
1

UNIX essentials (hands-on)

• the directory tree

• running programs

• the shell

→ command line processing

→ special characters

→ command types

→ shell variables

→ environment variables

→ wildcards

→ shell scripts

→ shell commands

→ pipes and redirection

• OS commands

• special files

2

• The Directory Tree
→ directories contain files and/or directories
→ / : means either the root directory, or a directory separator

• consider the directory /home/user/AFNI_data1
→ class work:

• open a terminal window
• commands: pwd, ls, ls -a, ls -al

• use the "cd" command to go to the given directories
e.g. for directory /usr/bin, use the command: cd /usr/bin

once there, use the commands "pwd", "ls", and "ls -al"
note that you can always return to the home directory via: cd

/, home, user, AFNI_data1, .., AFNI_data1/afni, ../..

/home/user, /usr/bin, ~/abin, ../../home/user/../user/../user

→ many commands can be used to return to the home directory (of "user")
• examples: cd, cd ~, cd ~user, cd $HOME, cd /home/user

→ an "absolute" pathname begins with '/', a "relative" pathname does not
• a relative pathname depends on where you start from
• in the directories above, note which are relative pathnames

3

→ every directory has a parent directory

• the relative pathname for the parent directory is '..'

• the relative pathname for the current directory is '.'

→ commands:

ls, ls -a, ls -al, ls -alt, ls -altr, cd ~/AFNI_data1/afni

ls -l, wc ideal_r1.1D, cat idea_r1.1D, less ideal_r1.1D

→ 'less': a file perusal program

• basic keystrokes while running less: Enter, Space, b, g, G, h, q

• command: less rall_vr+orig.HEAD

• Programs
→ a program is something that gets "executed", or "run"

→ the first element of a command line is generally a program

→ commands:

echo the home directory of $USER is $HOME

ls ~ ~/AFNI_data1 ~/AFNI_data1/afni/ideal_r1.1D

→ script: an interpreted program (interpreted by another program)

• e.g. consider the c00.all script: cat ~/AFNI_data1/ht03/c00.all

4

• The Shell: command line processing
→ command interpreter (case and syntax sensitive)

→ examples: tcsh, csh, sh, bash, ksh, zsh, wish, tclsh, rsh,
ssh

→ command: echo $SHELL

• The T-shell: /bin/tcsh
→ an enhanced C-shell (csh), which has C programming style syntax

→ command line processing, simplified outline:

• evaluate special characters, such as:

~ ! @ # $: & () * ? \ ' " ` [] | { }

decide which program(s) to execute

• full pathname, alias, shell command, search the $PATH

execute appropriate program, giving it the parameter list

save the execution status in the $status variable

• command: ls $HOME ~/suma_demo '$pickle'

• tcsh has automatic filename completion using the Tab key

type "ls suma" and hit the Tab key, watch what happens, and hit Enter

type "ls AF" and hit the Tab key, note what happens

5

• Special Characters

~ : the current user's home directory (e.g. /home/user)

$: used to access a variable (e.g. $home)

& : used to put a command in the background (e.g. afni &)

* : wildcard, matching zero or more characters (e.g. ls AFNI_d*)

? : wildcard, matching exactly one character (e.g. ls AFNI_data?)

\ : command line continuation (must be the last character on the line)

' : the shell will not evaluate special characters contained within these quotes

(e.g. echo '$HOME' gives $HOME, not /home/user)

" : the shell will evaluate $variables and `commands` contained within these

(e.g. echo "[*] my home dir is $HOME")

(e.g. echo "the numbers are 'count -digits 2 7 12'")

` : execute the command contained within these quotes, and replace the quoted

part with the output of the contained command

(e.g. echo "the numbers are `count -digits 2 7 12`")

6

• Command Types
→ consider the commands:

/bin/ls ~

ls ~

cd ~

wc ~/AFNI_data1/afni/ideal_r1.1D

→ the "which" command shows where the shell gets a command from:
which ls which cd which wc

→ the shell must decide what type of command it has:
• full pathname for a program: execute that program
• alias: apply any alias(es) then start over (decide on which program to run)
• shell command: part of the /bin/tcsh program
• check the $PATH directories for the program

• The PATH Variable
→ a list of directories to be searched for a given program to be run from
→ the $path and $PATH variables are identical, but are represented differently
→ commands: echo $PATH

echo $path

cat ~/.cshrc

7

• Shell Variables
→ shell variables are variables that are stored in, and affect the shell
→ all variables are stored as strings (or as arrays of strings)
→ a variable is accessed via the '$' character
→ the 'echo' command: echo the line after processing any special characters

• command: echo my home dir, $HOME, holds ~/*
→ the 'set' command: set or assign values to one or more variables

• without arguments: 'set' displays all variables, along with any values
• 'set' takes a list of variables to set, possibly with values
• consider the commands:

set food

echo $food

set food = pickle

echo $food

echo $pickle

set eat food = chocolate donut

set

set food = "eat chocolate donut"

echo $food

8

→ variables can be assigned the result of a numerical computation using the '@'
command, however only integer arithmetic is allowed

• commands: set value1 = 17

@ value2 = $value1 * 2 + 6

echo value2 = $value2

• Array Variables
→ array variables are set using ()

→ consider the commands:
set stuff = (11 12 13 seven 15)

echo $stuff

echo $stuff[1]

echo $stuff[2-4]

echo $stuff[8]

set stuff = (hi $stuff $food)

echo $stuff

echo $path

cat ~/.cshrc

9

• Environment Variables

→ similar to shell variables, but their values will propagate to children shells
→ by convention, these variables are all upper-case (though it is not required)
→ similarly, shell variables are generally all lower-case
→ set environment variables using "setenv" (as opposed to the "set" command)
→ without any parameters, the "setenv" command will display all variables
→ the "setenv" command will only set or assign one variable at a time
→ the format for the command to set a value is (without any '=' sign):

setenv VARIABLE value

• commands:
setenv MY_NAME Elvis

echo $MY_NAME

echo $path

echo $PATH

echo $HOME

setenv

10

• Wildcards
→ used for shell-attempted filename matching

→ special characters for wildcards:

*, ?, [,], ^

* : matches any string of zero or more characters

(special case: a lone * will not match files starting with '.')

? : matches exactly one character

[] : matches any single character within the square brackets

[^] : matches any single character EXCEPT for those within the brackets

→ commands (run from the ~/AFNI_data1/SPGR_anat directory):
ls

ls *

ls -a

ls I.*

ls I.04?

ls I.0[123]*

ls I.0[^123]*

echo I.0[^123]*

11

• Shell Scripts
→ a text file, a sequence of shell commands
→ the '\' character can be used for line continuation (for readability)

• for that purpose, it must be the last character on the line (including spaces)
→ executing shell scripts, 3 methods:

tcsh filename : execute filename as t-shell commands
./filename : execute filename according to the top "#!program"

if no such line, use the current shell
the file must have execute permissions (see 'ls -l')

source filename : execute filename using current shell
this method affects the current environment, so it should be used only when
that is the intention (e.g. .cshrc)

→ consider ~/AFNI_data1/ht03/c00.all
→ consider ~/AFNI_data1/ht03/@stim_analyze
→ use the command "nedit my.script" to create a script with a few commands

echo hello there

ls -a

cd $HOME/AFNI_data1

ls -al

→ run the script using the command: tcsh my.script

12

• Some Shell Commands (handled by the shell)

cd : change working directory
echo : echo command line to the terminal window
pwd : echo the present working directory
set : set variables or assign string values to variables
@ : set a variable to the results of an integral computation
alias : display or create an alias

(e.g. alias hi 'echo hello there')
bg : put a process in the background (usually after ctrl-z)
fg : put a process in the foreground
exit : terminate the shell
setenv : set environment variables
source : execute a script within the current shell environment

• special keystrokes (to use while a process is running)
ctrl-c : send an interrupt signal to the process
ctrl-z : send a suspend signal to the process

13

• More Shell Commands: basic flow control
→ commands: if, else, endif, while, end, foreach

if ($user == "elvis") then

echo 'the king lives!'

endif

set value = 5

set fact = 1

while ($value > 0)

@ fact = $fact * $value

@ value -= 1

end

echo 5 factorial = $fact

foreach value (1 2 3 four eight 11)

echo the current value is $value

end

foreach file (I.*3)

ls -l $file

end

14

• Pipes and Redirection
> : redirect program output (stdout) to a file

e.g. waver -help > waver.help
waver -pickle > waver.help

>& : redirect all output (both stdout and stderr) to a file
e.g. waver -pickle >& waver.pickle
e.g. tcsh my.script >& script.output

>> : append program output to a file

| : pipe standard output to the input of another program
e.g. 3dDeconvolve -help | less

|& : include stderr in the pipe
e.g. tcsh my.big.script |& tee script.output

• run the script
• send all output to the tee program
• the tee program duplicates the input, sending the output to both

the terminal and the given file (script.output)
• you can see the output, but it is also stored for future analysis

15

• Some OS Commands
ls : list the contents of a directory

* cat : concatenate files to the terminal (print them to the screen)
* more : a file perusal program - view files one page at a time
* less : a better file perusal program (type less, get more)

man : on-line manuals for many OS commands (and library functions)
- this uses a "less" interface to display the information
- e.g. consider man on : ls, less, man, tcsh, afni

info : a new program to replace the "man" program
* head : display the top lines of a file (default = 10)

- e.g. 3dDeconvolve -help | head -25
* tail : display the bottom lines of a file (default = 10)

- e.g. tail ideal_r1.1D
* wc : word count - count characters, words and lines (of a file)

rm : BE CAREFUL - remove files and/or directories (no recovery)
- e.g. rm junk.file

- e.g. rm -r bad.directory

* denotes a 'filter' program, which can take input from a file or from stdin

16

* grep : print lines from a file that match the given pattern
e.g. grep path ~/.cshrc

e.g. ls ~/abin | grep -i vol

e.g. from the output of "3dVol2Surf -help" show lines which
contain 'surf', but not 'surface', then remove duplicates

3dVol2Surf -help | grep surf | grep -v surface | sort | uniq

• Some Special Files (in the home directory)
.cshrc : c-shell startup file ("csh run commands")

set aliases
adjust the path
set shell and environment variables

.afnirc : AFNI startup file

.sumarc : suma startup file

.login : commands run at the start of a login shell (e.g. a terminal window)

.logout : commands run before exiting a login shell

.tcshrc : t-shell startup file (if it does not exist, the .cshrc file will be used)

