
Irregular Stimulus Timing: Analysis with 3dDeconvolve

• 3dDeconvolve is set up to calculate response functions h(t) when stimuli occur
locked to image acquisition TR interval

♦ The -stim nptr option allows stimuli to occur at intervals of TR/p, where p
is a small integer

♦ But it seems like there is no way to do deconvolution for a completely irregular
stimulus pattern

• The waver -tstim option does allow you to input irregular stimulus timing and
generate a synthetic response

♦ The result is the convolution of the hemodynamic response function h(t) with
a sequence of δ-functions at the stimulus times

♦ h(t) is chosen using the -GAM, -WAV, or -EXPR options to waver

• Simulating a time series:

♦ waver -dt 2.0 -GAM -peak 1 -tstim ‘cat tstim.1D‘ > ideal.1D

♦ File tstim.1D (30 stimulus times, averaging about 6 s apart):
22.6 31.4 35.8 40.6 42.8 50.0 58.6 66.2 64.8 77.8 85.0 88.6 96.8 102.4 106.6 111.0

119.2 123.6 131.2 132.8 142.4 150.8 154.8 163.4 167.0 174.6 178.6 182.0 190.2 196.4

♦ Graph of response ideal.1D (circles/dashed lines) with triangles 4 at tstim.1D
stimulus times, for 106 volumes to be simulated at TR=2 s:

♦ Despite appearances, this is without noise: fluctuations are just from different
overlaps of hemodynamic response, since stimuli are not evenly spaced in time

♦ Goal of deconvolution is to retrieve hemodynamic response function (amplitude
and shape) in each voxel, and test whether it is significantly different from zero

• Deconvolution, in the earlier presentations, models h(t) itself as a sequence of
evenly spaced δ-functions

h(t) =

maxlag∑
a=minlag

λa · δ(t− a · TR)

♦ Goal is to calculate the amplitude λa of each δ-function (in each voxel)

♦ Drawback to this description of h(t) is that it says nothing about what the
response is at times between the TR (image data) grid

↪→ That’s OK when stimuli are on the TR grid, but not when stimulus times
are arbitrary

♦ Need to model h(t) so can calculate response at an arbitrary time after the
stimulus, not just at a fixed set of times

• Solution is to write response function h(t) as the sum of a small number of basis
functions:

h(t) =

Na∑
a=1

λa · ψa(t)

♦ Each ψa(t) is a fixed function and the unknown amplitudes λa are to be
determined from data (for each voxel)

♦ Must choose the ψa(t) basis functions based on the duration and shape of
response you expect

• Basis functions:

♦ Gamma variate with derivative:

ψ1(t) = tb exp(−t/τ)

ψ2(t) =
d

dt
ψ1(t)

for some fixed b, τ parameters
[SPM approach]

↪→ Basic idea: time shifted response ψ1(t + ∆) ≈ ψ1(t) + ∆ · ψ′
1(t) for

small ∆

↪→ Using both functions allows for small time shifts (0–3 s) in h(t) — which
using only ψ1(t) does not

♦ ‘Tent’ functions:

tent(x) =

{
1 − |x| if −1 < x < 1

0 if |x| ≥ 1

ψ1(t) = tent(t/4)

ψ2(t) = tent((t − 4)/4)

ψ3(t) = tent((t − 8)/4)

[tent() is part of waver, 3dcalc, etc.]

♦ Polynomials:

ψ1(t) = (t− 2)(10 − t)

ψ2(t) = (t− 2)(10 − t)(6 − t)

ψ3(t) = (t− 2)(10 − t)(t− 4)(8 − t)

for 2 < t < 10

t8.6 · e−t/0.547

and

6 · (t− 2)(10 − t)︸ ︷︷ ︸
ψ1(t)

+1.5 · (t− 2)(10 − t)(6 − t)︸ ︷︷ ︸
ψ2(t)

plotted together

♦ Other possibilities include trigonometric and sinc functions

↪→ Both are common bases for function approximation in numerical analysis

♦ Want to keep number of basis functions Na small, so that model for signal
doesn’t have too many parameters

• Generate a simulated dataset with the ideal.1D time series in every voxel (with
varying amplitude), a baseline, and some noise (with varying standard deviation):

♦ Make a 1 slice dataset from something handy, just to use as a template:
3dZcutup -prefix zcut -keep 10 10 epi07+orig

♦ Calculate a dataset with this geometry (64×64×1) with the ideal.1D func-
tion intensity and noise variance varying in 8×8 blocks across the image:

3dcalc -a ’zcut+orig[0]’ \

-b ideal.1D \

-datum float \

-prefix sim:time \

-expr ’100+(int(i/8)+1)*0.25*b+int(j/8)*0.25*gran(0,1)’

↪→ 3dcalc is the voxel-by-voxel dataset calculator program

↪→ -a ’zcut+orig[0]’ means to read in the #0 sub-brick of this dataset and
call its voxel values by the symbol a

↪→ -b ideal.1D means to read in this time series file and call its values by the
symbol b (since this has no spatial dimension, each spatial voxel from b at a
given time index will have the same value, unlike from a)

. Since the -a dataset doesn’t have a time axis, the -b time series will be
used to provide a time axis in the output of 106 points (same length as
ideal.1D)

↪→ -datum float means to write the output dataset in floating point format
(don’t need to deal with scaling issues then)

↪→ -prefix sim:time is the prefix part of the output dataset filename

↪→ -expr ’100+(int(i/8)+1)*0.25*b+int(j/8)*0.25*gran(0,1)’ is the
mathematical expression that determines the output at each voxel

. Symbols b, i, j are used

. Dataset a was only read in to act as a template for the output dataset
(i.e., to set up its spatial axes and dimensions)

. Since there was no -i or -j option, 3dcalc assigns the x-axis voxel index
to the symbol i (range=0..63) and the y-axis voxel index to the symbol j
(range=0..63)

. 100 is the baseline

. (int(i/8)+1) ranges 1..8 across image horizontally, in blocks 8 voxels
wide
• (int(i/8)+1)*0.25*b gives signal from 0.25 to 2 times b

. int(j/8) ranges 0..7 across image vertically, in blocks 8 voxels wide
• int(j/8)*0.25*gran(0,1) gives noise increasing down image, in
blocks
• gran(0,1)=Gaussian deviate with mean=0, standard deviation=1

♦ Result is spatially square 3D+time dataset with varying amounts of signal and
noise that we can use for testing

♦ Simple regression analysis with 3dDeconvolve:

3dDeconvolve -input sim:time+orig \

-num_stimts 1 \

-stim_file 1 ideal.1D \

-stim_label 1 Response \

-stim_minlag 1 0 -stim_maxlag 1 0 \

-fitts sim_regress_fitts \

-tout -bucket sim_regress_stats

↪→ In AFNI:
• Set Function→Func to sub-brick #4 Response[0] Coef
• Set Function→Thr to sub-brick #5 Response[0] t-tstat
• Set Function→** to 1; slider to p ≈1.0-4 (t≈4)
• Set Function→Pos ON; pbar # to 11
• Set Datamode→Misc→Voxel Coords ON
• Turn on See Function, open Axial Image
• Noise increases downwards; signal leftwards

t-statistic across middle row of image

• However, our goal is deconvolution analysis, not simple regression

♦ Assume hemodynamic response to individual stimulus lasts no more than 12 s
(depends on type of stimulus)

↪→ Actual waver -GAM function is significant only from 2..10 s post-stimulus

♦ Model it as the sum of 3 “tent” functions:

0
�

1
�

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9
	

10 11 12
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tent(x/4)

tent((x−4)/4)

tent((x−8)/4)

↪→ tent(x) =

{
1 − |x| if −1 < x < 1

0 if |x| ≥ 1

↪→ Built in function in 3dcalc, waver, etc.

♦ We generate response time series for each of the 3 basis functions tent(t/4),
tent((t-4)/4), and tent((t-8)/8):

waver -dt 2.0 -EXPR ’tent(t/4)’ -peak 1 -tstim ‘cat tstim.1D‘ > tent0.1D

waver -dt 2.0 -EXPR ’tent((t-4)/4)’ -peak 1 -tstim ‘cat tstim.1D‘ > tent4.1D

waver -dt 2.0 -EXPR ’tent((t-8)/4)’ -peak 1 -tstim ‘cat tstim.1D‘ > tent8.1D

♦ Then we run 3dDeconvolve with these 3 regressors:

3dDeconvolve -input sim:time+orig.HEAD \

-num_stimts 3 \

-stim_file 1 tent0.1D \

-stim_file 2 tent4.1D \

-stim_file 3 tent8.1D \

-stim_label 1 tent0 \

-stim_label 2 tent4 \

-stim_label 3 tent8 \

-stim_minlag 1 0 -stim_maxlag 1 0 \

-stim_minlag 2 0 -stim_maxlag 2 0 \

-stim_minlag 3 0 -stim_maxlag 3 0 \

-fitts sim_decon_fitts \

-fout -bucket sim_decon_stats

• Function→Func = #4 tent4[0] Coef
• Function→Thr = #8 Full F-stat
• Function→** = 1; slider p ≈1.0-4 (F≈7.8)
• Function→Pos ON; # = 11

↑Deconvolution output↑

↑Regression output (from before)↑

♦ To calculate hemodynamic response function in each voxel, need to combine
basis functions with amplitudes from output dataset sim decon stats+orig:

3dcalc -a ’sim_decon_stats+orig[2]’ \

-b ’sim_decon_stats+orig[4]’ \

-c ’sim_decon_stats+orig[6]’ \

-dt 0.1 \

-taxis 121 \

-datum float \

-prefix sim:hrf_fit \

-expr ’a*tent(t/4)+b*tent((t-4)/4)+c*tent((t-8)/4)’

↪→ Symbols a, b, c are for 3D (no time) volumes

↪→ -dt 0.1 sets TR for manufactured 3D+time dataset to 0.1 s

↪→ -taxis 121 sets the number of time points to 121

. Need this since all input datasets are 3D only — no time axes

↪→ Symbol t is time in -expr [default symbol value]

♦ Also make a 1D file with the true gamma deviate hemodynamic response func-
tion, for comparison: waver -GAM -dt 0.1 > gamma.1D

♦ In AFNI:

↪→ Switch Anatomy to sim:hrf fit; open Axial Graph

↪→ FIM→Pick Ideal and choose gamma.1D timeseries

↪→ Opt→Colors, Etc.→Ideal: Use Thick Lines ON

↪→ Opt→Colors, Etc.→Grid color to lt-blue2 (say)

↪→ Opt→Baseline→Global ON; Opt→Baseline→Set Global to –1

↪→ Press h key to get horizontal line at y=0; press a to autoscale

Other 3dDeconvolve Tricks

• Program 3dTshift lets you time shift (interpolate) the slices in a 3D+time dataset
to the same time origin

♦ Not necessarily a good idea

• Program 3dvolreg is used to do image registration or realignment (subject of
another presentation)

♦ Time shifting can also be done in 3dvolreg

♦ You can also use estimated movement parameters from 3dvolreg as “regressors
of no interest” (RONI) in 3dDeconvolve

♦ The idea is to get rid of any residual effects correlated to the subject’s movement

♦ However, you don’t want to have lags for these RONI, since physical effects of
movement on image are immediate

♦ Also, you don’t want to include the RONI in the F statistic map, which means
you need to use the -stim base option for these regressors

• Option -nodata can be used to evaluate the regression design to determine if it
is well-determined

• Option -input1D can be used to do the regression on a single time series file
(instead of on an entire dataset of time series)

• Option -mask restricts the analysis to just a specified set of voxels (for speed)

♦ Program 3dAutomask can be used to automatically make a mask dataset from a
3D+time input dataset: 3dAutomask -prefix Fred mask Fred time+orig

• Program 3dTcat can be used to catenate multiple 3D+time datasets into one big
file for input into 3dDeconvolve

♦ Option -concat is then needed to tell 3dDeconvolve where each individual
imaging runs starts

↪→ So response from stimulus at end of run #1 doesn’t ”bleed” into run #2

↪→ So each run can have its own baseline parameters

• Option -polort lets you specify a higher order (than linear) polynomial to use as
the baseline model in the regression

• Option -progress 1000 will print (to screen) intermediate results every 1000
voxels

• Program 3dDeconvolve f does all calculations in single precision
⇒ is about 40% faster than 3dDeconvolve

• If you have a multi-CPU machine with shared memory (SMP), -jobs N option
lets you spread computations over N processes
⇒ Significant speedup results on dual-CPU Linux machines

• You need to read the 3dDeconvolve manual!

3dDeconvolve Script

• This is an experimental script to help you run 3dDeconvolve with irregular stim-
ulus timing

• It asks you a sequence of questions: for names of regressor files, etc.

• It runs waver to create regressors from stimulus timing

• It allows the use of basis functions to model h(t)

• It graphs the regressors from waver

• It runs 3dDeconvolve to fit the model

• It runs 3dcalc to combine basis functions to give h(t) in each voxel

• Currently written in Matlab; plans are to rewrite in a free language (Python?)

• Available on request

Nonlinear Regression to Model a Time Series

• For some applications, a nonlinear model may make most sense

♦ Single event FMRI: where you have only one stimulus in an imaging run, and
are not sure of the form the response will take

♦ Pharmaceutical injections; Changing subject’s affect by video presentation

• Program 3dNLFIM and plugin NLfit let you model time series in each voxel in an
arbitrary way

♦ You provide a “model function” in C that returns the model time series, given
a set of parameters

♦ Program/plugin drive the model to find the set of parameters that best fits
each data time series

♦ 3DNLfim program produces F-statistic for goodness-of-fit test

♦ NLfit plugin produces fitted time series for graphical (Double Plot) exploration

• Nonlinear constraints let you put arbitrary boundaries on what the fitting model
will look for; for example:

♦ Require positive responses

♦ Don’t allow shape parameters b and c in Atbe−t/c to be “unreasonable”

