function should not be fixed—but can be partially specified—and where the response function 
should be allowed to vary spatially.  These conditions are most likely to be met when the image TR is 
short (2 s or less), so that the hemodynamic rise and fall times are well-sampled, yielding enough data to 
make it possible to estimate the response function. 
 Statistical significance in nonlinear regression is hard to analyze in closed form.  If the number 
of samples in a time series is large compared to the number of parameters, as is usually the case in 
fMRI, then an F-statistic approximation can be used.  Approximate confidence intervals can also be 
assigned to each parameter using t-statistics. 
 A generalization of the voxel-wise regression method outlined above would fix some unknown 
parameters to be the same across all “active” voxels, or to allow some parameters to vary only 
regionally—to be the same in one activated cluster, but be different in another.  As far as we know, this 
type of local-global nonlinear regression analysis has not yet been used in fMRI.  Defining the models 
and carrying out the regressions both present several practical difficulties.  Nevertheless, the concept has 
some attraction, since it would provide a very flexible hybrid between the pattern matching and pattern 
hunting analysis techniques. 
Analysis of Single-Event fMRI Data 
Some experiments do not lend themselves to rapid repetition.  Administration of a pharmaceutical agent 
is one example; altering the subject’s mood by a video presentation is another.  These types of stimuli 
take minutes (at least) to resolve.  In such an experiment, there will only be one stimulus event per 
imaging run.  The time course of neural activity is not well specified, although its starting point usually 
will be.  This is the type of situation for which nonlinear regression is called.  For pharmaceutical agent 
fMRI, one signal model that has been used is the difference of two exponentials [Stein??]: 
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here, the rate constants c and d represent the wash-in and wash-out of the agent, and are solved for in 
each voxel.  The start time s can be fixed to be the injection time, or can be allowed to vary.  Another 
signal model that has been used to look for signals that generally increase and then decrease is the beta 
variate: 
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here, r(t) is a function that rises up from 0 at the start time t=s and descends back down to 0 at the final 
time t=f.  The exact shape depends on the parameters p and q (which are taken to be positive).  As 
before, the linear parameters (α, a, b) determine the amplitude of the signal change, the baseline, and the 
baseline drift, respectively.  This model has been applied to subject mood changes induced by video 
presentations [Montreal HBM abstract]. 
Analysis of Event-Related fMRI Data 
This type of data is characterized by a sequence of responses to individual stimulus events.  The stimuli 
are separated in time so that each response may be separately analyzed.  One strength of this 
experimental approach is that responses may be examined based on post hoc considerations 
(e.g., reaction time, correct or incorrect response). 

Most event-related analyses reported in the fMRI literature have used multiple linear regression 
as the basic tool [Buckner].  A hemodynamic impulse response function h(t) is supposed.  Responses are 
divided into categories {1, 2, …, C}.  For each category j, a 0-1 time series sj(t) is created; sj(t)=1 if a 
stimulus of category j occurs at time t, otherwise sj(t)=0.  The voxel signal model is then 
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In this model, each stimulus category j is taken to have its own response amplitude αj (in each voxel).  
These are calculated using linear least squares.  Tests of various hypotheses (e.g., is α1>α2?) can be 
formed using F- and t-statistics. 
 It is not strictly necessary that the stimuli be separated far enough in time so that the response to 
one stimulus does not overlap with its neighbors.  It is possible to have overlapping responses (the 
model above includes this case), as long as there are some intervals between stimuli long enough to 
resolve the rise and fall in h(t).  This recognition allows the use of random inter-stimulus intervals, 
which has obvious psychological advantages.  It also lets the average density of stimuli be higher, which 
improves the utilization of scanner and subject time.  (When generating random stimulus paradigms, it is 
advisable to analyze each candidate for parameter estimation efficiency and to select the experimental 
protocol from the best set of timings [Dale].)  
 The stimulus response model rj(t) can be made more complex in ways that were discussed 
earlier.  Multiple additive hemodynamic response functions hi(t) can be used.  It is also possible to allow 
h(t) to depend nonlinearly on several parameters.  Both methods amount to trying to infer the shape of 
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the response function from the data.  This class of techniques is sometimes called “deconvolution”, since 
the goal is to undo the convolution in the signal model to find out something about the underlying 
process.  Deconvolution methods can be linear or nonlinear. 
 The analysis of event-related fMRI experiments must be designed with the experimental 
paradigm in mind.  An elegant example is the mental rotation experiments of Richter et al., in which the 
subjects were presented with images of two complex 3D objects and had to decide if the images were 
views of the identical objects from two different points of view, or if the images were views of mirror-
image objects [Richter].   As the angle between the points of view increases, the amount of time to carry 
out the task lengthens.  The signal model must allow for this variation in neural activity following 
varying stimuli: 
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where sq is the start time of the qth stimulus.  The response durations pq are fit to the data; this is a 
nonlinear model, since h(t;p) is not linear in p.  Richter found that the fitted pq matched the subject 
response times well in parietal regions previously associated with mental rotation.  This is a creative 
example of designing the experiment and data analysis procedures together. 
 
7.6. Functional Image Generation from Time Series Data: Pattern Hunting Methods 
This class of methods forgoes positing a model for each voxel time series; instead, these techniques 
search for time series that can account for large numbers of voxels.  A common thread is dimensional 
factorization of the 4D (space+time) data, one form of which is 

L+⋅+⋅≈ )(),,()(),,(),,,( 2211 tvzyxutvzyxutzyxs ; 
here, s() is the 4D data as a function of voxel location (x,y,z) and time (t).  The spatial components 
ui(x,y,z) are the “activation patterns” corresponding to the temporal components vi(t).  This factoring is 
useful because the amount of information contained in a spatio-temporal pattern ui(x,y,z)⋅vi(t) is much 
smaller than in the original data s(x,y,z,t).  For example, if there are 10,000 voxel in the brain and 100 
points in time, there are 1,000,000 numbers stored in s(x,y,z,t), but there are only 10,100 numbers in 
ui(x,y,z)⋅vi(t). 
 In our view, component decomposition methods in fMRI should be viewed as tools for data 
exploration and hypothesis generation, rather than the final analytical technique [Somorjai].  One reason 
for this conclusion is that the investigator must supply some post-analysis judgment to determine which 
components are neurologically meaningful and which are not.  There are many other sources of 
systematic changes in the fMRI time series beside neural activation, and these will all be picked out by 
the pattern hunting approaches.  The “meaningful” components of activation may be relatively small 
compared to these other components, since the activated tissue volume is often small.  Judgment must be 
used in picking out the component(s) that correspond to neural activation; this is normally done by 
finding the vi(t) that most closely resembles the stimulus timing and/or the expected hemodynamic 
response.  It is also likely that some detected components will not be easily ascribable to any single 
cause; for example, if stimulus correlated movements occur, the neural activation component(s) and the 
motion effects component(s) will likely overlap, and will not break cleanly into two separate 
components as one would hope. 
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 Despite these admonitions, looking for un-preconceived patterns can be useful.  It is possible to 
detect trends in activation magnitude that would escape a simple regression analysis; for example, if the 
subject’s alertness lags during an imaging run, the earlier activations may be larger than later ones.  
A regression analysis that takes a fixed amplitude (α) for all activations will miss this effect.  Certainly 
it is possible to devise a pattern matching test to look for this trend, but a pattern hunting method might 
be able to bring it to the investigator’s attention. 
 Most pattern hunting methods that have appeared in the fMRI literature will process all the brain 
voxels.  This can be a drawback, since most of the signal will not be neurally relevant and will 
inevitably contaminate the results.  A hybrid approach would be to use some loose pattern matching 
criterion to attempt to eliminate “noise-only” voxels from a subsequent pattern hunting analysis.  
Another way to restrict the pattern hunting would be to put constraints on the type of spatial patterns 
ui(x,y,z) and the temporal patterns vi(t) that are acceptable.  To our knowledge, these ideas have not yet 
been tried on fMRI time series data. 
Principal Components 
Classical principal components analysis (PCA) is a direct implementation of dimensional factorization.  
The approximation sign “≈” is taken in the least squares sense; that is, ui(x,y,z) and vi(t) are 
simultaneously determined by minimizing 
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where L is the number of components desired; each voxel time series has its mean removed before this 
analysis.  The least squares minimization leads to a matrix eigenvalue problem, which is why the 
ui(x,y,z) are sometimes called the “eigenimages”.  The components are ordered by the amount of total 
variance they explain in s(x,y,z,t), the first component accounting for the largest amount, etc.  It is likely 
that the first few components will correspond to physiological noise sources (e.g., heartbeat, respiration, 
movement). 
Independent Components 
Independent components analysis (ICA) uses the same dimensional factorization as principal 
components, but  
Time Series Clustering 
The expansion of s(x,y,z,t) into a sum of spatio-temporal components explicitly assumes that the time 
series in each voxel is a sum of responses.  An alternative approach is to assume that each voxel time 
series is best explained by exactly one of a set of “master” time series.  The goal of time series clustering 
methods is to simultaneously find the set of master time series and assign one to each voxel.  The data 
model is 

)(),,(),,,( ),,( tvzyxtzyxs zyxjα= , 
where α(x,y,z) is the amplitude in the voxel at location (x,y,z), {v1(t), v2(t), …, vL(t)} is the set of master 
time series, L is the number of master time series, and j(x,y,z) is the assignment of master time series to 
voxels (j is an integer from 1 to L, inclusive); all of these values are to be determined from s(x,y,z,t) by 
the data analysis software. 
 This type of data analysis does not lend itself to elegant closed-form mathematical solutions, 
unlike principal components and linear regression.  “Fuzzy clustering” is the most widely used 
algorithm in the fMRI community for carrying out this kind of decomposition [Scarth, Somorjai].  It is 
an example of a feature space clustering method, where the features are voxel time series.  These 
methods generally start with a candidate set of master time series.  For each voxel, j(x,y,z) is taken as the 
index of the vj(t) that best matches the data time series (e.g., in the least squares sense).  After this 
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assignment, all the data time series with the same value of j are averaged; this averaged time series 
replaces vj(t) in the set of master time series.  The process is repeated until the assignments j(x,y,z) and 
the master time series vj(t) stabilize.  (The “fuzzy” nature of the particular algorithm comes from the 
way that j is assigned to each data time series, and in the way that the time series belonging to j are 
averaged.) 
 
7.7.  Selection of Statistical Thresholds 
The central statistical problem in neuroimaging is the “curse of multiple comparisons”—the fact that 
although there is an gigantic amount of data, the statistical questions being posed are even more 
enormous [refs-JCBFM].  When a stimulus is presented to the subject, the question is not “is there brain 
activation somewhere?” (the answer is almost surely “yes”), but is something like “what is the spatial 
pattern of the brain activation, and is it different from this other activation pattern?"  If there are 10,000 
voxels in the brain, 10,000 decisions must be made.  If the decision threshold is set so that there is a 5% 
chance of a false positive (“activation” being declared from a noise time series), then there will be about 
500 “active” voxels detected even when imaging a comatose cantaloupe.  This is usually unacceptable, 
so something must be done to reduce the false positive rate. 
The Role of Statistical Assumptions 
Statistical thresholds are always calculated based on some random model for the noise (and sometimes a 
random model for the signal, as well).  Even nonparametric methods, which claim to be “distribution 
free”, usually assume that each individual measurement is corrupted by a noise value that is independent 
of all other measurements but is identically distributed.  When weighing the merits of a proposed 
statistical method for fMRI data analysis, it is important to understand what assumptions the authors 
have made—unfortunately, these are often not spelled out explicitly. 
 The most common assumption is that the noise is zero-mean Gaussian, that each noise value is 
independent (both between spatial locations and between time samples—spatially and temporally white), 
and that within each voxel the noise variance is constant in time.  These assumptions underlie the 
classical statistical methods (e.g., t-tests and ANOVA), and they make the statistics of fMRI data 
analysis methods relatively simple.  Since a major portion of the noise is physiological in origin, these 
assumptions are demonstrably false.  Nonetheless, they are very useful, since they allow the derivation 
of mathematical formulas for statistical significance.  Once these assumptions are cast aside, developing 
good statistical methods and results is much harder. 
Adjusting the Degrees of Freedom 
Denote the noise in some voxel at time t by ζ(t).  If there are N samples in time, and the noise samples 
are assumed to be zero-mean independent Gaussians each with variance σ2, then ∑⋅= −

t
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distributed like a χ2 variable with N degrees of freedom.  This sum is the least squares objective function 
in any regression analysis (linear or nonlinear) when the model parameters are at their “true” values.  
The statistics of R are the basis for F- and t-tests.  However, when the noise is correlated in time, the 
significance levels (p-values) calculated for F- and t-tests using the assumption of N degrees of freedom 
will be erroneous (almost always too significant: p will be calculated as smaller than it ought to be).  For 
correlated noise, the statistics of R are much more complicated, but a reasonable approximation is to 
take the statistics of R to be those of a χ2 variable with a smaller number of degrees of freedom [ref].  
more to come 
Bonferroni Correction 
This is the most straightforward method for setting a threshold for the voxel-wise t-statistic or 
correlation coefficient, and it is the most widely used.  Bonferroni’s inequality states that if N statistical 
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tests are conducted, each of which has a probability p of producing a false positive, then the probability 
that at least one false positive occurs in all of the tests is less than or equal to N⋅p.  (This result does not 
depend on assuming that the noise in distinct voxels is independent.)  For example, if there are 10,000 
brain voxels, and one wants an probability of 0.1 that there is a single false positive voxel in the 
activation map, one would set the per voxel p-value of the test at 0.1/10,000=10−5.  For example, with 60 
degrees of freedom, this would correspond to a t-statistic threshold of 4.825, or a correlation coefficient 
threshold of 0.529.  If the noise standard deviation is about 2% of the baseline signal (SNR=50), this 
means that such an imaging run could detect BOLD signal changes of about 1.2% (= 60825.4% ⋅2 ).  
At 1.5 Tesla, this is a reasonable value to expect in primary sensory and motor cortex regions, but it is 
too large for many higher cognitive areas, where signal changes of perhaps 0.5% are more usual. 
 Such a stringent criterion can be relaxed in several ways, the more complex of which will be 
explored later in this section.  The simplest method is to lower the threshold and simply accept a few 
false positive voxels.  If the noise samples are independent in distinct voxels, then one would expect 
approximately N⋅p false positives.  For many purposes, as long as this is much smaller than the number 
of true positives, the brain activation map won’t be noticeably affected.  Continuing the example above, 
raising the per voxel p-value to 10−4 lowers the t-threshold to 4.169; p=10−3 lowers the t-threshold to 
3.373—at this level, 0.9% signal changes could be detected, but 10 false positives would be expected.  
To detect 0.5% signal changes, the t-threshold would need to be 1.936, corresponding to p=0.06—at this 
level, 600 false positives would be expected. 
Spatial Clustering 
Voxel-wise detection methods are very good at detecting large signal changes.  A major object to these 
techniques is the potential for rejecting a large region of activation in which each voxel has only a small 
signal change.  This is the price that is paid for it being possible to detect arbitrary spatial patterns of 
activation. 

If there are 10,000 voxels in the brain, then there are 210,000≈103,000 distinct binary (on/off) spatial 
activation patterns.  A basic statistical problem is to distinguish between these patterns using the time 
series data.  Of course, most of these candidate activation maps are absurd (e.g., a voxel checkerboard) 
and would be rejected out of hand.  The idea behind spatial clustering methods is to reject some of these 
patterns directly, and so improve the detectability of  the plausible subset of potential brain maps. 

As developed thus far, spatial clustering has been implemented as a dual thresholding method 
[Forman].  In the first step, a voxel-wise method is used to create an image containing a test statistic 
(e.g., the correlation coefficient) at each location.  A threshold T is selected; all voxels with the test 
statistic above T pass on to the second step.  In the second step, voxels above T are grouped together 
based on spatial contiguity; for example, clusters of nearest neighbors are formed.  The second threshold 
is cluster size: voxels in clusters below the size threshold are rejected.  The two thresholds—per voxel T 
and cluster size—are selected together to control the false positive rate (see Fig. 7.?).  In this way, 
voxels with small signal changes and so relatively small test statistics still have a chance to be detected, 
provided that they are clustered together with other active voxels. 
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Figure 7.?.  Given 7,000 brain voxels in the image time series, this graph shows the p-value per voxel needed in the first step 
of the spatial clustering method in order to have an overall p-value of 0.05 after the second step (probability of false positive 
in the entire image).  Clusters here are defined as sets of contiguous voxels sharing a face—being nearest neighbors—with at 

least on other voxel in the cluster.  Even a cluster threshold of 3 voxels allows the per voxel p-value to be greatly relaxed.  
(Calculations were performed with the AlphaSim program in the AFNI package.) 

 
 A minor difficulty with the dual thresholding strategy outlined above is that it is hard to calculate 
the threshold T, given the desired overall false positive rate and the cluster size.  The simplest way 
around this problem is to use random sampling methods to approximate the threshold; simulate a lot of 
noise-only data, compute the test statistic, and for each level of T, carry out the clustering and determine 
the number of false positives.  This can be time consuming (several hours of simulations), but need only 
be done once for each category of imaging experiment and voxel-wise test statistic. 
 A theoretical difficulty with dual thresholding is that small clusters with large activations will be 
rejected in favor of large clusters with weak activations—this is the opposite tradeoff from the original 
voxel-wise thresholding strategy.  If an imaging experiment is alternating two very similar stimuli to 
look for subtle differences in activation maps, this tradeoff might not be acceptable.  Intermediate cluster 
detection strategies have been developed that allow some of the benefits of both extremes [ref].  These 
strategies require the investigator to set a budget for the false positive rate allocated to small strong 
clusters and to weak large clusters. 
Correlated Random Fields 
If the noise values are correlated between voxels (i.e., the noise is not spatially white), the Bonferroni 
correction is conservative—the statement that pvoxel=pbrain/Nvoxel produces overly small values of pvoxel.  
In the case of PET imaging, the voxel values are so correlated and the number of data samples so small 
that this objection is insuperable.  Instead, methods have been developed to calculate the probability that 
a functional image computed from spatially correlated random noise will have a peak that is larger than 
any given threshold value [Worsley].  These methods are produce more reasonable thresholds than the 
Bonferroni correction when the noise is strongly correlated over a distance of at least 5 voxel 
dimensions.  When the noise is less correlated, these methods are actually worse than the Bonferroni 
method.  PET data is highly correlated by construction, since the high noise level requires strong spatial 
smoothing.  This smoothing produces noise with a simple spatial structure to the correlation function, 
which is needed in the calculation of the thresholds appropriate for correlated random fields. 
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 fMRI data is not spatially white, but it is not strongly spatially correlated, and its spatial 
covariance structure is complex since the long-range correlations arise mostly from physiological noise 
sources.  For these two reasons, the theory of correlated random fields is not very useful for setting the 
thresholds for fMRI data.  The only exception is if the fMRI time series data is artificially smoothed 
prior to signal detection analysis.  This practice has been advocated [ref], but in our opinion this is 
misguided—it essentially makes fMRI data look like PET data, and sacrifices the much greater spatial 
resolution possible with MR imaging methods.  The fact that makes fMRI data tolerable to analyze 
using the Bonferroni correction is that it is routine to gather many more data samples per subject than 
with PET (hundreds vs. tens)—this increases the statistical power of the voxel-wise tests enough that the 
Bonferroni correction is acceptable. 
Resting State Data 
One might not wish to trust the false positive rates calculated using some large set of statistical 
assumptions about the data—the necessary p-values are far out on the distributional curves and the usual 
invocation of the law of large numbers and asymptotic Gaussianity to justify the use of classical 
statistics may not be valid.  A way around this problem is to gather a image time series of resting state 
data and apply an fMRI detection analysis method to it.  By observing the number of  positives (all 
false) as a function of the threshold setting, a reasonable value for the threshold can be selected. 
 The assumption behind this plausible technique is that the state of the subject does not change 
markedly between the resting state imaging run and a normal fMRI imaging run.  This is clearly not 
entirely correct—there is likely to be more subject movement during a normal fMRI imaging run, and 
the subject’s heart and respiratory rates may change as well.  As we said earlier, it is not possible to 
calculate statistical significance without assumptions.  If an investigator is willing to gather a resting 
state image time series, it can serve as a useful check on the assumptions underlying the statistical 
methods used to calculate the threshold.  One set of assumptions (mathematical) is being traded for a 
completely different set (physiological and behavioral). 
Randomization 
Another practical technique for assessing the actual false positive rate compared to the theoretically 
predicted rate is to randomize the voxel values in time, then carry out the fMRI detection analysis 
[Bullmore].  The idea is to use actual data, which will include the many nonideal effects of  spatial 
correlations and non-Gaussian noise, to determine the effectiveness of a processing strategy.  The 
purpose of scrambling the data in time is to destroy the actual activation signal, so that whatever supra-
threshold activations are detected are false.  (In linear regression methods, scrambling the reference 
vectors in time is equivalent to scrambling the data in time, and much simpler.) 
 Temporal randomization will destroy any temporal correlations that are present in the fMRI 
noise.  This will have the effect of falsely increasing the effective number of degrees of freedom in the 
time series, which will make the observed false positive rate be overly optimistic.  If the correlations are 
relatively short range in time (as they usually are in fMRI), this objection can be overcome by 
randomizing short blocks of adjacent time points. 
 Randomization may seem similar to the idea of using resting state data, but it is somewhat 
different.  Resting state analysis can only give an overall (whole brain) false positive rate, since one only 
has a single time series to use.  Randomization generates many synthetic time series, and so it is possible 
to estimate a per voxel false positive rate.  This can be important, since different brain regions have 
different noise characteristics.  Randomization analysis takes a lot of computer time, since many 
different randomizations and analyses must be executed. 
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