Creating Datasets with Program to3d

- to3d reads image files each containing 1 or more 2D slices and assembles them into AFNI datasets
- The collection of all the 2D slice data forms the .BRIK file
 - an AFNI dataset must have at least 2 slices!
 - if you have single slice data, you could duplicate the slices
- You must also provide to3d with some auxiliary data (for the .HEAD file):
 - \diamondsuit Orientation of the slices in space
 - \diamondsuit Size of the slices or of the voxels
 - ♦ Slice offset where is the dataset volume located in space?
 - \diamond For 3D+time datasets, also need slice timing information
 - ◊ to3d 'knows' how to get some of this auxiliary information from image file headers for some image file formats:
 - Mayo ANALYZE files (.hdr/.img pairs) contain voxel size information
 - Siemens .ima image arrays contain voxel size and orientation information
 - ◊ Other image formats either don't have such information or I just don't know how to get it from the image files (yet)

- to3d runs in two modes:
 - \diamond Command line mode: you provide all auxiliary information on command line

- Useful to get things done fast, and for AFNI experts

- ♦ Graphical user interface (GUI) mode: you provide auxiliary information by filling out an on-screen form
 - Useful for explaining concepts, and for AFNI neophytes
- \bullet Sample #1: data from NIH GE 3 Tesla scanner
 - \diamond Files stored in archive <code>AFNI_sample_01.tgz</code>
 - unpack with command gzip -dc AFNI_sample_01.tgz | tar xf -
 - unpacks into directory AFNI_sample_01/
 - \diamond Anatomical (SPGR) data \implies 3D dataset (no time; 1 sub-brick)
 - 124 axial slices in subdirectory SPGR_anat
 - \diamond Functional (EPI) time series data \implies 3D+time dataset (160 sub-bricks)
 - 2880 images (18 coronal slices, 160 reps) in subdirectory EPI_run1
 - Visual stimulation task: rotating hemifield flashing checkerboard

• Experiment log, taken at scanner:

NIMH-LBC-METHO	DS FMRI RESEARCH		
ExpCode: ARZ	2	Subject: - Cur X 30-18-08-8 Date: April 20 0	DI SAM.
Protocol#:_F	Gtart Time (24-hr):	PAM Investigator: Shruti Tech: _ZSS	
Scanner: 37	Coil: Wong / MAI /	6E	
Anat Scan 1 Ty Matrix: 2 6 x 2 6	HPE: SPOR/FSE/MPIR/ IR PSP #Slices: 124 Plane: IAX/Cor/Sag	$\frac{B \cup 15.13}{GR}$ $\frac{B \cup 15.13}{TE(ms): \underline{M: Full}TR(ms): \underline{Fip: 17}^{O} NEX: \underline{Fip: 17}^{O} NEX: \underline{84}$ $\frac{B \cup 15.13}{Thickness(mm): 1.1} First: 750.16 Last: 84$	FOV(mm): 240
Anat Scan 2 Ty	pe: _SPGR / FSE / MPIR /	TE(ms):TR(ms):Flip: NEX:	FOV(mm):
Matrix:X	#Slices: Plane: Ax / Cor / Sag	Thickness(mm): First: Last:	
EPI-Scan : EE-EP/ Plane: Ax / Or Sag Response Data: None	SE-EPI/ GERTEPI FOV(mm): 240 Matrix: Accuracy / RT Other Data:	TE(ms): Z Flip: 90 NEX: 54 Thickness(mm): 4 #Slices: 18 First: P96 EKG/HB/BP/BB/CO2/GSB/EEG/EP/EMG/ NONE	VTE: 8 Last: <u>P2&-8</u>
Timing: #Reps: Other Timing:	Skip#:	vcles:#Conditions/Cycle:#Reps/Cond	ition/Cycle:
Run# Time	Conditions	Stimulus File (38, on Command Lie, 8 xc. Suggest) Data File Response	File
	180. wrspe, ccw	003/I.019 - 043/1900	
	, ccw	43/901 -> 103/783	0 P
	. Cw	103/784 -> 163/666	
	Cw	163/667->223/549 + may have been ~1	sec starting sean
	ccw	223/550->283/432	
	Ccw	283/433-343/315	
	cw:	343/3/6 -> 403/198	
	cw	403 /199 -> 463/081	

- Using to3d to assemble the SPGR dataset [this is run on a Linux machine]:
 - \diamond cd <code>AFNI_sample_01/SGPR_anat</code> change directory, to get at images
 - \diamond <u>ls</u> to see what files are there (should see files I.001 ... I.124)
 - \diamond to3d I.* run to3d, reading in all the image files GUI pops up:

		to3d	
x orientation (across screen)	ft	x voxel size (nun)	x origin (mm) 🔽 🛕 119,5312 R [left edge]
y orientation (down screen) 🔽 🛆 Right-to-Let	ft	y voxel Size (mm)	y origin (mm) V A 119.5312 R (top edge]
z orientation (slices 0,1,)	ft	z voxel size (nun)	z origin (mm) 🔽 🛕 57.65625 R [slice 0]
Datum: short	cubical square	Field of view (mm)	■ x axis centered ■ y axis centered
View: 🔽 🗛 Original View	irregular		🗖 z axis centered
Copy geometry of this dataset Type of data in the images I A 3DIM_HEAD Field below not applicable	ANAT	F i WARNING: 602237 negati read in image i It is possibl images need b ** I recommend that yo	ve voxels were s of shorts. e the input yte-swapping. u View Images. **
			Save Dataset
Session direct. for 3D Datasets		Prefix for 3D Dataset file	quit

 \hookrightarrow <u>N.B.</u>: Warning about negative voxels appears for Linux/Intel computers, but not on Suns or SGIs

 \diamond To check images, click the View Images button in the to3d form:

[On Linux/Intel computers]

[On Sun or SGI computers]

- ♦ On Linux/Intel computers: the peculiar appearance of the image shows that something is wrong:
- \hookrightarrow MR images from scanners are stored as <u>shorts</u>: 2 bytes per number
- \hookrightarrow Like a 2 digit decimal number: "93" means " $9 \times 10 + 3$ "
 - By universal custom, we write the "9" first
 - Could also write the same number as "39" (if we had a different custom)
- \hookrightarrow Customs for computers are not so universal
 - Sun and SGI systems store 2 byte numbers in reverse order from Intel
 - Result is that numbers are mangled (and some show up as negative)
 - Solution: press to3d's Byte Swap[2] button, and images are fixed!

Same to3d control panel (without the negative voxel warning):

		to3d			1
x orientation (across screen)	Left	x voxel size (nm)	0.9375 × (origin (mm) eft edge]	119,5312 R
y orientation (down screen) 🔽 🛆 Right-to-	Left	y voxel size (mm)	0.9375 ¥	origin (mm) op edge]	119,5312 R
z orientation (slices 0,1,)	Left	z voxel size (mm)	0.9375 ² [s	origin (mm) lice 0]	57,65625 R
Datum: short	<pre>◆ cubical ◆ square</pre>	Field of view (mm)	240	■ × ■ y	axis centered axis centered
View: 🔽 🔺 Original View	🔷 irregular			📃 z	axis centered
Copy geometry of this dataset		Anatomy parent is this dataset	Ĭ]
Type of data in the images I SDIM_HE	ad_anat	Type of anatomy in the images	Spoil	ed GRASS	Byte Swap[2]
Field below not applicable					View Images
					Save Dataset
Session direct. for 3D Datasets		Prefix for 3D Dataset file	Ĭ		quit

♦ Above the double line: must fill out 3 types of geometry information:

- \hookrightarrow Left column: orientation of the dataset axes
- \hookrightarrow Middle column: size of the dataset images or voxels
- \hookrightarrow Right column: offset of the first slice

- \diamond Screen shot above shows correct orientation for this dataset
- \hookrightarrow Use the image viewing window to judge how images are laid out
- \hookrightarrow Click the arrows to scroll through the 6 possible options for each orientation to set the correct values
- \hookrightarrow "x orientation" of dataset is across the screen (left to right)
 - item Must know subject's right from left
- \hookrightarrow "y orientation" of dataset is \underline{down} the screen
- \hookrightarrow "z orientation" of dataset is in increasing slice index order
 - determine this by using the slider at the bottom of image window

- ♦ To set dataset geometrical size/location, experiment log sheet is essential
- \diamond Screen shot above shows setting slice thickness to 1.1 mm
- \hookrightarrow Default Field of view (FOV) of 240 mm is correct for these images
- \hookrightarrow Default voxel geometry of "cubical" is incorrect
- \hookrightarrow Must set geometry to "square" (x size = y size, z size varies)
- \hookrightarrow Then set "z voxel size" to correct value (by typing in box)
- Screen shot shows setting location of center of first slice to 50.6 mm in Inferior
 (I) direction
- \hookrightarrow Default is that slices are centered in the magnet
- \hookrightarrow Probably not the case in the z direction
- $\hookrightarrow \mathsf{Click} \ ``\mathsf{z} \ \mathsf{axis} \ \mathsf{centered}'' \ \mathsf{off}$
- \hookrightarrow Enter offset (here, 50.6 mm) into the "z origin" box

♦ Final required steps:

 \hookrightarrow Enter prefix for new dataset into "Prefix" text box at lower right of to3d control window

- Choosing a good prefix is important for keeping datasets organized

- $\hookrightarrow \mathsf{Press} \ ``\mathsf{Save Dataset''} \ button$
- \hookrightarrow Press "quit" (twice) to exit to3d
- \hookrightarrow The new dataset files should show up when you use command 1s
- → You might want to move them to some other directory
 _mv *+orig.* ../afni to move datasets to directory named afni, one level above
 - this directory was created when you unpacked AFNI_sample_01.tgz; it contains pre-made AFNI datasets from EPI and SPGR images
- ♦ Other image sources (besides GE reconstruction):
- → Mayo ANALYZE files (.hdr/.img pairs) contain voxel size information (orientation information not always reliable)
- \hookrightarrow Siemens .ima image arrays contain voxel size and orientation information
- \hookrightarrow Some day I may learn how to read such information from GE image headers!
- \hookrightarrow Can also assemble datasets of bytes and floats
- \hookrightarrow If all else fails when reading an image, see AFNI FAQ #66

- Using to3d to assemble the EPI dataset
 - \diamond <u>cd</u> ../EPI_run1 change directory, to get at images
 - \diamond <u>ls</u> to see what files are there (should see files I.00001 ... I.02880)
 - \diamond We do <u>not</u> just do <u>to3d</u> I.* to create a 3D+time dataset
 - For hysterical historical reasons, the time-axis information must be given on the to3d command line
 - Cannot be modified from GUI
 - \diamond to3d <u>-time:zt 18 160 2000 alt+z</u> I.*
 - <u>-time:zt</u> means slices will be presented in order of space (z) then time (t)

 This is the usual way slices are ordered, but <u>-time:tz</u> is needed at some sites

 If in doubt, do <u>to3d I.*</u>, use viewer to look at slices and see their order
 - \diamond <u>18</u> <u>160</u> means that there will be 18 slices in z, 160 in t (2880 total)
 - \diamond $\underline{2000}$ means that the TR for volume acquisition was 2000 ms
 - Could also do 2s to specify that TR is in seconds
 - \diamond <u>alt+z</u> means that the slices are gathered in alternating order in the +z direction
 - Most EPI acquisitions are really 2D multislice, spread out through time
 - AFNI header contains information about slice timing offsets
 - Other possible modes: <u>zero</u> (for 3D), <u>@filename</u> (to specify each slice)

◇ Fields in GUI screenshot above are already filled out — Coronal slices; will work with SPGR axials in AFNI
◇ Note slice thickness and slice offset ("z origin") — Taken from experiment log
◇ Time information is displayed, but not editable
◇ Have set "Type of anatomy" to "Echo Planar" — Just acts as a reminder to user