
-1-

Region of Interest Drawing and Usage in AFNI

• Goal: Manually select Regions of Interest (ROIs) based on anatomical
structures, then analyze functional datasets within these regions
★ E.g., Someone doing a study on emotion may want to draw an ROI mask

that includes the amygdala only in order to analyze the voxels that fall within
that brain region

★ This method relies on ‘a priori’ assumptions about localization of brain
function

• Alternative procedure for selection of ROIs: Analyze functional dataset for entire
brain first, then focus on geometrically connected clusters of ‘activity’ (supra-
threshold voxels in some functional statistical map)
★ i.e., analyze the entire brain first and then pinpoint interesting areas of

activity and do further analyses on those areas (3dclust or 3dmerge can
assist you in finding those larger “blobs” or clusters of activity)
➥Even with this method, you might want to manually adjust the ROIs (i.e.,

add or delete some voxels in the ROI mask)
• ROIs are stored as regular AFNI datasets (i.e., with a .HEAD and .BRIK file); it

is only the user (you) that decides whether a particular dataset is a ROI mask
★ Nonzero voxels are “in” the mask; zero voxels are “outside”

-2-

• Quick outline of procedure:
1. On the main AFNI control panel, set the anatomical underlay dataset (with

[Switch UnderLay]) to be what you want to draw on -- usually a SPGR
or MP-RAGE type of dataset
➥ i.e., the anatomical underlay will serve as our guide or template for

drawing the ROI mask
2. Start the Draw Dataset plugin (this is our ROI-creating plugin):

➥ [Define Datamode] → [Plugins] → [Draw Dataset]
3. Create an all zero anatomical overlay dataset with the Draw Dataset

plugin. This is the beginning of our ROI mask. At this point, the anatomical
overlay is empty - i.e., all the voxel values are zero
➥ This anatomical overlay must have the same geometry as the

anatomical underlay, i.e., it has the same voxel size as the underlay, the
same xyz-grid spacing, etc…, since drawing/editing is done on a voxel-
by-voxel basis
➭ Think of the anat overlay as a blank piece of tracing paper that is the

same size as the template underneath. The blank overlay will be
used to trace portions of the underlay. Voxels inside the traced
portion will make up the ROI mask. Values outside the traced region
are irrelevant (zeros)

➥ Note: You could also edit an already-existing ROI mask (that you
created earlier) at this step

-3-

4. To view and begin drawing an ROI mask (or several ROIs) on this blank
anatomical overlay dataset, go to the main AFNI interface and [Switch
Overlay] to be the empty anatomical dataset you will be editing. Also turn
the overlay ON with [See OverLay]

5. Start drawing the ROI mask into this blank anatomical overlay dataset.
Voxels inside the ROI mask will receive a non-zero value (you decide what
value to give them). Values outside the ROI mask will remain zero
➥ Be sure to save the results by pressing [Save], [SaveAs] or [DONE]

in the ROI plugin GUI ([Quit] will exit the ROI plugin without saving
your work)

6. Convert the anatomical-resolution ROI dataset into a dataset at the
resolution of the functional (statistical) datasets you want to analyze with the
ROI
➥ Note: The ROI and functional datasets may already be at the same

resolution, if you are operating in +tlrc coordinates
➥ Resolution conversion of masks is done with program 3dfractionize

7. Use programs 3dmaskave, 3dmaskdump, and 3dROIstats to extract ROI-
based information about functional datasets
➥ Also can use the ROI Average plugin to extract interactively the

average of a dataset over a ROI (does the same thing as 3dmaskave)

-4-

Using the Drawing Plugin

• Critical things to remember:
★ You should have [See OverLay] turned on, and be viewing the same overlay

dataset in AFNI as you are editing
➥ Otherwise, you won’t see anything when you edit!

★ When drawing, you are putting numbers into a dataset brick
➥ These numbers are written to disk only when you do [Save], [SaveAs] or
[Done]; before then, you can [Quit] (or exit AFNI) to get the unedited dataset
back

How to copy
dataset when

“Copy” button
is active:

Copy data, or
fill with zero

Change datum,
or change voxel
datum

Color to display
while drawing

Fill between drawing planes
Choose TT Atlas Region
Actually load TT Atlas Region

Save edits & continue editing

Save edits into new dataset

 Done = Save & Quit

How to
draw into

dataset
voxels:

Data being edited now

Edit new dataset

Edit copy of dataset?

Value given to ROI voxels

Undo or Redo edits

Exit without saving edits

-5-

• Step 1: Load a dataset to be edited (for ROI creation):
★ [Choose Dataset] button gives you a list of datasets that

(a) Actually have brick data with only one sub-brick;
(b) Are at the same voxel dimension, grid size, etc., as current anat

underlay
★ When you are starting, you probably don’t want to edit an existing dataset --

i.e., you don’t want to write on the underlay itself; you just want to use it as a
template and draw on a blank overlay that shares the same geometry as that
existing underlay dataset
➥To do this, you must create an all-zero copy of the anatomical underlay

(by “copy” we mean the all-zero dataset shares the same geometry as the
underlay, not the same voxel data values)

➥To create an all-zero copy, click the [Copy] button on (from the
Draw Dataset plugin GUI) and set the controls to its right to [Zero]
and [As Is] (the [Func] button is a relic of the program and is now
obsolete -- ignore)
➭ [Data] would make a copy of the underlay dataset with the actual

voxel data values. [Zero] copies the geometry of underlay, but gives
each voxel a data value of zero (this latter option is usually want you
want when starting out)

-6-

➭ [As Is] keeps the voxel values in the copy as the same type as in
the original underlay; you can also change the voxel values to be
stored as:
 [Byte] (integer values: 0..255) ⇒ 1 byte each
 [Short] (integer values: -32767…32767) ⇒ 2 bytes each
 [Float] (fractional values) ⇒ 4 bytes each
 Bytes and Shorts make the most sense for ROI masks, where you

are essentially attaching labels to voxels
➥Click on [Choose Dataset], select the dataset you want a copy of

(e.g., the anatomical underlay), and then press [Set]

• Step 2: Drawing the ROI (or ROIs):
★ Choose the value to draw into the anatomical overlay dataset (recall that all

values in the copied/blank overlay dataset are zero at this point)
➥ If you drawing only one ROI, then the default value of 1 is good
➥ If you are drawing multiple ROIs, then you should choose a different

numerical value for each so that they can be distinguished later
➭ Pencil and paper are our friends -- write down which number

corresponds with which ROI for later recall!
★ Choose the drawing color

➥This is the color that is shown while you are drawing
➥Color choice is only important to give a good contrast with underlay, so

don’t obsess too much over this

-7-

➥After you finish a drawing motion, the voxels you drew will be filled with the
drawing value, the image will be redisplayed, and the colors will be
determined by the [Define OverLay] control panel

★ Choose the drawing mode
➥ [Filled Curve]

Drawing action produces a continuous closed-ended curve (default setting)
➥ [Open Curve]

Drawing action produces a continuous open-ended curve
➥ [Closed Curve]

Drawing action produces a continuous closed-ended curce
➥ [Points]

Only points actually drawn over are filled (used to “touch up” and ROI)

[Points]

[Filled Curve]

[Open Curve]

[Closed Curve]

-8-

➥ [Flood→Value]
Flood fills space outward from the drawing point, stopping when the
flood hits the current drawing value (used to fill a closed curve)

➥ [Flood Nonzero]
Drawing action produces a continuous closed-ended curve (filled
inside)

➥ [Zero→Value]
Floods voxels with zero until the flood hits nonzero voxels (you can
also do this more easily with Filled Curve, value=0)

➥ [Flood→Nonzero]
Flood fills outwards from drawn point, stopping when the flood hits
any nonzero voxel (used to fill between regions):

-9-

★ Actually draw something
➥Drawing is done with mouse Button 2 (“middle” button) in 2D slice image
➥Hold the button down in the image window during a single drawing action
➥While the drawing action is happening, the chosen drawing color will

trace the screen pixels you draw over
➥When you release the button, these pixels are converted to voxels, and

the dataset is actually changed, using the drawing value and drawing
mode you selected

➥At this point, the color of the drawn region will change to reflect the
drawing value and the setup of the [Define OverLay] control panel

★ [Undo] button will let you take back the last drawing action (you can go
“undo” many levels back, i.e., multiple undo function)

★ You can draw on one 2D slice image at a time
➥ If you draw on a montage display, only screen pixels overlaying the first

image you Button 2 click in will count
➥While drawing, if you cross over between sub-images in the montage,

unexpected effects will result
➭ But there is always [Undo] to the rescue!

-10-

• Step 3: Save your results:
★ [Save] will write the current dataset values to disk (overwriting any existing

.BRIK file, i.e., if you had edited this ROI earlier, the new changes would
overwrite the old file)
➥You could also then choose another dataset to edit

★ [Save As] will let you write the current dataset to disk under a new name,
creating a new dataset, then continue editing the new dataset

★ [Quit] exits editing and closes the plugin window, without saving to disk
any changes since the last [Save]
➥Exiting AFNI has the same effect

★ [Done] is equivalent to [Save] then [Quit]
• Optional Drawing Steps:

★ [Linear Fillin] lets you draw a 3D ROI not in every slice, but in every
third slice (say), and then go back and fill in the gaps
➥For example, if you draw in coronal slices, then you want to fill in the
[A-P] direction (the default)

➥ If you draw every nth slice, then you want to set the Gap to n-1
➥Line segments of voxels in the fillin direction that have a current drawing

value at each end, and have no more than [Gap] zero voxels in between,
will get their gap voxels filled with the drawing value
➭ After you try this, you will probably have to touch up the dataset

manually

-11-

➥ This operation can also be done with program 3dRowFillin, which creates a
new dataset

★ [TT Atlas Region to Load] lets you load regions from the Talairach
Daemon database into the dataset voxels
➥ Requires that you be drawing in +tlrc coordinates, or at least have a

transformation from +orig →+tlrc computed in the current directory
➥ Choose a region to draw into the dataset (e.g., Hippocampus)
➥ [Load: Overwrite] will fill all voxels in the region with the drawing value
➥ [Load: Infill] will fill only voxels in the region that are currently zero

➭ You probably want to edit the results manually to fit the specific subject
• Drawing and Rendering at the Same Time (totally fun, and maybe useful)

★ You cannot draw into the rendering plugin, but you can use it to see in 3D what
you are drawing in 2D
➥ If you meet the criteria for rendering (usually in +tlrc coordinates)

★ How to set up the renderer:
➥ Choose the underlay to be the current anatomical dataset (or a “scalped”

version, from 3dIntracranial)
➥ Choose the overlay dataset to be the dataset you are editing
➥ Turn on [See Overlay]
➥ Set [Color Opacity] to [ShowThru] (or ST+Dcue)

-12-

➥Turn on [DynaDraw]
➥Drawing in a 2D image window immediately triggers a redraw in the

rendering window
(if the 2D and 3D overlay datasets are the same)

➥This is only useful if your computer is fast enough to render quickly
(<1 sec per frame)

-13-

Things to Do with ROI Datasets

• ROIs are used on a voxel-by-voxel basis to select parts of datasets (usually
functional datasets)

• If you draw at the anatomical resolution and want to use the ROI dataset at the
functional resolution, you probably want to convert the high-resolution ROI
dataset to a low-resolution dataset (unless you’re working in +tlrc coordinates)
★ E.g., hi-res anatomical ROI resampled to low-res functional dataset:

★ Each voxel inside the ROI is given a nonzero value (e.g., 4; values outside the
ROI are zeros. When the resolution is changed, what do you do with a voxel
that’s only partially filled by the ROI?

Hi-res voxel matrix Low-res voxel matrix

-14-

• 3dfractionize does this resolution conversion:

3dfractionize -template func+orig \
 -input ROI_high_res+orig \
 -clip 0.5 -preserve -prefix ROI_low_res

★ -template func+orig → The destination grid you want your ROI grid to
be resampled to (we’re going from high to low resolution here). Our output
dataset ROI_low_res+orig will be written at the resolution of func+orig

★ -input ROI_high_res+orig → Defines the input high-resolution dataset (that
needs to be converted from high resolution to low resolution)

★ -clip 0.5 → Output voxels will only get a nonzero value if they are at least 50%
filled by nonzero input voxels (you decide the percentage here). E.g., when
going from high to low res, keep a label a voxel as part of the ROI if it is filled
with at least 50% (or more) of the voxel value. For example:

This voxel is 80% filled with the ROI value
-- keep it

This voxel is 30% filled with the ROI value
-- lose it

-15-

★ -preserve → once it has been determined that the output voxel will be part of
the ROI, preserve the original ROI value of that voxel (and not some
fraction of that value). For example, if our ROI mask has values of “4”:

• 3dresample does this conversion as well:

3dresample -master func+orig \
-inset ROI_high_res+orig \
-rmode NN \
-prefix ROI_low_res

★ -master func+orig: the destination grid we want our ROI mask resampled to
★ -inset ROI_high_res+orig: The ROI mask dataset that is being resampled

from high to low resolution
★ -prefix ROI_low_res: The output from 3dresample -- a low res ROI mask

that corresponds with the voxel resolution of our functional dataset
★ -rmode NN: If a voxel’s “neighbor” is included in the ROI mask, include the voxel

in question as well

This voxel is 80% filled with the ROI value -- keep it.
Without the -preserve option, this voxel would be given
a value of “3.2” (i.e., 80% of “4”).
With -preserve, it is labeled as “4”

-16-

• Note: A ROI is defined by the values stored in voxels of the ‘mask’ dataset
★ Contiguity of voxels has no meaning to the ROI software described below
★ Two voxels are in the same ROI if they have the same value in the mask

dataset (i.e., it doesn’t matter where they are located in the volume)

• 3dmaskave
★ Program to compute the average of voxels from a functional dataset, with

voxels selected from a mask dataset (interactive version: ROI Average
plugin)

★ Example:
3dmaskave -mask ROI_fred+tlrc -mrange 1 3 \

 ‘func_fred+tlrc[2,4]’

Will print out (in the shell) one line of data for each of the 3 selected sub-bricks
from the input dataset func_fred+tlrc:

52.3674 [43450 voxels] ←sub-brick #2 values averaged across all 3 ROIs
40.186 [43450 voxels] ←sub-brick #4 values averaged across all 3 ROIs

➥ The output above represents the average of all the voxels collapsed across
ROI’s 1, 2, & 3, (specified by -mrange 1 3) in our mask dataset
ROI_fred+tlrc for sub-bricks #2 and #4 from dataset func_fred+tlrc

-17-

➥-mrange 1 4: in this example, our mask dataset ROI_fred+tlrc has
four ROIs draw within it. This option tells the program to take those 4
ROIs and compute an overall average (collapsed across ROIs) for each
voxel that falls within the ROIs
➭ The exact numbers to average is determined by the sub-bricks (#2

and #4) specified in our functional dataset, func_fred+tlrc

➥Add the -q option to the above command line to suppress the voxel
count printout (in this example, -q suppresses “[43450 voxels]” from
appearing in the shell
➭ E.g., 52.3674

40.186
➭ This way you can copy and paste the single column of averages to a
1D (i.e., text) file for later use in AFNI or other programs like Excel

➥ Instead of having the results of 3dmaskave spewed into the shell, you
can redirect (>)the results into a text file and save them for later use:

3dmaskave -mask ROI_fred+tlrc -mrange 1 3 -q \
 ‘func_fred+tlrc’[2,4]’ > fred_ROI1-3.1D

-18-

• 3dmaskdump
★ Program that dumps out all voxel values in a dataset that fall within the ROI of

a given mask dataset
★ Example:

3dmaskdump -noijk -mask ROI_fred+tlrc
 -mrange 1 1 ‘func_fred+tlrc[2,4]’

➥The output appears in the shell (unless you redirect it (>) into a text file).
This example shows 2 columns of numbers, representing the voxel values
for functional sub-bricks #2 and #4 that fall within the ROI mask:

voxel 1 222.335 22.585
voxel 2 205.817 21.866
 … … …
voxel 14,570 26.695 11.796

↑ Column 1: voxel values for functional sub-brick #2 from dataset
func_fred+tlrc that fall within the ROI mask designated in
dataset ROI_fred+tlrc (columns 2 represents the mean values
for functional sub-brick #4)

-19-

➥More than one dataset can be given at the end of the command line
➥Main application of 3dmaskdump is to dump out the data or functional

values that match an ROI so they can be processed in some other
program (e.g., Excel)

➥ If -noijk option is omitted, each output line starts with ijk-indexes
(i.e., location) of the voxel
➭ Program 3dUndump can be used to create a dataset from a text file

with ijk-indexes and dataset values
• 3dROIstats

★ Program to compute average of voxels from a dataset, using multiple regions
selected by a single ROI dataset
➥ i.e., you can compute the mean for several ROIs separately and

simultaneously
➥ This differs from 3dmaskave because the ROIs within a single mask are

not collapsed and then averaged. Here the averages are done separately
for each ROI within the mask dataset

★ Averaging is done over each region defined by a distinct value in the ROI
dataset

-20-

★ Example:
3dROIstats -mask ROI_fred+tlrc ‘func_fred+tlrc’

Output shown in the shell (use > command to save into to a text file):

File Sub-brick Mean_1 Mean_2 Mean_3
func_fred+tlrc 0 30.17 35.32 22.49
func_fred+tlrc 1 0.155 0.159 0.09
func_fred+tlrc 2 49.07 64.33 37.18

➥The Mean_1 column is the average over the ROI whose mask value is “1”.
The average is calculated for voxels from our functional dataset
func_fred+tlrc, that fall within the ROI. Averages are computed at
each sub-brick (#0, #1, #2, etc)
➭ Means have also been computed for ROIs whose mask value is “2”

(Mean_2) and “3” (Mean_3)
★ Very useful if you creat ROI masks for a number of subjects, using the same

number codes for the same anatomical regions (e.g., 1=hippocampus,
2=amygdala, 3=superior temporal gyrus, etc.)

★ You can load the output of 3dROIstats into a spreadsheet for further analysis
(e.g., statistics with other subjects’ data)

-21-

Creating ROI datasets from Activation Maps

• The program 3dmerge can find contiguous supra (above) threshold voxel
clusters in an activation (functional) map and then convert each cluster into a
ROI with a separate data value
★ These ROIs can then be used as starting points for some analysis

• Example:
3dmerge -1clust_order 1 200
 -1thresh 300
 -prefix clust_roi
 ‘func_fred+tlrc[2]’

★ -1clust_order 1 500: Here we’ve told the program to include voxels as part
of a “cluster” if they are no more than 1mm apart. The 500 indicates the
minimum volume required to form a cluster. In this example, a cluster is
defined by 500 or more voxels grouped together, and each voxel is no more
than 1 mm apart from each other

★ -1thresh 0.4: Ignore voxels that don’t survive your threshold (e.g., 0.4) -- the
threshold could be any stat you have set, a t-test, an F-value, a correlation
coefficient, a mean, etc..

-22-

The result:
★ This example thresholds the dataset on subrick #2

(‘func_fred+tlrc[2]’) at F-value 300 (-1thresh 300)
★ Clusters together all the surviving nonzero voxels using a contiguity test of

1mm and keeping only clusters at least 200 mm3 in volume (-1clustorder 1
200)

★ All voxels in the largest cluster are assigned value 1 (say, 1200 voxels in
one cluster), the second largest are assigned value 2 (say, 920 voxels in
one cluster), etc., and the result is written to disk in dataset
clust_roi+tlrc

• You can use this dataset as a mask, edit it with the drawing plugin, etc…

-23-

• The program 3dclust looks for clusters of activity that fit the criteria set on the
command line, and prints out a report about the active voxels that make up the ROI
cluster(s)

• Example:
3dclust -1thresh 300 1 200 ‘func_fred+tlrc[2]’

★ The above command tells 3dclust to find potential cluster volumes for dataset
func_fred+tlrc, sub-brick #2, where the threshold has been set to 300 (i.e.,
ignore voxels with an activation threshold <300). Voxels must be no more than
1mm apart, and cluster volume must be at least 200 micro-liters in size.

★ Once these ROI clusters have been identified, a report will be printed out:

Vol CM RL CM AP CM IS minRL maxRL minAP maxAP minIS maxIS Mean SEM Max Int MI RL MI AP MI IS

1208 -31.7 51.7 -22.3 -50.0 -24.0 39.0 73.0 -28.0 -18.0 404.64 2.7707 858.49 -28.0 50.0 -22.0
 522 -41.6 62.9 7.9 -51.0 -34.0 58.0 66.0 2.0 12.0 393.32 3.2221 682.94 -40.0 61.0 7.0
 435 -43.3 71.4 -9.6 -47.0 -38.0 65.0 78.0 -15.0 -5.0 387.9 3.3887 637.87 -44.0 74.0 -9.0

2165 -36.3 58.3 -12.6 398.55 1.8649

-24-

• In this example, 3 ROI clusters were found that fit the criteria designated by the
3dclust command. Below is an explanation of the output:

★ Volume: Number of voxels that make up each cluster volume
★ CM RL: Center of mass (CM) for each cluster in the Right-Left direction
★ CM AP: Center of mass for each cluster in the Anterior-Posterior direction
★ CM IS: Center of mass for each cluster in the Inferior-Superior direction
★ minRL,maxRL: Bounding box for cluster, min & max coordinates in R-L direction
★ minAP,maxAP: Bounding box for cluster, min & max coordinates in A-P direction
★ minIS, maxIS: Bounding box for cluster, min & max coordinates in I-S direction
★ Mean: Mean value for each volume cluster
★ SEM: Standard error of the mean for the volume cluster
★ Max Int: Maximum Intensity value for each volume cluster
★ MI RL: Maximum Intensity value in the R-L direction of each volume cluster
★ MI AP: Maximum intensity value in the A-P direction of each volume cluster
★ MI IS: Maximum intensity value in the I-S direction of each volume cluster

