Miscellaneous AFNI Utilities

- Reminder: almost all command line utilities have a <u>-help</u> option that provides a reminder about their usage; for most programs, the output of <u>-help</u> is the most up-to-date documentation
- 3dinfo print out information from a dataset .HEAD file

----- HISTORY -----

 $\Leftrightarrow \texttt{3dinfo astrip+orig} \quad \underline{\mathsf{OR}} \quad \mathsf{Define \ Datamode} {\rightarrow} \mathsf{Misc} {\rightarrow} \mathsf{Anat \ Info}$

```
Dataset File:
               astrip+orig
Identifier Code: MCW_SJIVYPTEAOH Creation Date: Wed Sep 29 07:50:58 1999
Dataset Type: Spoiled GRASS (-spgr)
Byte Order: MSB_FIRST [this CPU native = LSB_FIRST]
Data Axes Orientation:
 first (x) = Anterior-to-Posterior
 second (y) = Superior-to-Inferior
 third (z) = Left-to-Right [-orient ASL]
R-to-L extent: -74.000 [R] -to- 73.600 [L] -step- 1.200 mm [124 voxels]
A-to-P extent: -119.531 [A] -to- 119.531 [P] -step- 0.938 mm [256 voxels]
I-to-S extent: -119.531 [I] -to- 119.531 [S] -step- 0.938 mm [256 voxels]
R-to-L center: -0.200 [R]
A-to-P center: 0.000 [P]
I-to-S center: -0.000 [I]
Number of values stored at each pixel = 1
  -- At sub-brick #0 '#0' datum type is short:
                                                                     733
                                                      0 to
```

```
[cox@varda.biophysics.mcw.edu: Wed Sep 29 07:50:58 1999] 3dIntracranial -min_val 30
-anat anat+orig -prefix astrip
```

- 3dnewid Change the ID code in a dataset's .HEAD file
 - ♦ ID codes used internally to identify datasets (e.g., in parent-child relationships)
 - ♦ 3dnewid -fun shows one ID code (supposed to be globally unique)
- 3dcopy make a copy of a dataset (.HEAD and .BRIK files)
 - \diamond Is equivalent to using Unix \underline{cp} on the .HEAD and .BRIK files, then using <code>3dnewid</code> on the copy
- 3drename rename a dataset (.HEAD and .BRIK files)

 \diamond Is equivalent to using Unix \underline{mv} on the .HEAD and .BRIK files

- <u>3dNotes</u> attach notes to a dataset .HEAD file that will be printed by <u>3dinfo</u>
 <u>> Dataset NOTES</u> plugin provides an interactive way to do the same thing
- <u>3dbucket</u> assemble various sub-bricks into a single "bucket" dataset
 > Lets you put diverse results into one place for easy viewing
- 3ddup make a warp-on-demand (.HEAD file only) copy of a dataset
 - \diamond Is a way to make a copy of a dataset at a new resolution
 - \diamond Then use Define Datamode \rightarrow Resam and \rightarrow Write to write to disk
- <u>3drefit</u> modify parameters in a dataset's .HEAD file
 > Lets you "patch" mistakes made in <u>to3d</u> (not by you, but by someone else)

Spatial Utilities

- **3dclust** find clusters of "active" voxels and print out a report about them
 - ◊ "Active" means nonzero (survives thresholding operation)
 - ♦ Clusters are defined by a connectivity radius parameter rmm:

- \diamond Clustering starts by finding some nonzero voxel
- ♦ All nonzero voxels closer than rmm millimeters (center-to-center distance) to the given voxel are included in the cluster
- \diamond Cluster then grows outwards from all newly included voxels, using rmm again

 \diamond Clustering actually takes place in 3D:

 \hookrightarrow Assume cubical voxels with grid size L mm

 \hookrightarrow L < rmm < $\sqrt{2}$ L \Rightarrow connect voxels that share a common face

- $\hookrightarrow \sqrt{2} L < rmm < \sqrt{3} L \Rightarrow$ connect voxels that share a common edge
- $\hookrightarrow \sqrt{3} L < rmm < 2L \implies$ connect voxels that share a corner
- \hookrightarrow Larger values of rmm will jump over zero voxels
- \diamond You can override actual voxel size (which may not be cubical) by using the -dxyz=1 command line switch, which then pretends that voxel size L=1
- ♦ Sample report: 3dclust -1thresh 0.47 7 600 r1:time@1+orig

```
Cluster report for file r1:time@1+orig

[Connectivity radius = 7.00 mm Volume threshold = 600.00 ]

[Single voxel volume = 98.4 (microliters) ]

[Voxel datum type = short ]

[Voxel dimensions = 3.750 mm X 3.750 mm X 7.000 mm ]

Mean and SEM based on Absolute Value of voxel intensities:
```

Volume	CM RL	CM AP	CM IS	minRL	maxRL	minAP	maxAP	minIS	maxIS	Mean	SEM	Max Int	MI RL	MI AP	MI IS
3839	2.3	-15.3	4.4	-11.0	10.0	-28.1	-5.6	-9.4	20.6	0.0069	4.8e-04	0.0176	3.0	-13.1	5.6
2067	16.0	56.8	9.4	3.0	24.0	39.4	65.6	1.9	16.9	0.0059	4.3e-04	0.0107	17.0	61.9	13.1
1772	38.4	-5.3	0.2	24.0	52.0	-13.1	-1.9	-9.4	5.6	0.006	5.1e-04	0.0111	31.0	-1.9	-1.9
1575	-18.4	-36.7	4.5	-25.0	-18.0	-43.1	-28.1	-9.4	13.1	0.0072	0.001	-0.0181	-18.0	-43.1	5.6
1477	-1.4	-65.8	-31.7	-4.0	10.0	-69.4	-58.1	-39.4	-28.1	0.0109	0.001	-0.0201	-4.0	-65.6	-31.9
1280	24.5	-30.0	1.4	24.0	31.0	-35.6	-24.4	-9.4	9.4	0.0053	4.9e-04	-0.0089	24.0	-35.6	5.6
1181	0.7	-50.9	0.6	-4.0	10.0	-54.4	-46.9	-13.1	5.6	0.0071	0.0011	-0.0154	-4.0	-50.6	5.6
886	42.9	-28.8	-10.9	38.0	52.0	-31.9	-20.6	-13.1	-5.6	0.0059	7.7e-04	0.0096	38.0	-31.9	-9.4
689	33.2	-4.7	17.8	31.0	38.0	-9.4	-1.9	13.1	24.4	0.0074	0.0011	0.0133	31.0	-1.9	20.6
14766	9.8	-20.1	-1.8							0.0069	2.7e-04				

◇ -1thresh 0.47=threshold to apply to dataset ; 7=rmm ; 600=volume of smallest cluster to report (in mm³=microliters)

- 3dmerge spatially edit and/or combine datasets (the very first "3d" program!)
 - \diamond "Editing" options (applied to each input dataset) include:
 - \hookrightarrow Clipping (setting small values to zero)
 - \hookrightarrow Thresholding (setting voxels to zero based on some other sub-brick)
 - \hookrightarrow Spatial filtering (e.g., Gaussian blur)
 - $\hookrightarrow \mathsf{Spatial}\ \mathsf{clustering}$

 - $\hookrightarrow \mathsf{Mean}; \ \mathsf{Mean} \ \mathsf{of} \ \mathsf{nonzero} \ \mathsf{inputs}$
 - $\hookrightarrow \mathsf{Maximum}; \mathsf{Maximum} \mathsf{ absolute} \mathsf{ value}$
 - \hookrightarrow Count of nonzero input voxels
- 3dZeropad add planes of zeros around a dataset

 \diamondsuit Can also cut planes off edges of dataset

- 3dZcutup and 3dZcat cut slices out of dataset; glue datasets together
 - \diamond In the slice (z) direction
 - \diamond Used when processing a big 3D+time dataset is too much

- 3dZregrid resample dataset in the slice (z) direction
 - \diamond Used when you want to compare datasets acquired with different slice thickness
 - \diamond But you should really be more careful when acquiring your datasets!
- **3dcalc** voxel-by-voxel general purpose calculator
 - \diamondsuit Useful for combining ROI masks in various ways
 - \diamond Useful for forming 'conjunction tests', and many other voxel-wise operations
- 3dMean voxel-by-voxel mean of input datasets

♦ Like 3dmerge -gmean, but simpler to use, and much faster than 3dcalc

• <u>3dClipLevel</u> — estimate the voxel value at which to threshold an EPI dataset so as to remove most non-brain tissue

 \diamond Same algorithm is used as starting point in <code>3dAutomask</code>

- <u>3dIntracranial</u> strip the scalp and other non-brain tissue from a high-resolution T1-weighted anatomical dataset
 - \diamond Useful for volume rendering fun
 - ♦ Combined with **3dfractionize**, is another way to make a brain-only mask

- **3daxialize** rewrite a dataset in a new slice orientation
- <u>3dresample</u> rewrite a dataset in a new orientation and interpolated to a new voxel size
- **3drotate** rigid body 3D rotation of a dataset
- 3dWarp nonrigid 3D transformation of a dataset
- **3dAnatNudge** automatically try to align EPI and structural datasets

♦ Dataset Nudge plugin lets you do the same manually

- 3dTagalign align 2 datasets based on manually set tags
 - \diamond Tags are set with the Edit Tagset plugin
 - \diamond Alignment can be rigid body (6 parameters) or affine (12 parameters)
 - \diamond This can be very useful when <code>3dAnatNudge</code> doesn't work well

Masking and ROI Utilities

- 3dAutomask create a brain-only mask from an EPI dataset
- **3dfractionize** resample a high-resolution dataset to lower resolution
 - \diamond Used to take high-resolution mask (ROI) datasets to EPI resolution

 - ◊ Can let input voxels "vote" on the value of output voxels (since multiple input voxels can overlay a larger output voxel, must have a scheme to decide which input value "wins")
- 3dmaskdump print out all the voxel values indicated by a mask dataset
- 3dUndump take a text file and put its values into a dataset
 - \diamond The inverse of 3dmaskdump
- 3dmaskave print out the average of voxels over an ROI

 \diamond Can compute a 1D time series averaged from a 3D+time dataset over an ROI \diamond Can also use ROI Average plugin

- 3dROIstats print out statistics of voxels from multiple ROIs
- **3dOverlap** count number of voxels that are nonzero in all input sub-bricks

3D+time Dataset Utilities

- 3dTsmooth smooth a 3D+time dataset along the time axis
- **3dFourier** filter time series in the Fourier domain

♦ Allows more general filtering than 3dTsmooth

• **3dTcat** — catenate 3D+time datasets together

♦ For use in 3dDeconvolve, for example

• **3dTstat** — basic statistics on 3D+time datasets

 \diamond Voxel-wise mean, standard deviation, median, etc.

• 3dTqual and 3dToutcount — check 3D+time datasets for 'outliers'

 \diamond Now also included automatically in to3d

- ♦ 3dDespike remove outliers (spikes) from voxel time series
- <u>3dDetrend</u> subtract least squares fits of 'trends' from voxel time series
 ♦ Usually better to do this at the same time as activation analysis
- 3dTshift align dataset slices to the same time origin
 - ♦ Can also be done in 3dvolreg, before registration

Miscellaneous Useful Plugins

Define Datamode \rightarrow Plugins \rightarrow	Cancel	Dataset#2	maskcalc
	2D Registration	Dataset#N	Maxima
	3D Cluster	Deconvolution	NLfit & NLerr
	3D Correlation	Draw Dataset	Nudge Dataset
	3D Dump98	Dset Zeropad	Permutation Test
	3D Edit	Edit Tagset	Power Spectrum
	3D Registration	Expr OD	Render [new]
	3D+t Extract	Fourier Stuff	Render Dataset
	3D+t Statistic	Gyrus Finder	Reorder
	4D Dump	Hemi-subtract	ROI Average
	BRIK Compressor	Hilbert Delay98	ROI Plot
	Coord Order	Histogram	ScatterPlot
	Dataset Copy	Histogram: BFit	SingleTrial Avg
	Dataset Dup	Histogram: CC	Threshold
	Dataset NOTES	L1_Fit & Dtr	TS Generate
	Dataset Rename	LSqFit & Dtr	Wavelets

• Coord Order — set the order in which coordinates are displayed

 \diamond Can choose another order with this plugin: most common is LPI or "flipped"

• Histogram — graph a histogram of a sub-brick

 \diamond Or of an ROI, or a spherical region about the AFNI focus point

• Dataset#N — allows you to graph extra dataset time series in an AFNI graph viewer (overlaid in color on the current underlay dataset time series)

 \diamond In conjunction with the <code>Double Plot</code> graphing function

• **ScatterPlot** — plot values from 1 sub-brick vs. values from another

1D Time Series Utilities

- <u>waver</u> generates 1D time series which are convolution of input stimulus timing with model hemodynamic response functions
- 1dplot graphs 1D time series files

 \diamond Not very fancy graphs: mostly useful for quick look at data, not for publications

- 1dcat catenate columns of 1D time series files
- 1deval like 3dcalc for 1D time series
- 1dtranspose transpose a 1D file (exchange rows and columns)

◊ If you want to input a 1D file as an AFNI dataset, then the columns correspond to sub-bricks

Dataset Simulators

- 3dTSgen generates a dataset from a time series model and noise
- 3dConvolve generates a dataset by convolution (the opposite of 3dDeconvolve
- **3dcalc** can be use to generate datasets with noise added (if you are clever)

Environment Variables and .afnirc

- Operation of AFNI is affected by many Unix environment variables
 - ◊ Full documentation is in file README.environment (in AFNI distributions)
 - ♦ Environment variables can be set in your shell startup file (e.g., .cshrc) or in AFNI's startup file (.afnirc), in your home directory
 - ♦ Some environment variables can be set from the pseudo-plugin Define Datamode→Misc→Edit Environment
- Some useful environment variables (there are many more)
 - AFNI_PLUGINPATH gives the directory where AFNI will look for plugins when it starts up
 - AFNI_SESSTRAIL gives the number of directory levels to show in the
 Switch Session chooser
 - ♦ AFNI_HINTS can be used to turn off the popup hints (tooltips)
 - ♦ AFNI_COMPRESSOR can be used to tell AFNI programs to compress .BRIK files when they are written out
 - ♦ AFNI_AUTOGZIP can be used to tell AFNI programs to gzip compress .BRIK files if they appear like "good" candidates for compression (e.g., ROI datasets)

- ♦ AFNI_LEFT_IS_LEFT can be used to have axial and coronal images displayed with the subject's left on the display left (default is subject's left on the display right: radiological order)
- ♦ AFNI_ALWAYS_LOCK can be used to turn on inter-controller Lock at startup
- ♦ AFNI_NOSPLASH can be used to hide the AFNI splash window (but why?)
- ♦ AFNI_ENFORCE_ASPECT can be used to make defective window managers (KDE, Gnome) keep the image window aspect ratios when resizing (I then also recommend setting the window manager so that it doesn't redraw the windows during resizing operations)
- Sample .afnirc file:

```
***ENVIRONMENT
AFNI_LEFT_IS_LEFT
                      = YES
                               // images show subject's left on screen left
                      = 512
                               // in pixels
AFNI_graph_width
AFNI_graph_height
                      = 384
AFNI_graph_ggap
                      = 6
                               // gap between sub-graphs
                               // use thick lines for data graphs
AFNI_graph_data_thick = 1
                               // shorten the splash screen display
AFNI SPLASHTIME
                      = 1.0
AFNI_ALWAYS_LOCK
                               // locking windows together
                      = YES
AFNI ENFORCE ASPECT
                      = YES
AFNI_AUTOGZIP
                               // 02 Mar 2001
                      = YES
```

• See <u>README.environment</u> and <u>README.setup</u> for details on all environment variables and other setup issues

AFNI Command Line Switches

- Command line switches to the interactive AFNI program itself are not often needed, but are sometimes useful:
 - $\diamond -R$ = recursively search directories for datasets (may take a long time)
 - \diamond -noqual = skip the "quality" check for marker transformations
 - \diamond -noplugins = don't load plugins
 - $\diamond \mbox{-skip_afnirc} = \mbox{don't}$ read the .afnirc file
 - ◇ -ncolors nnn = use 'nnn' gray levels for image display (default=80)
 - \diamond -nomall = disables use of AFNI's internal malloc() (if it causes problems)

Final AFNI Fun

- Try clicking each mouse button in the blank area to the right of the Done button
- Try clicking or typing into the splash screen
- Try using **BHelp** in a blank area of the AFNI controller
- To exit AFNI quickly, press the Shift key down, then click on Done

Roundup of Useful AFNI Programs and Plugins

• Dataset Creation and Conversion

to3d	Reads image files, writes AFNI format datasets
3dAFNIto3D	Convert AFNI format dataset to .3D format (ASCII lists)
3dAFNItoANALYZE	Convert AFNI format dataset to ANALYZE format
3dAFNItoMINC	Convert AFNI format dataset to MINC format
3dANALYZEtoAFNI	Convert ANALYZE format dataset to AFNI format
3dMINCtoAFNI	Convert MINC format dataset to AFNI format
3dThreetoRGB	Convert 3 scalar datasets to 1 RGB AFNI format dataset

• Auxiliary Programs for Dataset Creation from Images

Ifile	Reads GE realtime EPI files and runs to3d
Imon	Reads GE realtime EPI files as they are created
rtfeedme	Dissects one dataset, sends images to AFNI realtime plugin
plugin: RT Options	Control options for AFNI realtime image input
from3d	Writes dataset slices into image files
abut	Creates zero-filled slices to put into dataset gaps

• Quality Checks for 3D+time Datasets

3dToutcount	Check voxel time series for quality (temporal outliers)
3dTqual	Check dataset sub-bricks for quality (spatial outliers)

• 3D+time Pre-processing Programs

3dTshift	Shift slices to a common time origin (temporal interpolation
3dDespike	Remove spikes from voxel time series
3dDetrend	Remove trends from voxel time series
3dFourier	FFT-based lowpass and highpass filtering
3dTsmooth	Smooth time series in the time domain

• 3D+time Analysis Programs

Multiple linear regression and deconvolution
Interactive deconvolution
Single regressor linear analysis
Extended version of 3dfim
Single regressor linear analysis with time shifting
Nonlinear regression
Interactive nonlinear regression
Correlate two input datasets, voxel-by-voxel
Correlate each voxel with every other voxel
Principal component analysis

• Model 1D Time Series Generators

sqwave	Generate a square wave (a very old program)
waver	Generate hemodynamic responses to stimulus time series

• Dataset Histogram Programs

3dAnhist	Create and plot histogram of dataset, print peaks
3dhistog	Create histogram of dataset to a file
plugin: Histogram	Interactively graph histogram of a dataset (or ROI)
plugin: ScatterPlot	Interactively graph 1 sub-brick vs. another (or ROI)
3dClipLevel	Find value to threshold off outside-the-brain voxels
3dUniformize	Correct T1-weighted dataset for non-uniform histogram
3dIntracranial	Strip off outside-the-brain voxels

• Group Dataset Statistical Analysis Programs

3dttest	paired and unpaired t-tests
3dANOVA	1-way ANOVA (fixed effects)
3dANOVA2	2-way ANOVA (fixed, random, mixed effects)
3dANOVA3	3-way ANOVA (fixed, random, mixed effects)
3dFriedman	nonparametric Friedman test
3dKruskalWallis	nonparametric Kruskal-Wallis test
3dWilcoxon	nonparametric Wilcoxon test
3dMannWhitney	nonparametric 3dMannWhitney test
3dRegAna	voxel-wise linear regression analyses
3dFDR	False Discovery Rate analysis

• Programs for Manipulating Information in the Dataset Header

3dinfo	Prints out information from the header
3dAttribute	Prints out a single header attribute
3dnewid	Assigns a new ID code to a dataset
3drefit	Lets you change attributes in a dataset header
3dNotes	Lets you put text notes into a dataset header
plugin: Dataset NOTES	Interactive header notes editor

• Programs for Changing Dataset Spatial Structure

3daxialize	Rewrite dataset with slices in different direction
3dresample	Rewrite dataset in new orientation, with new voxel size
3dLRflip	Flip dataset Left↔Right

• Programs for Assembling Sub-Bricks into 4D Datasets

3dTcat	Assemble a 3D+time dataset from multiple input sub-bricks
3dbucket	Assemble a bucket dataset from multiple input sub-bricks

• Programs for Changing Slice Structure

3dZcat	Glue multiple sub-bricks together along the z-axis
3dZcutup	Cut slices out of a dataset to make a 'thinner' dataset
3dZeropad	Add zero slices around the edges of a dataset
3dZregrid	Interpolate a dataset to a different slice thickness

• Image Registration Programs

3dvolreg	
2dImReg	

Volumetric registration (rigid body in 3D) Slice-by-slice registration (rigid body in 2D, each slice separately)

• Spatial Transformations of Dataset Geometry

3drotate	Rigid body rotation of dataset in 3D
3dWarp	Non-rigid transformation of 3D coordinates
3dAnatNudge	Try to align EPI and structural volumes automatically
plugin: Nudge Dataset	Align EPI and structural volumes manually
3dTagalign	Align datasets by matching manually placed 'tags'
plugin: Edit Tagset	Place 'tags' in a dataset interactively
adwarp	Transform dataset using warp from dataset header
Vecwarp	Transform 3-vectors using warp from dataset header

• Dataset File Manipulation

3dcopy	Copy a dataset to make new files
3drename	Rename dataset files
3ddup	Make an 'empty' duplicate (warp-on-demand) of a dataset

• ROI Generation and Usage Programs

<mark>plugin</mark> : Draw Dataset	Manually draw ROI mask datasets
3dAutomask	Generate a brain-only mask from an EPI dataset
3dmaskave	Calculate dataset values averaged over a ROI
3dmaskdump	Output all dataset values in a ROI
3dROIstats	Calculate dataset values from multiple ROIs
3dUndump	Input text values into a dataset (inverse of 3dmaskdump)
3dOverlap	Create mask that is overlap of nonzero voxels from multiple datasets
3dfractionize	Resample a mask dataset to a different resolution

• Simple Calculations on Datasets, Producing New Datasets

3dcalc	Voxel-by-voxel general purpose calculator
3dmerge	Various spatial filters, thresholds, and averaging
3dTstat	Various statistics of multi-brick datasets, voxel-by-voxel
3dMean	Average datasets together, voxel-by-voxel, for each time point
3dWinsor	Nonlinear order statistics filter for spatial smoothing

• Computation of Various Numbers from Datasets

3ddot	Dot product (correlation coefficient) of 2 sub-bricks
3dclust	Find connected clusters of nonzero voxels
3dExtrema	Find local maxima (or minima) of datasets
3dFWHM	Estimate Full Width Half Maximum of dataset spatial correlation

• Simulated Dataset Generators

3dTSgen	Generate 3D+time dataset from 1D model and noise
AlphaSim	Simulate datasets and estimate statistical power
3dConvolve	Simulate datasets via convolution

• Programs for Dealing with 1D Time Series

1dcat	Catenate them horizontally
1deval	1D calculator (like 3dcalc for 1D files)
1dplot	Graph them
1dtranspose	Transpose them (interchane rows and columns)

• Miscellaneous File Manipulations

2swap	Byte pair swap: $ab \leftrightarrow ba$
4swap	Byte quad swap: abcd \leftrightarrow dcba
24swap	Mixed 2 and 4 byte swaps in same file
strblast	Find a string in a file and replace it with junk
• Miscellaneous Utiliti	es
byteorder	Report the byteorder of the current CPU
ccalc	A command line calculator (like 3dcalc)
cdf	Compute probabilities, thresholds for standard distributions
count	Generate numbered strings for command line scripts

• Image File Header Printouts

dicom_hdr	Print information from a DICOM file
ge_header	Print information from a GE I. file
mayo_analyze	Print information from a ANALYZE .hdr file
siemens_vision	Print information from a Siemens Vision .ima file

• Miscellaneous Visualization Tools

aiv		
plugin:	Render	[new]
plugin:	Dataset#N	

AFNI Image Viewer program Interactive volume rendering Graph extra dataset time series in AFNI graph viewer