
Data Analysis: Deconvolution Models

• Convolution signal model:

Z(t) = β0 + β1 · t︸ ︷︷ ︸
baseline model

+α ·
p−1∑
m=0

f(t−m∆t)︸ ︷︷ ︸
Stimulus
function
(0 or 1?)

·h(m∆t)︸ ︷︷ ︸
hemodynamic
response
function

+ ε(t)︸︷︷︸
noise

• Deconvolution is computing f(t) and/or h(t) from data Z(t)

♦ Most common use in FMRI is computing each voxel’s HRF h(t), assuming we
know the (common) input function f(t)

↪→ Then compute various statistics about estimated h(t)’s:

. Is it significantly different from zero (activation)?

. Is the early part or the late part bigger?

♦ Can also assume h(t) and try to find f(t)

↪→ Might be useful with complex continuous stimuli (e.g., a video), to see which
parts of the stimulus elicited a significantly increased activation in what parts
of the brain

♦ Can also try to find both f(t) and h(t) simultaneously: “blind deconvolution”

↪→ Must put some constraints on f(t), h(t) to get anywhere with this

• How deconvolution solves for h(t), given data Z(t) and stimulus f(t)

♦ Assemble equations for each Zn data value [here, assume max lag is 2]

Z0 = 1 · β0 + 0 · β1 + f0 · h0

Z1 = 1 · β0 + 1 · β1 + f1 · h0 + f0 · h1

Z2 = 1 · β0 + 2 · β1 + f2 · h0 + f1 · h1 + f0 · h2

Z3 = 1 · β0 + 3 · β1 + f3 · h0 + f2 · h1 + f1 · h2

♦ Solve linear equations for unknowns {β0, β1, h0, h1, h2}
♦ Then compute various statistics about these estimates

• Variations and generalizations of the above model:

♦ Stimulus does not occur on the ∆t time grid:

Z(t) = β0 + β1 · t+

Ns∑
s=1

h(t− τs) + ε(t)

where the sth stimulus occurs at time τs, for s = 1, 2, . . . , Ns

↪→ Have replaced f(t) with known stimulus times

↪→ Goal is to find h(t)

↪→ Question for the astute: what happened to α?

♦ Stimulus has two (or more) phases, which may occur at different times (e.g., pre-
sentation and response phases):

Z(t) = β0 + β1 · t+

Ns∑
s=1

[
h1(t− τs) + h2(t− (τs + δs)

]
+ ε(t)

where the first phase of the sth stimulus occurs at time τs and the second
phase at time δs later

↪→ Goal is to find h1(t) and h2(t) separately

↪→ Delay time δs must vary (“jitter”) to make this feasible

. Otherwise, a single HRF h(t) = h1(t)+h2(t) is indistinguishable from
this model

♦ There are two (or more) types of stimuli:

Z(t) = β0 + β1 · t+

Ns∑
s=1

h1(t− τs) +

Nq∑
q=1

h2(t− µq) + ε(t)

where there are Ns stimuli of the first class (at times τ1, τ2, . . .) and Nq

stimuli of the second class (at times µ1, µ2, . . .)

h(t) + h(t− 1)

and

h(t) + h(t− 2)

h(t)

↪→ Problem is to get enough data to distinguish between h(t)+h(t− 1) and
h(t) + h(t− 2), for example

♦ Constraints on HRF functions:

↪→ Can either try to find h(t) in each voxel separately, or try to find a common
HRF that works everywhere (e.g., component analyses)

↪→ Can let h(t) be arbitrary function, or can limit it to make HRF be more
“reasonable” and/or more “manageable”

. Linear constraint: h(t) =

Na∑
a=0

λa · ψa(t)

where each ψa(t) is a fixed “basis” function (which constrains shape
of h(t)) and the unknown amplitudes λa are to be determined from data

t8.6 · e−t/0.547

and

6 · (t− 2)(10 − t)︸ ︷︷ ︸
ψ1(t)

+1.5 · (t− 2)(10 − t)(6 − t)︸ ︷︷ ︸
ψ2(t)

These two functions would be hard to tell apart without a lot of data!

. Nonlinear constraint:

h(t) =

{
0 t ≤ t0
A · (t− t0)

r · e−(t−t0)/b t > t0

where the unknowns areA (amplitude), t0 (time delay), r (rise exponent),
and b (decay time)
• “Gamma variate” or “gamma density” model (not “gamma function”)
• Peak response is at t = t0 + b · r ; FWHM ≈ 2.4 · b1/2 · r

. “Reasonability” from constraints:
• If TR=2 s and stimulus lasts 3 s ⇒ 6–7 time points for h(t)
• Arbitrary h(t) at these points could give something weird:

“random” HRF
and

h(t) = t8.6 · e−t/0.547

(sampling TR=2 s)

• Constraints can suppress “unreasonable” responses
• But such responses may be symptoms of problems you need to find

• AFNI programs for deconvolution analysis:

♦ 3dDeconvolve will perform linear least squares to fit time series models to

each voxel separately

↪→ Models can have fixed h(t) (one lag), or can have multiple lags to perform
deconvolution

↪→ Can also use to analyze a single time series, as a test

♦ 3dNLfim will perform nonlinear least squares to fit time series models to each

voxel separately

↪→ Requires writing a C function to evaluate nonlinear model

↪→ Example model for gamma variate fitting is in AFNI distribution

↪→ This program is very slow

♦ Both are command line programs: they read in datasets, compute for a while,
and write out new datasets, which you then load back into AFNI for dis-
play/exploration

♦ Both programs also have an interactive plugin which can be used to fit data in
AFNI graph viewer

↪→ Useful for playing with model and determining if it useful/complete

↪→ Can be quite fun to overlay fitted responses on data graphs!

♦ 3dConvolve is a program for generating 3D+time datasets from a convolution

model

Using 3dDeconvolve

• Written and maintained by Doug Ward of the Biophysics Research Institute, Med-
ical College of Wisconsin, Milwaukee

• Master documentation: 3dDeconvolve.ps or 3dDeconvolve.pdf, available at
AFNI Web site documentation pages:

PDF format ⇒ http://afni.nimh.nih.gov/afni/docpdf/

PostScript ⇒ http://afni.nimh.nih.gov/afni/docps/

♦ Refer to this manual for more math, all input options, and many examples

♦ 3dConvolve and the deconvolution plugin are also documented therein

• Ostensibly, 3dDeconvolve is a “command line” program, but in practice, there are
so many inputs on the command line that you actually have to put the command
into a script file, then execute the file

♦ This also gives you a record of what you did, so you can do it again

♦ To execute a command (or list of commands) in a file: source scriptfilename

♦ A command “line” is a single logical line, but can be split across many physical
lines in the script file:

↪→ This is done by putting a backslash “\” at the end of each physical line but
the last one

↪→ Don’t use the forward slash “/” for this!

↪→ Don’t put any blanks or other characters after the “\”, or the logical com-
mand line will end right there (which is bad)

↪→ Example (with the options and “/” characters made to line up):

3dDeconvolve -input fred+orig \

-num_stimts 1 \

-stim_file 1 elvis.1D \

-stim_label 1 Elvis \

-stim_minlag 1 1 \

-stim_maxlag 1 5 \

-bucket Ethel \

-fout -tout \

-fitts fredfit

↪→ In this format, it is relatively easy to read and edit the script file

↪→ Recommended text editor for “newbies” to Unix: nedit

• Setting up 3dDeconvolve for deconvolution analysis:

♦ Simplest case:

↪→ Stimulus events take place on ∆t grid

↪→ Will allow arbitrary HRF to stimulus in each voxel

♦ There are 3 types of input files:

↪→ AFNI formatted 3D+time datasets

↪→ 1D files, representing time series on the ∆t grid

. Stored as a single ASCII number per line

↪→ Matrix files, used to control generation of analysis results

. Stored as a 2D layout of ASCII numbers in a text file

↪→ Examples: a time series of length 5, and a 2×6 matrix
1

0

1

0

1

0 -1 -1 1 0 0

0 -1 0 0 -1 -1

♦ User must divide stimulus events into classes

↪→ Need a 0/1 time series series file for each class, indicating when the stimuli
for that class occur

↪→ Each class k will get its own HRF hk(t), for k = 1, 2, . . .

• Important command line options for 3dDeconvolve:

♦ Format of the descriptions below:
-option arguments

↪→ The string “-option” specifies the option, and must be typed as shown

↪→ If an option has arguments (most of them do), their names are given in italics
following the option name

↪→ When you actually use an option, the arguments will be replaced with file-
names, numbers, etc., as appropriate

♦ -input fname

fname specifies the input 3D+time AFNI dataset (e.g., fred+orig)

♦ -num stimts num

This option specifies how many classes of stimuli are present; it is required.
There is no built-in upper limit on num.

♦ -stim file k sname

This option specifies the input time series for the kth stimulus class

↪→ k should be from 1 to num (from -num stimts)

↪→ sname is the name of the file to be read in

↪→ For event-related analyses, sname would usually be a time series consisting
of 0s and 1s

↪→ This input corresponds to the function fk(t)

♦ -stim label k slabel

This option specifies the label that will be attached to the output that is relevant
to the kth stimulus file

↪→ Makes it easier to interpret the output file

↪→ slabel should be enclosed in ’quotes’ if it contains “special” characters
such as: blank, *[]{};

♦ -stim minlag k m

This option specifies that the minimum lag to be used for the kth stimulus file
is the number m

↪→ If this option is not present, then m = 0

♦ -stim maxlag k n

This option specifies that the maximum lag to be used for the kth stimulus file
is the number n (n ≥ m is required)

↪→ If this option is not present, then n = 0

↪→ The response to the kth stimulus is rk(t) =
n∑

q=m

fk(t−q∆t) ·hk(q∆t)

One goal of the program is to compute the set {hk(q∆t) : q = m. . . n}
↪→ The default case m = n = 0 corresponds to simple linear regression

. Then hk(0) is the amplitude of fk(t) in the data

♦ -iresp k iprefix

This option specifies that the kth HRF function hk(t) is to be saved in an
AFNI dataset with prefix name given by the string iprefix

↪→ This dataset is useful if you want to graph the HRF results

♦ -sresp k sprefix

This option specifies that the standard deviation of the kth HRF function hk(t)
should be saved in an AFNI dataset with prefix name given by the string sprefix

↪→ This dataset lets you visually inspect the confidence you should have in hk(t)

♦ -fitts fprefix

This option specifies that the fitted model should be written to an AFNI
3D+time dataset with prefix name given by the string fprefix

↪→ Using the Dataset#2 plugin and 1D Transform, and the Double Plot

graphing option, you can use this to overlay the fitted time series model on
each voxel’s actual data

↪→ Another way to make this type of graph is with the Deconvolution plugin

♦ -bucket bprefix

This option specifies that the statistical output should be written to an AFNI
“bucket” dataset with prefix name bprefix — you almost surely want to use
this option!

↪→ The bucket output contains multiple sub-bricks, with various statistical pa-
rameters; it provides a convenient way to gather all the diverse possible
outputs into one place

↪→ The sub-bricks are labeled via -stim label, and can be used within AFNI
as a statistical threshold and/or to generate colored overlays

↪→ Additional options are needed to specify which statistics go into this dataset:

. -fout specifies that the F -statistics for the full model (with all stimulus

functions) and for each individual partial model (with one stimulus function
at a time) be included in the bucket dataset
• Full F measures significance of overall model
• Partial F measures significance of each component of model

. -rout specifies that the R2-statistics for the full and partial models be

included in the bucket dataset (these are generalizations of the correlation
coefficient, and are equivalent to the F -statistics if the Gaussian white
noise model is correct)

. -tout specifies that the t-statistics for each regression parameter (hk(q∆t)

for all k and q) be saved into bucket dataset sub-bricks

♦ General Linear Tests (GLTs):

↪→ These are used to perform tests on linear combinations of regression param-
eters (hk(q∆t) for all k and q, plus the baseline parameters)

↪→ The resulting F -statistics are added to the output bucket dataset

↪→ To specify a test, you input a matrix that gives the coefficient of the linear
combinations you want to test against zero

↪→ In most cases, this matrix will have only 0, 1, and -1 as entries (0=ignore,
1=add, -1=subtract)

↪→ To specify the test, you must know the order of the regression parameters in
the output

. Baseline parameters come first (usually, 2 of them: β0, β1)

. h1(q∆t) for q = m1 . . . n1 comes next

. h2(q∆t) for q = m2 . . . n2 comes next, etc.

. Example: 2 stimulus classes, 4 lags each ⇒ parameter vector is
{ β0 β1 h1(0) h1(∆t) h1(2∆t) h1(3∆t) h2(0) h2(∆t) h2(2∆t) h2(3∆t) }

. To test if h1(∆t) is different from h2(∆t) (i.e., if h1(∆t) − h2(∆t) 6= 0),
the matrix is
[0 0 0 1 0 0 0 − 1 0 0]

. -glt s gltname

Indicates to do a GLT with s rows, reading the matrix from file gltname
• Example above: s = 1; matrix file contains 0 0 0 1 0 0 0 -1 0 0

. To test if h1(t) = h2(t) for all t computed, we need four input lines:
0 0 1 0 0 0 -1 0 0 0
0 0 0 1 0 0 0 -1 0 0
0 0 0 0 1 0 0 0 -1 0
0 0 0 0 0 1 0 0 0 -1

. The result from this is an F -statistic

. ANOVA type analyses can be carried out with -glt

. -glt label k glabel

This option attaches the label string glabel to the output for the kth GLT
(in order on the command “line”)

♦ Other things you can do:

↪→ -censor cname

cname is a 1D time series file specifying which points to keep (input=1) and
which to delete (input=0) from the analysis (default=keep all points)

↪→ -concat rname

3dDeconvolve can deal with 3D+time input datasets that are catenated from
multiple imaging runs (via program 3dTcat)

. To deal properly with the discontinuity across runs, you must specify the
starting point in the input dataset for each imaging run

. rname is the name of a 1D time series file whose jth entry is the time
index for the start of the jth run within the input dataset

. Note that each run will get a separate β0 and β1, which must be allowed
for when setting up -glt matrices

↪→ -mask mname

mname is the name of a 3D dataset that can be used to mask off unwanted
regions from analysis; voxels where the mask dataset is 0 will not be analyzed
by 3dDeconvolve

. A mask dataset might be created using program 3dClipLevel

↪→ -polort pnum

pnum sets the polynomial order of the baseline model; the default is 1; useful
values would be from 0 to 3

