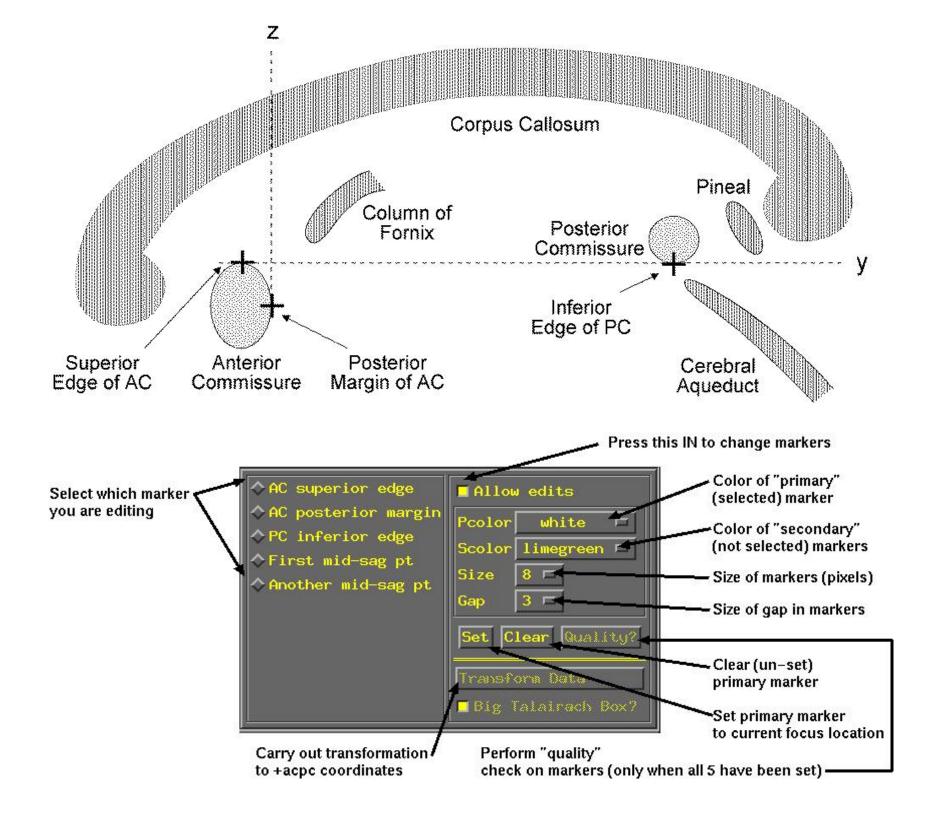

Transforming Datasets to Talairach-Tournoux Coordinates

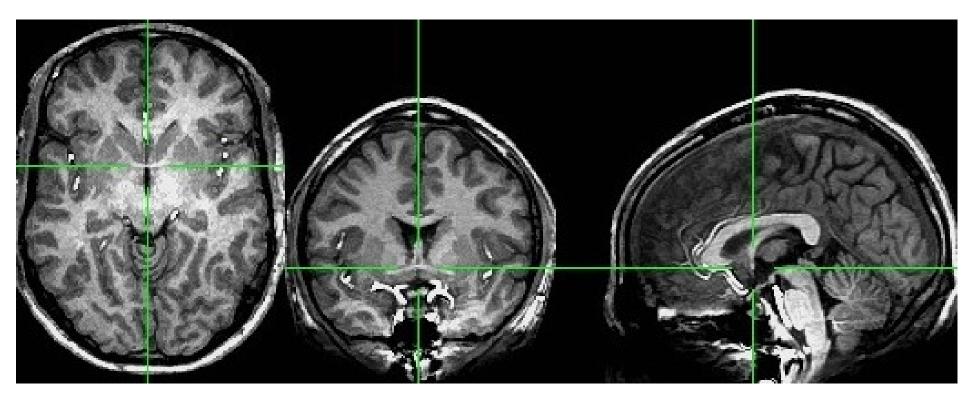
• The original purpose of AFNI was to perform the transformation of datasets to Talairach-Tournoux (stereotaxic) coordinates

Co-Planar Stereotaxic

- The transformation is user-controlled, not automatic
- You must mark various anatomical locations, defined in

Jean Talairach and Pierre Tournoux "Co-Planar Stereotaxic Atlas of the Human Brain" Thieme Medical Publishers, New York, 1988

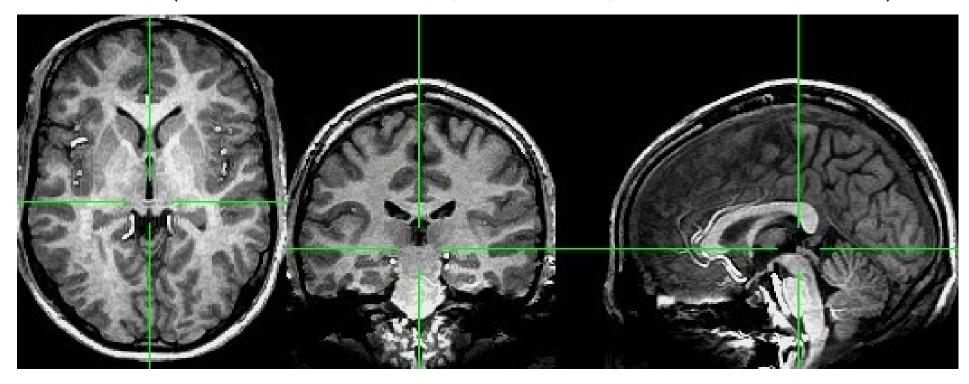



- Marking is best done on a high-resolution T1-weighted structural MRI volume
- The transformation defined by the manually placed markers then carries over to all other datasets in the same directory
 - ♦ This is where the importance of getting the relative spatial placement of datasets done correctly in to3d really matters
 - ♦ You can then write functional datasets to disk in Talairach coordinates

- Transformation proceeds in two stages:
 - 1. Alignment of AC-PC and I-S axes (to +acpc coordinates)
 - 2. Scaling to Talairach-Tournoux Atlas brain size (to +tlrc coordinates)
 - 3. Using the results for fun and profit
- Alignment to +acpc coordinates:
 - Anterior commissure (AC) and posterior commissure (PC) are aligned to be the y-axis
 - ♦ The longitudinal (inter-hemispheric or mid-sagittal) fissure is aligned to be the yz-plane, thus defining the z-axis
 - ♦ The axis perpendicular to these is the x-axis (right-left)
 - ♦ Five markers that you must place using the Define Markers control panel:

```
AC superior edge= top middle of anterior commissureAC posterior margin= rear middle of anterior commissurePC inferior edge= bottom middle of posterior commissureFirst mid-sag pt= some point in the mid-sagittal planeAnother mid-sag pt= some other point in the mid-sagittal plane
```

- ♦ This procedure tries to follow the Atlas as precisely as possible
- \hookrightarrow Even at the cost of confusion to the user (e.g., you)



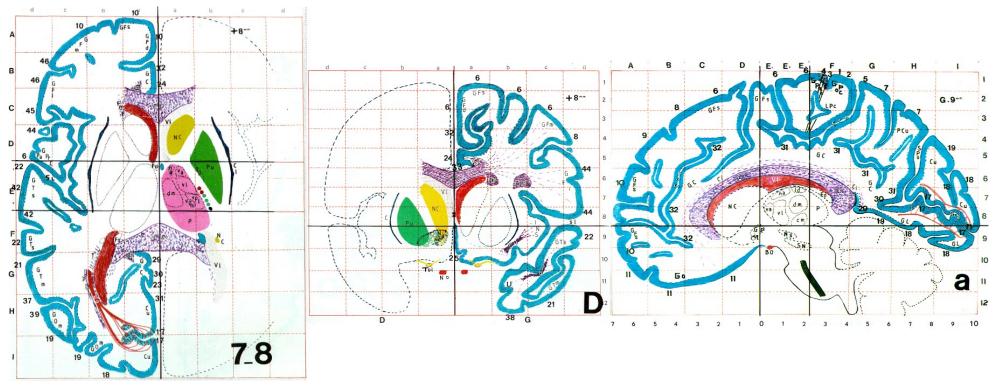
- First goal is to mark top middle and rear middle of AC
- Sagittal: look for AC at bottom level of corpus callosum, below fornix
- Get AC centered at focus of crosshairs (in Axial and Coronal)

- \hookrightarrow Move posterior until AC disappears in Coronal view; then anterior 1 pixel

- Second goal is to mark inferior edge of PC
 - ♦ This is harder, since PC doesn't show up well at 1 mm resolution
 - ⋄ Fortunately, PC is always at the top of the cerebral aqueduct, which does show up well (at least, if CSF is properly suppressed by the MRI pulse sequence)

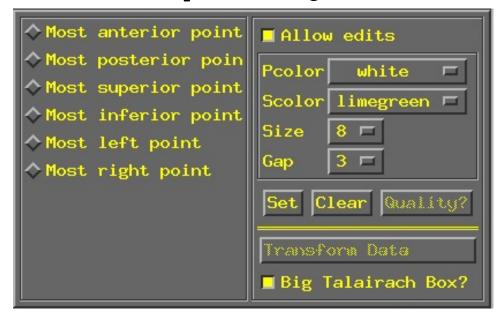
- ♦ Therefore, if you can't see the PC, find mid-sagittal location just at top of cerebral aqueduct and mark it as PC inferior edge
- Third goal is to mark two inter-hemispheric points (above corpus callosum)
 - ♦ The two points must be at least 2 cm apart
 - \diamondsuit The two planes AC-PC-#1 and AC-PC-#2 must be no more than 2° apart

- Once all 5 markers have been set, the Quality? button is ready
 - You can't Transform Data until Quality? check is passed
 - \diamond In this case, quality check makes sure two planes from AC-PC line to midsagittal points are within 2° *** MARKERS QUALITY REPORT ***


*** ERROR: The AC + PC + mid-sag pts do not form a good plane.
Angular deviation between AC+PC+mid-sag pts: 2.43 degrees
Mismatch between AC-PC line and Talairach origin: 0.04 mm
Total rotation to align AC-PC and mid-sag: 4.41 degrees

♦ Sample above shows 2.43° deviation between planes ⇒ must move one of the points a little
*** MARKERS QUALITY REPORT ***

Angular deviation between AC+PC+mid-sag pts: 1.33 degrees
Mismatch between AC-PC line and Talairach origin: 0.06 mm
Total rotation to align AC-PC and mid-sag: 4.59 degrees


- ♦ When <u>Transform Data</u> is available, pressing it will close <u>Define Markers</u> panel, write marker locations into the dataset header, and create the +acpc datasets that follow from this one

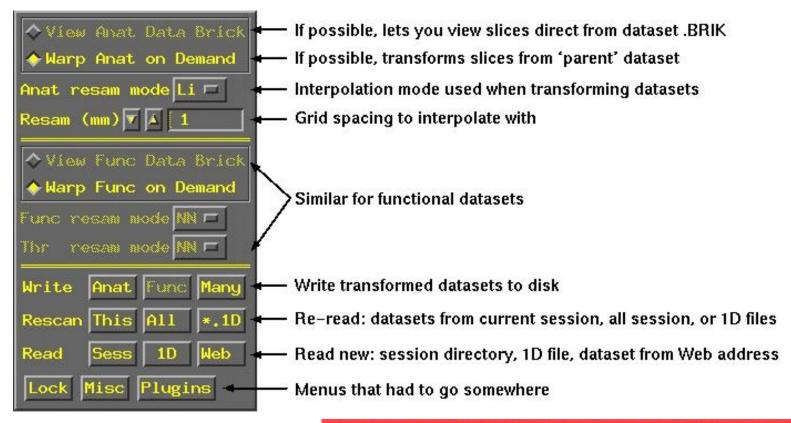
- Scaling to +tlrc coordinates:
 - We now stretch/shrink the brain to fit the Talairach-Tournoux Atlas brain size
 (sample TT Atlas pages shown below, just for fun)

Most anterior to AC	70 mm		
AC to PC	23 mm		
PC to most posterior	79 mm	Length of cerebrum	172 mm
Most inferior to AC	42 mm		
AC to most superior	74 mm	Height of cerebrum	116 mm

- \diamond There are 12 sub-regions to be scaled (3 A-P \times 2 I-S \times 2 L-R)
- ♦ To enable this, the transformed +acpc dataset gets its own set of markers:

- ♦ Using the same methods as before (i.e., select marker toggle, move focus there, Set), you must mark these extreme points of the cerebrum
 - Using 2 or 3 image windows at a time is useful

 - Once all 6 are set, use <u>Quality?</u> to check if the distances are reasonable, then <u>Transform Data</u> to make the +tlrc datasets
 - ▶ Leave Big Talairach Box? pressed IN
 - ▶ Is a legacy from earliest (1994–6) days of AFNI, when 3D box size of +tlrc datasets was 10 mm smaller in I-direction than the current default


- Automatic creation of "follower datasets":
 - After an anatomical +orig dataset in a directory is transformed (i.e., gets a +acpc and +tlrc dataset), all the other datasets in that directory will get transformed datasets as well

 - → To write one to disk, use one of the <u>Define Datamode → Write</u> buttons (necessary if you want to process this in a command-line program such as <u>3dttest</u>)

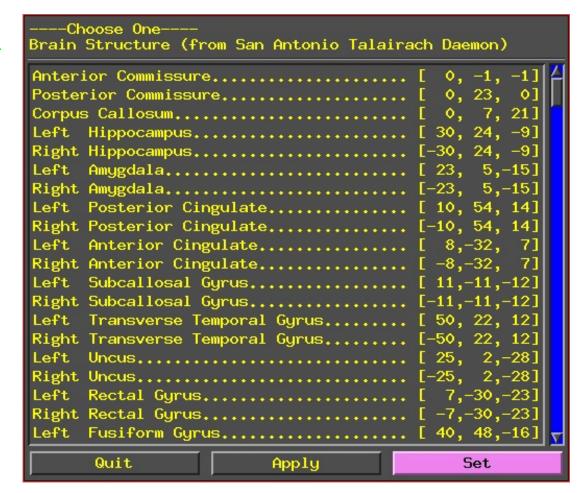
anat+orig
$$\rightarrow$$
 anat+acpc \rightarrow anat+tlrc \uparrow \downarrow \downarrow func+orig func+acpc func+tlrc

- → After <u>Transform Data</u> creates anat+acpc, other datasets in the same directory are scanned
 - ▷ If func+acpc doesn't already exist (from <u>Write</u>-ing, say), then AFNI creates it, and defines the geometrical transformation ("warp") from func+orig using the to3d-defined relationship between func+orig and anat+orig, and the markers-defined relationship between anat+orig and anat+acpc
 - Next time you run AFNI, the followers will automatically be created internally again when the program starts

- "Warp on demand" viewing of datasets
 - ♦ AFNI doesn't actually resample all follower datasets to a grid in the re-aligned/restretched coordinates
 - \hookrightarrow This could take quite a long time if there are a lot of big 3D+time datasets
 - ♦ Instead, the dataset slices are transformed (warped) from +orig to +acpc or +tlrc for viewing as needed (on demand)
 - ♦ This can be controlled from Define Datamode control panel:

AFNI titlebar shows warp on demand: {warp} [A] AFNI 2.31e: data/AFNI_sample_04/anat+tlrc

- When you create anat+acpc and anat+tlrc datasets by pressing Transform Data, only .HEAD files are written to disk for them
- So they can only be viewed in warp on demand mode
- \hookrightarrow You can use <u>Write Anat</u> to write the current anatomical dataset .BRIK out at the current grid spacing (cubical voxels), using the current anatomical interpolation mode
- → After that, View Anat Data Brick will become available


```
adwarp -apar anat+tlrc -dpar func+orig
will write out dataset func+tlrc
```

- ♦ Datasets without .BRIK files are of limited use:
- → You can't use such datasets to graph time series, do volume rendering, compute statistics, run any command line analysis program, run any plugin, . . .

• Some fun and useful things to do with +tlrc datasets are on the 2D slice viewer Button-3 popup menu: Jumpback


Jumpback
Jump to (xyz)
Jump to (ijk)
-Talairach to
-Where Am I?
-Atlas colors
Image display

♦ Talairach to

Lets you jump to centroid of regions in the TT Atlas (works in +orig too)

♦ Where Am I?

Shows you where you are in the TT Atlas (works in +orig too)

♦ Atlas colors

Lets you display color overlays for various TT Atlas defined regions, using the Define Function→See TT Atlas Regions control (works only in +tlrc)