Data Analysis: Modeling FMRI Signals and Noise

• Signal = Measurable response to stimulus

Noise = Components of measurement that interfere with detection of signal

- Statistical detection theory:
 - \diamond Must understand relationship between stimulus and signal
 - ♦ Must characterize noise statistically
 - \diamond Can then devise methods to distinguish noise-only measurements from signal+noise measurements, and assess their reliability
- FMRI signals and noise:
 - \diamondsuit Stimulus—signal and noise statistics are both poorly characterized

 - \diamond To deal with data, must make some assumptions about the signal and noise
 - \diamond These assumptions will be wrong, but have to do something
 - Oifferent kinds of experiments require different kinds of analyses, since signal models and questions you ask about the signal will vary
 - \hookrightarrow Therefore it is important to understand what is going on, so you can select and evaluate "reasonable" analysis approaches

- Meta-method for generating analysis methods:
 - \diamond Write down a mathematical model connecting stimulus to signal
 - \diamond Write down a statistical model for the noise
 - Combine them to produce an equation for measurements given signal+noise
 (signal may have zero strength)
 - Use statistical detection theory to produce an algorithm for processing the mea-surements to assess signal presence and characteristics
- Fundamental difficulty with neuroimaging data: don't have enough measurements
 - \diamond Sounds crazy: typically get $\frac{1}{2}$ -1 Gbyte of data per scanning session
 - ♦ But most of this is not relevant to neural activity (BOLD signal is weak)
 - \diamondsuit Must make many decisions to make a brain map: at least one per voxel
 - \hookrightarrow Typically have $10^4 \dots 10^5$ voxels in the brain
 - \hookrightarrow If chance of making a mistake in any one voxel is 1% (p = 0.01), then expect $100 \dots 1000$ errors in every brain map
 - \hookrightarrow This may be as big as the number of truly active voxels in the brain \Rightarrow results are garbage

 \diamond There are two ways out of this multiple comparisons problem:

→ Make the *p*-value <u>per voxel</u> much more stringent (smaller), so that the number of expected errors goes way down

- ▷ <u>Problem</u>: Low-intensity large-extent activations will be tossed out
- \hookrightarrow Make fewer comparisons by grouping voxels together
 - ▷ Spatial smoothing of the data prior to detection (à la PET analyses)
 - ▷ Analyze data only after averaging over regions-of-interest (ROIs)
 - ▷ Two-step detection (spatial clustering):
 - Provisionally accept as active voxels above some threshold signal level
 - Finally accept only voxels contiguous with other supra-threshold voxels
 - Isolated "salt and pepper noise" activations are excised
 - \triangleright <u>Problem</u>: Loss of spatial resolution

- A little mathematical theory follows:
 - \diamond Will try to follow notation Doug Ward used in his manual for <code>3dDeconvolve</code>
 - \diamond Time occurs continuously in reality, but in steps in data acquisition
 - \hookrightarrow Functions of continuous time are expressed like f(t)
 - \hookrightarrow Functions of discrete time are expressed like $f(n\Delta t)$, where n = 0, 1, 2, ...and $\Delta t =$ time step (also called TR in MRI)
 - \hookrightarrow May also use subscript notation f_n to mean same thing as $f(n\Delta t)$
 - \hookrightarrow A collection of numbers assembled in a column is a vector and is printed in boldface, as in

$$\begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_M \end{bmatrix} = \mathbf{f} \qquad (\underline{\mathbf{f}} \text{ in handwriting})$$

• Will begin with simple case, and work upward to models that are realistic for complex neuropsychological experiments

• Model #1 for signal: Known & fixed response to each stimulus (except amplitude) \diamond Example: response function $h(t) = t^{8.6}e^{-t/0.547}$ (Mark Cohen)

- Response model starts at and returns to 0, so final measurement model must
 additionally include a baseline for each voxel
- \hookrightarrow Unknowns are baseline parameter(s) and activation amplitude: $lpha \cdot h(t)$
- \hookrightarrow Goal: Estimate lpha from voxel time series data, then determine if lpha
 eq 0
- \diamond Stimuli are encoded by a time series that is either 0 or 1 at each point:

 \diamond Idealized response to this sequence of stimuli is convolution of individual response function h(t) with stimulus function f(t):

$$r_n = f_n \cdot h_0 + f_{n-1} \cdot h_1 + f_{n-2} \cdot h_2 + \dots + f_{n-p} \cdot h_p = \sum_{m=0} f_{n-m} \cdot h_p$$

 \hookrightarrow Response at time $n\Delta t$ is sum of delayed responses from previous stimuli:

 \hookrightarrow We assume that BOLD-derived MRI signals are strictly additive \triangleright Only approximately true, but this assumption is very widely used \triangleright AFNI program waver can compute r_n timeseries, given f_n (using Cohen model for h(t))

- $\hookrightarrow \mbox{The maximum convolution} \mbox{lag } p \mbox{ determines how far into the future an individual stimulus reaches: } p \box{$\overline{\Delta}t$} \approx (10 + D) \mbox{s for neural activity lasting } D \mbox{ seconds}$
- \diamond A simple experiment: only two types of conditions (e.g., rest and stimulus)
- \hookrightarrow AFNI interactive FIM and FIM+ can handle only this case (in graph window)
- \hookrightarrow Measurement model for each voxel separately:

$$Z_n = \beta_0 + \beta_1 \cdot n + \alpha \cdot r_n + \varepsilon_n$$

where Z_n = measured value at time $t = n\Delta t$

- $\beta_0 = \mathsf{baseline}$
- β_1 = baseline drift rate (or trend)
- $\alpha \ = \ {\rm amplitude \ of \ response}$
- ε_n = measurement noise (zero mean) in n^{th} sample
- $n = 0, 1, 2, \dots, N-1$ (there are N measurements in time)

\hookrightarrow In this model, there are 4 parameters we don't know (in each voxel): β_0 , β_1 , α , and σ^2 = noise variance

- \triangleright We know h(t) = individual response function and f(t) = stimulus time series, so we know r(t) as well
- $\triangleright \beta_0$ and β_1 are "nuisance parameters" in the measurement model: we don't usually care what they are, but must include them to be realistic

- \hookrightarrow This model is called linear since the unknown parameters β_0 , β_1 , α appear only by multiplying quantities we know (1, n, r_n , respectively)
 - ▷ Linear models are nice, since the algorithms for calculating results from them are relatively straightforward
- \hookrightarrow We can calculate estimates of β_0 , β_1 , α using the method of linear least squares: minimize the sum E

$$E = \sum_{n=0}^{N-1} \left[Z_n - (\beta_0 + \beta_1 \cdot n + \alpha \cdot r_n) \right]^2$$

over all possible values of β_0 , β_1 , α

- \triangleright We do this because we expect $Z_n \approx \beta_0 + \beta_1 \cdot n + \alpha \cdot r_n$ (+noise)
- ▷ Estimates of the true (unknowable) parameters are denoted with a "hat", as in $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\alpha}$
- \triangleright Statistical estimation theory lets us also estimate $\hat{\sigma}^2$ from the minimized value of E
- ▷ Then also can estimate variance of the parameter estimates
- \hookrightarrow Activation detection: is $\alpha \neq 0$? (or, is there any response to stimulation?)
 - \triangleright Essentially, we determine if $\hat{\alpha}$ is "far enough" away from 0 to make it very unlikely that the true $\alpha=0$
 - ▷ "Far enough" is determined by the estimation accuracy

- ▷ Must make some assumptions about the statistical distribution of the noise
 - Gaussian distribution is almost always assumed
 - Stationary in time is almost always assumed
 - Can assume noise is "white" (uncorrelated in time), or
 - Can assume noise is temporally correlated, and try to estimate that too
- ▷ In practice, activation decision is computed by first computing an intermediate statistic, which is then thresholded to make the final decision
 - F-, t-, and correlation coefficient statistics are all used
 - In this simple case (only 1 activation parameter α), these are equivalent
 - Significance and power of test depend on distribution of noise
- ▷ AFNI interactive FIM and FIM+ compute correlation coefficient statistic
 - $\hat{\rho}^2$ is the fraction of the variance in the detrended signal

$$Z_n - \hat{\beta}_0 - \hat{\beta}_1 \cdot n$$

that is explained by the component $\hat{lpha} \cdot r_n$

- If true $\alpha=0,$ and if noise is white, $\hat{\rho}^2$ follows Beta distribution
- If noise is correlated in time, $\hat{
 ho}^2$ distribution is very complex
- Can approximate with a Beta distribution, but must estimate parameters
- After have a statistic with a known distribution, can threshold it at a given $p\mbox{-}v\mbox{alue}$

• NEXT TALK: more math, deconvolution, overview of 3dDeconvolve program