Sample Data Analysis with 3dDeconvolve

- Brief description of experiment (dataset epi07+orig):
 - ♦ Three classes of active stimuli
 - $\hookrightarrow \mathsf{R} = \mathsf{Right} \text{ hand only sequential finger-thumb opposition}$
 - $\hookrightarrow A = 8$ Hz flickering annular checkerboard
 - \hookrightarrow a = 8 Hz flickering anti-annular checkerboard
 - $\hookrightarrow \mathsf{r} = \mathsf{no} \ \mathsf{motor} \ \mathsf{action}$
 - $\hookrightarrow + = \mathsf{visual} \text{ fixation on non-flickering image}$
 - \hookrightarrow Stimulus time series (TR=2 s, 3.125×3.125×5 mm³, 21 slices, 100 volumes, 3 Tesla):

Annulus, Anti-Annulus, and Fixation Stimuli

- First analysis: Simple regression with fixed hemodynamic model
 - \diamondsuit Will use 3 regressors to correspond to the three stimulus classes
 - ♦ Step 1: Create 0-1 time series files to correspond to absence-presence of annular, anti-annular, and motor stimuli:

Files: ann_stim_07.1D antiann_stim_07.1D righthand_stim_07.1D

- \hookrightarrow Created with a text editor (in this case, vi)
- ♦ Step 2: Create hemodynamic response to stimuli time series, via program waver: waver -GAM -dt 2.0 -input ann_stim_07.1D > ann_response_07.1D waver -GAM -dt 2.0 -input antiann_stim_07.1D > antiann_response_07.1D waver -GAM -dt 2.0 -input righthand_stim_07.1D > righthand_response_07.1D (cf. Script File waver_07a)
 - \hookrightarrow Put all 3 responses together into 1 file with 3 columns:

1dcat ann_response_07.1D antiann_response_07.1D \
 righthand_response_07.1D > all3_response_07.1D

♦ Carry out regression analysis (cf. Script File decon_07a):

```
3dDeconvolve-input epi07+orig.HEAD\-num_stimts 3\-stim_file 1 ann_response_07.1D\-stim_file 2 antiann_response_07.1D\-stim_file 3 righthand_response_07.1D\-stim_label 1 annulus\-stim_label 2 antiann\-stim_label 3 motor\-stim_minlag 1 0-stim_maxlag 1 0-stim_minlag 3 0-stim_maxlag 3 0-stim_minlag 3 0-stim_maxlag 3 0-fitts epi07a_fitts\
```

 \hookrightarrow Each stimulus has minimum and maximum lags set to 0

 \Rightarrow Signal model is just the sum of the response time series we input

- \hookrightarrow We keep the stimulus labels short since the AFNI menus don't like long labels
- $\hookrightarrow \texttt{-fitts}$ option $\Rightarrow \mathsf{We}$ get the fitted model as an output dataset
- $\hookrightarrow \texttt{-fout} \texttt{-bucket}$ options $\Rightarrow \mathsf{We}$ get the F-statistics in a bucket dataset
- → We skip the individual regressor t-statistics (no -tout): these are redundant with the partial-model F-statistics when we have only 1 lag
 ▷ Each t tests one coefficient; each partial-F tests all coefficients in that sub-model; 1 degree of freedom in a sub-model ⇒ t² = F

- \hookrightarrow We <u>don't</u> need <u>-ignore</u> option, since this dataset doesn't have the T1equilibration spike at the beginnning (must have been pre-saturated)
- ♦ Look at results with interactive AFNI program:
- \hookrightarrow Since data slices were axial, open Axial image and graph for dataset epi07
- \hookrightarrow Let's look at output of <u>-fitts</u> graph overlaid on data time series:

 $\triangleright \ \text{In AFNI controller: Define Datamode} {\rightarrow} \texttt{Plugins} {\rightarrow} \texttt{Dataset} \texttt{\#2}$

	[A] D	ataset#2		-			
AFNI PL	ugin: Controls	5 1D function	Dataset#2				
Quit	Run+Keep	Run+Close	Help				
Input	Dataset C	hoose Dataset			Choose One AFNI Dataset f	 rom	
Mhere	Justify Lef	t 🗖			the Uriginal v	'1ew	
How	Fill Exte	end 🗖			afni/07/epi07- afni/07/epi07a	+orig a_fitts+orig	spgr:3D+t:100] [spgr:3D+t:100]
					Quit	Apply	Set

Dataset#2 Plugin Control window

Dataset Chooser window

Choose the fit dataset by clicking <u>--</u> Choose Dataset <u>--</u> Then click on the epi07a_fitts+orig choice in the chooser Then Set in the chooser (will close chooser window) Then Run+Close in the plugin's window (tells AFNI about your choice) ▷ From the graph window's Opt menu:

select Tran $1D \rightarrow Dataset#2$

press in Double Plot

press in $Opt \rightarrow Use$ Thick Lines (under the Dplot item)

	Axial						
Boxes	black						
🗖 Use	Thick Line	s					
BackG	white						
Grid	yellow						
🗆 Use	Thick Line	s					
Text	black						
Data	black						
🔲 Use	Thick Line	s					
�Graph Points							
♦ Points+Lines							
Ideal	red						
Ideal ГUse	red Thick Line	r s					
Ideal ГUse Ort	red Thick Line green	г s					
Ideal ┏Use Ort ┏Use	red Thick Line green Thick Line	Г s Г					
Ideal Use Ort Use Ignore	red Thick Line green Thick Line dk-blue						
Ideal Use Ort Use Ignore Dplot	red Thick Line green Thick Line dk-blue red						
Ideal Use Ort Use Ignore Dplot Use	red Thick Line green Thick Line dk-blue red Thick Line						
Ideal Use Ort Use Ignore Dplot Use � Grap	red Thick Line green Thick Line dk-blue red Thick Line h Points						
Ideal Use Ort Use Ignore Dplot Use Crap Crap	red Thick Line green Thick Line dk-blue red Thick Line h Points ts+Lines						

The menus you will encounter when setting up for Double Plot

- ▷ Can get identical graphs using the Deconvolution plugin and Double Ploting with the Tran 1D→DC_Fit transformation function
 - Regression analysis done "on-the-fly" for voxels shown in graph window
 - Button3 graph popup shows fit parameters/statistics for sub-graph fit

 \hookrightarrow Let's look at the color overlay from the functional dataset

▷ Open Define Function control panel

▷ Set the Func control to #6 motor[0] Coef Set the Thr control to #8 Full F-stat Set threshold slider range to ** 1 Set threshold slider to about 9.8 (p-value about 1.0-5 = 1.0 × 10⁻⁵) Click on See Function Move Axial image viewer to slice 16 (where we'll see some motor activity)

[A] AFNI 2.31b: afni/07/epi07+orig & epi07a_stats+orig AFNI 2.31b: afni/07/epi07+orig & epi07a stats+ori 1210 [+177]974 **V** 16 index=0 value=1078 at 0.190476 X: 44 20 Scale: 1.5 datum/pix Y: 36 Grid: Done Rec $7 \cdot 4$ Num: 100 Base:

▷ Exercises:

- Find motor voxels that are modulated by visual stimuli
- Find visual activation areas

- Second analysis: Deconvolution
 - \diamond Since each stimulus interval for each stimulus class is the same in this experiment (4×10 s for visual, 2×40 s for motor), could try deconvolve whole response for each class
 - → Would treat experiment as having 4 visual events of each class (with about 10 lags), and 2 motor events (with about 25 lags)
 - → <u>But</u> wouldn't work very well, since we'd be estimating 2+10+10+25=57 parameters from 100 time points ⇒ garbage results (over-fitting the data)
 ▷ Exercises:
 - Explain this calculation
 - Carry out this analysis anyway, and see what happens
 - ◊ Instead, will treat each TR with a stimulus as a discrete event, and try to deconvolve hemodynamic response function
 - \hookrightarrow Not an ideal experiment for this analysis, since only have 2 "turn on" and 2 "turn off" transitions for motor response
 - \hookrightarrow Will use lags from 0 to 6 (0 s to 12 s), since expect hemodynamics to be about that long
 - \hookrightarrow Will have 2+7+7+7=23 unknown parameters (vs. 2+1+1+1=5 in the simple regression analysis)
 - \hookrightarrow Input functions will be the 0-1 stimulus time series files created earlier

• Carry out deconvolution analysis (cf. Script File decon_07b):

3dDeconvolve -input epi07+orig.HEAD -num stimts 3 -stim_file 1 ann_stim_07.1D -stim_file 2 antiann_stim_07.1D -stim_file 3 righthand_stim_07.1D -stim_label 1 annulus -stim_label 2 antiann -stim label 3 motor -stim_minlag 1 0 -stim_maxlag 1 6 -stim_minlag 2 0 -stim_maxlag 2 6 \ -stim_minlag 3 0 -stim_maxlag 3 6 \ -fitts epi07b_fitts -iresp 1 epi07b_iresp_ann -iresp 2 epi07b_iresp_antiann -iresp 3 epi07b_iresp_motor -sresp 1 epi07b_sresp_ann -sresp 2 epi07b_sresp_antiann -sresp 3 epi07b_sresp_motor -fout -tout -bucket epi07b_stats

 \diamond Saving impulse response and its standard error for graphing (-iresp, -sresp) \diamond Saving individual lag coefficient *t*-statistics this time (-tout)

- Different ways to look at the results with AFNI:
 - \$ Graph epi07b_iresp_* time series with epi07b_sresp_* Double Plot-ed
 to see estimate hemodynamic response and it standard error together
 - \diamond Set the threshold sub-brick to the full F-statistic to see where any activation was detected
 - ♦ Set the threshold sub-brick to the partial F-statistics to see where individual stimuli correlated activity was detected
 - \diamond Compare the simple regression and deconvolution time series fits

 \hookrightarrow Looks like deconvolution is "over-fitting" the data somewhat

♦ Compare the simple regression and deconvolution activation maps

Motor: Simple Regression

- \hookrightarrow Displaying Axial slice 16 (again)
- \hookrightarrow Thresholding on Full F-stat, set to $p=1.0e-4=10^{-4}$ (per voxel)
- \hookrightarrow Color overlay is from motor F-stat (using Pos, autoRange, 11 colors)
- \hookrightarrow Exercise: Why is there somewhat less activation in the Deconvolution map?