
Data Analysis: Modeling FMRI Signals and Noise

• Signal = Measurable response to stimulus

Noise = Components of measurement that interfere with detection of signal

• Statistical detection theory:

♦ Must understand relationship between stimulus and signal

♦ Must characterize noise statistically

♦ Can then devise methods to distinguish noise-only measurements from sig-
nal+noise measurements, and assess their reliability

• FMRI signals and noise:

♦ Stimulus→signal and noise statistics are both poorly characterized

♦ Result is that there is no “best” way to analyze FMRI time series data: there
are only “reasonable” analysis methods

♦ To deal with data, must make some assumptions about the signal and noise

♦ These assumptions will be wrong, but have to do something

♦ Different kinds of experiments require different kinds of analyses, since signal
models and questions you ask about the signal will vary

↪→ Therefore it is important to understand what is going on, so you can select
and evaluate “reasonable” analysis approaches



• Meta-method for generating analysis methods:

♦ Write down a mathematical model connecting stimulus to signal

♦ Write down a statistical model for the noise

♦ Combine them to produce an equation for measurements given signal+noise
(signal may have zero strength)

♦ Use statistical detection theory to produce an algorithm for processing the mea-
surements to assess signal presence and characteristics

• Fundamental difficulty with neuroimaging data: don’t have enough measurements

♦ Sounds crazy: typically get 1
2–1 Gbyte of data per scanning sesssion

♦ But most of this is not relevant to neural activity (BOLD signal is weak)

♦ Must make many decisions to make a brain map: at least one per voxel

↪→ Typically have 104 . . . 105 voxels in the brain

↪→ If chance of making a mistake in any one voxel is 1% (p = 0.01), then expect
100 . . . 1000 errors in every brain map

↪→ This may be as big as the number of truly active voxels in the brain
⇒ results are garbage



♦ There are two ways out of this multiple comparisons problem:

↪→ Make the p-value per voxel much more stringent (smaller), so that the num-
ber of expected errors goes way down

Cartoon of per-voxel detection process
finding high-intensity small-extent region
and missing low-intensity large-extent region

. Problem: Low-intensity large-extent activations will be tossed out

↪→ Make fewer comparisons by grouping voxels together

. Spatial smoothing of the data prior to detection (à la PET analyses)

. Analyze data only after averaging over regions-of-interest (ROIs)

. Two-step detection (spatial clustering):
• Provisionally accept as active voxels above some threshold signal level
• Finally accept only voxels contiguous with other supra-threshold voxels
• Isolated “salt and pepper noise” activations are excised

. Problem: Loss of spatial resolution



• A little mathematical theory follows:

♦ Will try to follow notation Doug Ward used in his manual for 3dDeconvolve

♦ Time occurs continuously in reality, but in steps in data acquisition

↪→ Functions of continuous time are expressed like f (t)

↪→ Functions of discrete time are expressed like f (n∆t), where n = 0, 1, 2, . . .
and ∆t = time step (also called TR in MRI)

↪→ May also use subscript notation fn to mean same thing as f (n∆t)

↪→ A collection of numbers assembled in a column is a vector and is printed in

boldface, as in 
f0

f1

f2
...

fM

 = f (f in handwriting)

• Will begin with simple case, and work upward to models that are realistic for
complex neuropsychological experiments



• Model #1 for signal: Known & fixed response to each stimulus (except amplitude)

♦ Example: response function h(t) = t8.6e−t/0.547 (Mark Cohen)
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Stimulus occurs at t = 0

♦ Response model starts at and returns to 0, so final measurement model must
additionally include a baseline for each voxel

↪→ Unknowns are baseline parameter(s) and activation amplitude: α · h(t)

↪→ Goal: Estimate α from voxel time series data, then determine if α 6= 0

♦ Stimuli are encoded by a time series that is either 0 or 1 at each point:

fn = 0 1 0 0 0 0 1 0 0 1 0 1 1 . . .

t : 0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t 10∆t 11∆t 12∆t . . .



♦ Idealized response to this sequence of stimuli is convolution of individual re-

sponse function h(t) with stimulus function f (t):

rn = fn · h0 + fn−1 · h1 + fn−2 · h2 + · · · + fn−p · hp =

p∑
m=0

fn−m · hp

↪→ Response at time n∆t is sum of delayed responses from previous stimuli:

stimulus times

h(t − 1), h(t − 6), h(t − 9), and their sum

r(8) = h(7) + h(2)︸ ︷︷ ︸
⇓

↪→ We assume that BOLD-derived MRI signals are strictly additive

. Only approximately true, but this assumption is very widely used

. AFNI program waver can compute rn timeseries, given fn

(using Cohen model for h(t))



↪→ The maximum convolution lag p determines how far into the future an in-

dividual stimulus reaches: p∆t ≈ (10 + D)s for neural activity lasting D
seconds

♦ A simple experiment: only two types of conditions (e.g., rest and stimulus)

↪→ AFNI interactive FIM and FIM+ can handle only this case (in graph window)

↪→ Measurement model for each voxel separately:

Zn = β0 + β1 · n + α · rn + εn

where Zn = measured value at time t = n∆t

β0 = baseline

β1 = baseline drift rate (or trend)

α = amplitude of response

εn = measurement noise (zero mean) in nth sample

n = 0, 1, 2, . . . , N − 1 (there are N measurements in time)

↪→ In this model, there are 4 parameters we don’t know (in each voxel):
β0, β1, α, and σ2 = noise variance

. We know h(t) = individual response function and f (t) = stimulus time
series, so we know r(t) as well

. β0 and β1 are “nuisance parameters” in the measurement model: we don’t
usually care what they are, but must include them to be realistic



↪→ This model is called linear since the unknown parameters β0, β1, α appear

only by multiplying quantities we know (1, n, rn, respectively)

. Linear models are nice, since the algorithms for calculating results from
them are relatively straightforward

↪→ We can calculate estimates of β0, β1, α using the method of linear least

squares: minimize the sum E

E =

N−1∑
n=0

[Zn − (β0 + β1 · n + α · rn)]
2

over all possible values of β0, β1, α

. We do this because we expect Zn ≈ β0 + β1 · n + α · rn (+noise)

. Estimates of the true (unknowable) parameters are denoted with a “hat”,
as in β̂0, β̂1, α̂

. Statistical estimation theory lets us also estimate σ̂2 from the minimized
value of E

. Then also can estimate variance of the parameter estimates

↪→ Activation detection: is α 6= 0? (or, is there any response to stimulation?)

. Essentially, we determine if α̂ is “far enough” away from 0 to make it very
unlikely that the true α = 0

. “Far enough” is determined by the estimation accuracy



. Must make some assumptions about the statistical distribution of the noise
• Gaussian distribution is almost always assumed
• Stationary in time is almost always assumed
• Can assume noise is “white” (uncorrelated in time), or
• Can assume noise is temporally correlated, and try to estimate that too

. In practice, activation decision is computed by first computing an inter-
mediate statistic, which is then thresholded to make the final decision
• F -, t-, and correlation coefficient statistics are all used
• In this simple case (only 1 activation parameter α), these are equivalent
• Significance and power of test depend on distribution of noise

. AFNI interactive FIM and FIM+ compute correlation coefficient statistic

• ρ̂2 is the fraction of the variance in the detrended signal

Zn − β̂0 − β̂1 · n
that is explained by the component α̂ · rn
• If true α = 0, and if noise is white, ρ̂2 follows Beta distribution
• If noise is correlated in time, ρ̂2 distribution is very complex
• Can approximate with a Beta distribution, but must estimate parameters
• After have a statistic with a known distribution, can threshold it at a
given p-value

• NEXT TALK: more math, deconvolution, overview of 3dDeconvolve program


