HowTo 03: stimulus timing design (hands-on)

- Goal: to design an effective random stimulus presentation
 - → end result will be stimulus timing files
 - → example: using an event related design, with simple regression to analyze

Steps:

- 0. given: experimental parameters (stimuli, # presentations, # TRs, etc.)
- 1. create random stimulus functions (one for each stimulus type)
- 2. create ideal reference functions (for each stimulus type)
- 3. evaluate the stimulus timing design
- Step 0: the (made-up) parameters from HowTo 03 are:
 - → 3 stimulus types (the classic experiment: "houses, faces and donuts")
 - → presentation order is randomized
 - \rightarrow TR = 1 sec, total number of TRs = 300
 - → number of presentations for each stimulus type = 50 (leaving 150 for fixation)
 - fixation time should be 30% ~ 50% total scanning time
 - → 3 contrasts of interest: each pair-wise comparison
 - → refer to directory: AFNI_data1/ht03

- Step 1: creation of random stimulus functions
 - → RSFgen : Random Stimulus Function generator
 - → command file: c01.RSFgen

```
RSFgen -nt 300 -num_stimts 3 \
-nreps 1 50 -nreps 2 50 -nreps 3 50 \
-seed 1234568 -prefix RSF.stim.001.
```

→ This creates 3 stimulus timing files:

```
RSF.stim.001.1.1D RSF.stim.001.2.1D RSF.stim.001.3.1D
```

- Step 2: create ideal response functions (linear regression case)
 - → waver: creates waveforms from stimulus timing files
 - effectively doing convolution
 - → command file: c02.waver

```
waver -GAM -dt 1.0 -input RSF.stim.001.1.1D
```

- → this will output (to the terminal window) the ideal response function, by convolving the Gamma variate function with the stimulus timing function
- → output length allows for stimulus at last TR (= 300 + 13, in this example)
- → use '1dplot' to view these results, command: 1dplot wav.*.1D

- the first curve (for wav.hrf.001.1.1D) is displayed on the bottom
- x-axis covers 313 seconds, but the graph is extended to a more "round" 325
- y-axis happens to reach 274.5, shortly after 3 consecutive type-2 stimuli
- the peak value for a single curve can be set using the -peak option in waver
 - \rightarrow default peak is 100
- it is worth noting that there are no duplicate curves
- can also use 'waver -one' to put the curves on top of each other

- Step 3: evaluate the stimulus timing design
 - → use '3dDeconvolve -nodata': experimental design evaluation
 - → command file: c03.3dDeconvolve

- Use the 3dDeconvolve output to evaluate the normalized standard deviations of the contrasts.
- For this HowTo script, the deviations of the GLT's are summed. Other options are valid, such as summing all values, or just those for the stimuli, or summing squares.
- Output (partial):

```
Stimulus: stim A
 h[ 0] norm. std. dev. =
                            0.0010
Stimulus: stim B
 h[ 0] norm. std. dev. =
                            0.0009
Stimulus: stim C
 h[ 0] norm. std. dev. =
                            0.0011
General Linear Test: GLT #1
  LC[0] norm. std. dev. =
                            0.0013
General Linear Test: GLT #2
 LC[0] norm. std. dev. =
                            0.0012
General Linear Test: GLT #3
 LC[0] norm. std. dev. =
                            0.0013
```

- What does this output mean?
 - → What is norm. std. dev.?
 - → How does this compare to results using different stimulus timing patterns?

Basics about Regression

- Regression Model (General Linear System)
 - \rightarrow Simple Regression Model (one regressor): $Y(t) = \alpha_0 + \alpha_1 t + \beta r(t) + \varepsilon(t)$
 - Run 3dDeconvolve with regressor r(t), a time series IRF
 - \rightarrow Deconvolution and Regression Model (one stimulus with a lag of p TR's):

$$Y(t) = \alpha_0 + \alpha_1 t + \beta_0 f(t) + \beta_1 f(t-TR) \dots + \beta_p f(t-p*TR) + \varepsilon(t)$$

- Run 3dDeconvolve with stimulus files (containing 0's and 1's)
- Model in Matrix Format: $Y = X\beta + \varepsilon$
 - → X: design matrix more rows (TR's) than columns (baseline parameters + beta weights).

 $\rightarrow \varepsilon$: random (system) error $N(0, \sigma^2)$

- X matrix examples (based on modified HowTo 03 script, stimulus #3):
 - → regression: baseline, linear drift, 1 regressor (ideal response function)
 - → deconvolution: baseline, linear drift, 5 regressors (lags)

regression			deconvolution - with lags (3-7)									
1	0	0			1	0	0	0	0	0	0	
1	1	0			1	1	0	0	0	0	0	
1	2	0.14			1	2	0	0	0	0	0	
1	3	9.11			1	3	0	0	0	0	0	
1	4	56.05			1	4	1	0	0	0	0	
1	5	136.9			1	5	1	1	0	0	0	
1	6	188.2			1	6	0	1	1	0	0	
1	7	174.2			1	7	0	0	1	1	0	
1	8	121.9			1	8	0	0	0	1	1	
1	9	78.1			1	9	0	0	0	0	1	
1	10	80.63			1	10	1	0	0	0	0	
1	11	104.4			1	11	0	1	0	0	0	
1	12	112.9			1	12	0	0	1	0	0	
1	13	124.9			1	13	1	0	0	1	0	
1	14	136.4			1	14	0	1	0	0	1	
1	15	130.6			1	15	0	0	1	0	0	
1	16	133.2			1	16	1	0	0	1	0	
1	17	139.8			1	17	0	1	0	0	1	

- Solving the Linear System : $Y = X\beta + \varepsilon$
 - → the basic goal of 3dDeconvolve
 - \rightarrow Least Square Estimate (LSE): making sum of squares of residual (unknown/unexplained) error $\varepsilon' \varepsilon$ minimal \rightarrow Normal equation: $(X'X) \beta = X'Y$

• Geometric Interpretation:

→ project vector Y onto a space spanned by the regressors (the column vectors of design matrix X)

Multicollinearity Problem

- → 3dDeconvolve Error: Improper X matrix (cannot invert X'X)
- \rightarrow X'X is singular (not invertible) \leftrightarrow at least one column of X is linearly dependent on the other columns
- → normal equation has no unique solution
- → Simple regression case:
 - mistakenly provided at least two identical regressor files, or some inclusive regressors, in 3dDeconvolve
 - all regressiors have to be orthogonal (exclusive) with each other
 - easy to fix: use 1dplot to diagnose
- → Deconvolution case:
 - mistakenly provided at least two identical stimulus files, or some inclusive stimuli, in 3dDeconvolve
 - easy to fix: use 1dplot to diagnose
 - intrinsic problem of experiment design: lack of randomness in the stimuli
 - > varying number of lags may or may not help.
 - > running RSFgen can help to avoid this
- \rightarrow See AFNI data1/ht03/bad stim/c20.bad stim

Design analysis

- \rightarrow X'X invertible but cond(X'X) is huge \rightarrow linear system is sensitive \rightarrow difficult to obtain accurate estimates of regressor weights
- → Condition number: a measure of system's sensitivity to numerical computation
 - cond(M) = ratio of maximum to minimum eigenvalues of matrix M
 - note, 3dDeconvolve can generate both X and $(X'X)^{-1}$, but not cond()
- \rightarrow Covariance matrix estimate of regressor coefficients vector β :
 - $s^2(\beta) = (X'X)^{-1}MSE$
 - t test for a contrast $c'\beta$ (including regressor coefficient):
 - $t = c'\beta / \operatorname{sqrt}(c'(X'X)^{-1}c MSE)$
 - > contrast for condition A only: $c = [0\ 0\ 1\ 0\ 0]$
 - \rightarrow contrast between conditions A and B: $c = [0\ 0\ 1\ -1\ 0]$
 - > $sqrt(c'(X'X)^{-1}c)$ in the denominator of the t test indicates the relative stability and statistical power of the experiment design
 - $\operatorname{sqrt}(c'(X'X)^{-1}c)$ = normalized standard deviation of a contrast $c'\beta$ (including regressor weight) \rightarrow these values are output by 3dDeconvolve
 - smaller $\operatorname{sqrt}(c'(X'X)^{-1}c) \to \operatorname{stronger}$ statistical power in t test, and less sensitivity in solving the normal equation of the general linear system
 - RSFgen helps find out a good design with relative small sqrt(c' (X'X)-1c)

- A bad example: see directory AFNI_data1/ht03/bad_stim/c20.bad_stim
 - ightarrow 2 stimuli, 2 lags each
 - → stimulus 2 happens to follow stimulus 1

baseline	linear drift	S1 L1	S1 L2	S2 L1	S2 L2
1	0	0	0	0	0
1	1	0	0	0	0
1	2	0	0	0	0
1	3	1	0	0	0
1	4	0	1	1	0
1	5	0	0	0	1
1	6	1	0	0	0
1	7	0	1	1	0
1	8	0	0	0	1
1	9	0	0	0	0
1	10	1	0	0	0
1	11	0	1	1	0
1	12	1	0	0	1
1	13	1	1	1	0
1	14	0	1	1	1
1	15	1	0	0	1
1	16	0	1	1	0
1	17	1	0	0	1
1	18	0	1	1	0
1	19	0	0	0	1

So are these results good?

```
stim A: h[ 0] norm. std. dev. = 0.0010
stim B: h[ 0] norm. std. dev. = 0.0009
stim C: h[ 0] norm. std. dev. = 0.0011
GLT #1: LC[0] norm. std. dev. = 0.0013
GLT #2: LC[0] norm. std. dev. = 0.0012
GLT #3: LC[0] norm. std. dev. = 0.0013
```

- And repeat... see the script: AFNI data1/ht03/@stim analyze
 - → review the script details:
 - 100 iterations, incrementing random seed, storing results in separate files
 - only the random number seed changes over the iterations
 - → execute the script via command: ./@stim analyze
 - → "best" result: iteration 039 gives the minimum sum of the 3 GLTs, among all 100 random designs (see file stim_results/LC_sums)
 - → the 3dDeconvolve output is in stim_results/3dD.nodata.039
- Recall the Goal: to design an effective random stimulus presentation (while preserving statistical power)
 - → Solution: the files stim_results/RSF.stim.039.*.1D

 RSF.stim.039.1.1D RSF.stim.039.2.1D RSF.stim.039.3.1D12