
Region of Interest Drawing and Usage in AFNI

• Goal: manually select Regions of Interest (ROIs) based on anatomical structures,
then analyze functional datasets within these regions

♦ Alternative procedure for selection of ROIs: geometrically connected clusters of
‘activity’ (supra-threshold voxels in some functional statistical map)

♦ Even with this method, you might want to manually adjust the ROIs

• ROIs are stored as regular AFNI datasets; it is only the user (you) that decides
whether a particular dataset is a ROI mask

♦ Nonzero voxels are “in” the mask; zero voxels are “outside”

♦ It is best to store a ROI mask as a functional dataset, so you can overlay it in
color on an anatomical dataset

• Outline of procedure:

♦ On the main AFNI control panel, set the anatomical underlay dataset (with
Switch Anatomy) to be what you want to draw on—usually a SPGR or MP-
RAGE type of dataset

♦ Start the Draw Dataset plugin (also called the Editor)

↪→ Define Datamode→Plugins→Draw Dataset



♦ Create an all zero functional dataset the size of the anatomical dataset on top
of which you are going to draw

↪→ Creating an all zero dataset can be done with the Editor plugin, or with the
Copy Dataset plugin

↪→ You could instead edit a ROI dataset that you had already created before

↪→ It is required that the dataset being edited and the dataset that is the anatom-
ical underlay have the same geometry (voxel size, etc.), since drawing/editing
is done on a voxel-by-voxel basis

♦ Set the functional overlay dataset (with Switch Function) to be the dataset
you are editing, and turn the functional overlay on (with See Function)

♦ Draw the ROIs into the functional dataset, eventually Save-ing the results

♦ Convert the anatomical-resolution ROI dataset into a dataset at the resolution
of the functional datasets you want to analyze with the ROI

↪→ The ROI and functional datasets may already be at the same resolution, if
you are operating in +tlrc coordinates

↪→ Resolution conversion of masks is done with program 3dfractionize

♦ Use programs 3dmaskave, 3dmaskdump, and 3dROIstats to extract ROI-
based information about functional datasets

↪→ Also can use ROI Average plugin to extract interactively the average of a
dataset over a ROI



Using the Drawing Plugin

• Critical things to remember:

♦ You should have See Function turned on, and be viewing the same function
in AFNI as you are editing

↪→ Otherwise, you won’t see anything when you edit!

♦ When drawing, you are putting numbers into a dataset brick

↪→ These numbers are written to disk only when you do Save, SaveAs, or Done;
before then, you can Quit (or exit AFNI) to get the unedited dataset back



• Step 1: Load a dataset to be edited

♦ Choose Dataset button gives you a list of datasets that

(a) Actually have brick data with only one sub-brick; and

(b) Are at the same voxel dimension, grid size, etc., as the current anatomical
underlay dataset

♦ When you are starting, you probably don’t want to edit an existing dataset

♦ To get an all zero copy of the anatomical underlay, click the Copy button on,
and set the controls to its right to Zero, Func, As Is

1. Data would make a copy of the dataset with the actual data values

2. Func makes the copy be a functional dataset, no matter what the original
is; Anat would make the copy be an anatomical dataset; As Is would leave
the copy in whatever mode the original was

3. As Is means to keep the voxel values in the copy as the same type as in the
original; you can also change the voxels values to be stored as

. Bytes (integer values: 0..255) — 1 byte each

. Shorts (integer values: −32767..32767) — 2 bytes each

. Floats (fractional values) — 4 bytes each

. Bytes and Shorts make the most sense for ROI masks, where you are
essentially attaching labels to voxels

♦ Then Choose Dataset, pick the dataset you want a copy of (e.g., the anatom-
ical underlay), and then Set



• Step 2: Drawing the ROI (or ROIs)

♦ Choose the value to draw into the dataset

↪→ If you are drawing only 1 ROI, then the default value of 1 is good

↪→ If you are drawing multiple ROIs, then you should choose a different numerical
value for each so that they can be distinguished later

. And write down which number corresponds to which ROI!

♦ Choose the drawing color

↪→ This is the color that is shown while you are drawing

↪→ Color choice is only important to give a good contrast with underlay

↪→ After you finish a drawing motion, the voxels you drew will be filled with the
drawing value, the image will be redisplayed, and the colors will be determined
by the Define Function control panel

♦ Choose the drawing mode:

↪→ Open Curve⇒
Drawing action produces a continuous open-ended curve

↪→ Closed Curve⇒
Drawing action produces a continuous closed-ended curve (not filled inside)

↪→ Points⇒
Only points actually drawn over are filled (used to “touch up” an ROI)



↪→ Flood->Value⇒
Flood fill outwards from drawn point, stopping when the flood hits the current
drawing value (used to fill a closed curve)

↪→ Flood->Nonzero⇒
Flood fill outwards from drawn point, stopping when the flood hits any
nonzero voxel (used to fill between regions)

↪→ Zero->Value⇒
Flood fill with zero—instead of the drawing value—stopping when the flood
hits the current drawing value (I forget why this is useful)

↪→ Filled Curve⇒
Drawing action produces a continuous closed-ended curve (filled inside)

♦ Actually draw something

↪→ Drawing is done with mouse Button 2 (“middle” button) in a 2D slice image

↪→ Hold the button down in the image window during a single drawing action

↪→ While the drawing action is happening, the chosen drawing color will trace
the screen pixels you draw over

↪→ When you release the button, these pixels are converted to voxels, and the
dataset is actually changed, using the drawing value and drawing mode you
selected

↪→ At this point, the color of the drawn region will change to reflect the drawing
value and the setup of the Define Function control panel



♦ Undo button will let you take back the last drawing action

↪→ Only one level of undo is available: Undo then Undo will take you back to
where you just finished drawing

♦ You can only draw on one 2D slice image at a time

↪→ If you draw on a montage display, only screen pixels overlaying the first image
you Button 2 click in will count

↪→ While drawing, if you cross over between sub-images in the montage, unex-
pected effects will result

. But there is always Undo to the rescue!

• Step 3: Save your results

♦ Save will write the current dataset values to disk (overwriting any .BRIK file),
and let you continue editing the same dataset

↪→ You could also then choose another dataset to edit

♦ SaveAs will let you write the current dataset to disk under a new name, creating
a new dataset, then continue editing the new dataset

♦ Quit exits editing and closes the plugin window, without saving to disk any
changes since the last Save

↪→ Exiting AFNI has the same effect

♦ Done is equivalent to Save then Quit



• Optional Drawing Steps:

♦ Linear Fillin lets you draw a 3D ROI not in every slice, but in every third
slice (say), and then go back and fill in the gaps

↪→ For example, if you draw in coronal slices, then you want to fill in the A-P

direction (the default)

↪→ If you draw every nth slice, then you want to set Gap to n− 1

↪→ Line segments of voxels in the fillin direction that have the current drawing
value at each end, and have no more than Gap zero voxels in between, will
get their gap voxels filled with the drawing value

↪→ After you try this, you will probably have to touch up the dataset manually

↪→ Fillin cannot be undone — be careful!

↪→ This operation can also be done with program 3dRowFillin, which creates
a new dataset (and thus provides a way to undo: the rm command)

♦ TT Atlas Region to Load lets you load regions from the Talaraich Daemon
database into the dataset voxels

↪→ Requires that you be drawing in +tlrc coordinates, or at least have a trans-
formation from +orig→+tlrc computed in the current directory

↪→ Choose a region to draw into the dataset (e.g., Hippocampus)

↪→ Load: OverWrite will fill all voxels in the region with the drawing value

↪→ Load: InFill will fill only voxels in the region that are currently zero

↪→ You probably want to edit the results manually to fit the subject



• Drawing and Rendering at the Same Time (totally fun, and maybe useful):

♦ You cannot draw into the rendering plugin, but you can use it to see in 3D what
you are drawing in 2D

↪→ If you meet the dataset criteria for rendering (usually in +tlrc coordinates)

♦ How to set up the renderer:

↪→ Choose the underlay to be the current anatomical dataset (or a “scalped”
version, from 3dIntracranial)

↪→ Choose the overlay dataset to be the dataset you are editing

↪→ Turn on See Overlay

↪→ Set Color Opacity to ShowThru (or ST+Dcue)

↪→ Turn on DynaDraw

↪→ Drawing in a 2D image window immediately
triggers a redraw in the rendering window
(if the 2D and 3D overlay datasets are the same)

↪→ This is only useful if your computer is fast
enough to render quickly (< 1 s per frame)



Things to Do with ROI Datasets

• ROIs are used on a voxel-by-voxel basis to select parts of datasets

• If you draw at the anatomical resolution and want to use the ROI dataset at the
functional resolution, you probably have to convert the high-resolution ROI dataset
to a low-resolution dataset (unless you are working in +tlrc coordinates)

• Program 3dfractionize does this resolution conversion:
3dfractionize -template func+orig

-input ROI hires+orig

-clip 0.5 -preserve -prefix ROI lores

♦ -template func+orig⇒ New dataset is written at resolution of func+orig

♦ -input ROI hires+orig⇒ Defines the input high-resolution dataset

♦ -clip 0.5⇒ Output voxels will only get a nonzero value if they are at least
50% filled by nonzero input voxels

♦ -preserve⇒ Output voxels will preserve the input dataset’s values
(without this option, the output value of a voxel is the fraction of the voxel that
is filled with nonzero input voxels)

• One large output voxel may be partially or fully covered by several nonzero smaller
input voxels; 3dfractionize computes the overlap fraction for each output voxel
and uses that fraction to decide what value to put in the voxel



• N.B.: A ROI is defined by the values stored in the voxels of the ‘mask’ dataset

♦ Contiguity of voxels has no meaning to the ROI software described below

♦ Two voxels are in the same ROI if they have the same value in the mask dataset

• 3dmaskave: program to compute the average of voxels from a dataset, with the
voxels selected from a mask dataset (interactive version: ROI Average plugin)

♦ Example:
3dmaskave -mask ROI fred+tlrc -mrange 1 3

’func fred+tlrc[2,5,7]’

will print out 1 line for each of the 3 selected sub-bricks in the input dataset
func fred+tlrc:
44.287 [137 voxels]

27.021 [137 voxels]

-33.22 [137 voxels]

Each line is the average of the sub-brick values over the selected voxels: all
voxels whose value in the mask dataset are between 1 and 3 (inclusive), as
specified by -mrange 1 3

♦ The -q option suppresses the voxel count printout; it is useful if you want to
compute the average time series over a ROI and save it to a 1D file for later
use in AFNI:
3dmaskave -mask ROI fred+tlrc -mrange 1 1

epi01 fred+tlrc > epi01 fred ROI 1.1D



• 3dmaskdump: program to dump out all voxels in a dataset (or datasets) that match
some values given in mask dataset

♦ Mask dataset is usually a ROI dataset

♦ Example:
3dmaskdump -noijk -mask ROI fred+tlrc

-mrange 1 1 ’func fred+tlrc[2,5,7]’

would produce output like so for each voxel whose value in ROI fred+tlrc

was 1:
12 37 42

27 0 321

4 4 444

That is, each voxel that passes the -mask and -mrange tests (i.e., is nonzero
in the mask and has its value in the range of numbers given by -mrange) gets
one line printed with the values that are in sub-bricks #2, #5, and #7 from
dataset func fred+tlrc at that voxel.

♦ More than one dataset can be given at the end of the command line

♦ Main application is to dump out the data or functional activation values that
match a ROI so they can be processed in some other program (e.g., Excel)

♦ If -noijk option is omitted, each output line starts with ijk-indexes of the voxel

↪→ Program 3dUndump can be used to create a dataset from a text file with
ijk-indexes and dataset values



• 3dROIstats: program to compute average of voxels from a dataset, using multiple
regions selected by a single ROI dataset

♦ Averaging is done over each region defined by a distinct value in the ROI dataset

♦ Example:
3dROIstats -mask ROI fred+tlrc ’func fred+tlrc’

produces output that looks like this:

File Sub-brick Mean_1 Mean_2 Mean_3

func_fred+tlrc 0 33.3 44.4 55.5

func_fred+tlrc 1 22.2 66.6 -21.2

func_fred+tlrc 2 2.3 9.7 666.666

The Mean 1 column is the average over the ROI whose mask value is 1, Mean 2

over ROI with mask value 2, etc.

♦ Very useful if you create ROI masks for a number of subjects, using the same
number codes for the same anatomical regions (e.g., 1=hippocampus, 2=amyg-
dala, 3=superior temporal gyrus . . . ).

♦ You can load the output of 3dROIstats into a spreadsheet for further analysis
(e.g., statistics with other subjects’ data).



Creating ROI Datasets from Activation Maps

• The program 3dmerge can find contiguous supra-threshold voxel clusters in an
activation map and then convert each cluster into a ROI with a separate data
value

♦ These ROIs can then be used as starting points for some analysis

• Example:
3dmerge -1clust order 1 500

-1tindex 1 -1thresh 0.4

-prefix ROI func func+tlrc

Does the following:

♦ Thresholds the dataset on sub-brick #1 at value 0.4

♦ Clusters together all the surviving nonzero voxels using a contiguity test of 1 mm
and keeping only clusters at least 500 mm3 in volume

♦ All voxels in the largest cluster are assigned value 1, in the second largest
assigned 2, etc., and the result is written to disk in dataset ROI func+tlrc

• You can now use this dataset as a mask, edit it with the drawing plugin, . . .


