
1

HowTo 03: stimulus timing design (hands-on)

• Goal: to design an effective random stimulus presentation
→ end result will be stimulus timing files
→ example: using an event related design, with simple regression to analyze

• Steps:
0. given: experimental parameters (stimuli, # presentations, # TRs, etc.)
1. create random stimulus functions (one for each stimulus type)
2. create ideal reference functions (for each stimulus type)
3. evaluate the stimulus timing design

• Step 0: the (made-up) parameters from HowTo 03 are:
→ 3 stimulus types (the classic experiment: "houses, faces and donuts")
→ presentation order is randomized
→ TR = 1 sec, total number of TRs = 300
→ number of presentations for each stimulus type = 50 (leaving 150 for fixation)

• fixation time should be 30% ~ 50% total scanning time
→ 3 contrasts of interest: each pair-wise comparison
→ refer to directory: AFNI_data1/ht03

2

• Step 1: creation of random stimulus functions

→ RSFgen : Random Stimulus Function generator

→ command file: c01.RSFgen

RSFgen -nt 300 -num_stimts 3 \

-nreps 1 50 -nreps 2 50 -nreps 3 50 \

-seed 1234568 -prefix RSF.stim.001.

→ This creates 3 stimulus timing files:

RSF.stim.001.1.1D RSF.stim.001.2.1D RSF.stim.001.3.1D

• Step 2: create ideal response functions (linear regression case)

→ waver: creates waveforms from stimulus timing files

• effectively doing convolution

→ command file: c02.waver

waver -GAM -dt 1.0 -input RSF.stim.001.1.1D

→ this will output (to the terminal window) the ideal response function, by

convolving the Gamma variate function with the stimulus timing function

→ output length allows for stimulus at last TR (= 300 + 13, in this example)

→ use '1dplot' to view these results, command: 1dplot wav.*.1D

3

• the first curve (for wav.hrf.001.1.1D) is displayed on the bottom

• x-axis covers 313 seconds, but the graph is extended to a more "round" 325

• y-axis happens to reach 274.5, shortly after 3 consecutive type-2 stimuli

• the peak value for a single curve can be set using the -peak option in waver

→ default peak is 100

• it is worth noting that there are no duplicate curves

• can also use 'waver -one' to put the curves on top of each other

4

• Step 3: evaluate the stimulus timing design

→ use '3dDeconvolve -nodata': experimental design evaluation

→ command file: c03.3dDeconvolve

→ command: 3dDeconvolve -nodata \

-nfirst 4 -nlast 299 -polort 1 \

-num_stimts 3 \

-stim_file 1 "wav.hrf.001.1.1D" \

-stim_label 1 "stim_A" \

-stim_file 2 "wav.hrf.001.2.1D" \

-stim_label 2 "stim_B" \

-stim_file 3 "wav.hrf.001.3.1D" \

-stim_label 3 "stim_C" \

-glt 1 contrasts/contrast_AB \

-glt 1 contrasts/contrast_AC \

-glt 1 contrasts/contrast_BC

5

• Use the 3dDeconvolve output to evaluate the normalized standard deviations of the
contrasts.

• For this HowTo script, the deviations of the GLT's are summed. Other options are
valid, such as summing all values, or just those for the stimuli, or summing squares.

• Output (partial):
Stimulus: stim_A
h[0] norm. std. dev. = 0.0010

Stimulus: stim_B
h[0] norm. std. dev. = 0.0009

Stimulus: stim_C
h[0] norm. std. dev. = 0.0011

General Linear Test: GLT #1
LC[0] norm. std. dev. = 0.0013

General Linear Test: GLT #2
LC[0] norm. std. dev. = 0.0012

General Linear Test: GLT #3
LC[0] norm. std. dev. = 0.0013

• What does this output mean?

→ What is norm. std. dev.?

→ How does this compare to results using different stimulus timing patterns?

6

• Regression Model (General Linear System)

→ Simple Regression Model (one regressor): Y(t) = α0+α1t+β r(t)+ε(t)

• Run 3dDeconvolve with regressor r(t), a time series IRF

→ Deconvolution and Regression Model (one stimulus with a lag of p TR’s):

Y(t) = α0+α1t+β0f(t)+β1f(t-TR)…+βpf(t-p*TR)+ε(t)

• Run 3dDeconvolve with stimulus files (containing 0’s and 1’s)

• Model in Matrix Format: Y = Xβ + ε
→ X: design matrix - more rows (TR’s) than columns (baseline parameters + beta

weights).
α0 α1 β α0 α1 β0 … βp

------------------ ------------------------
1 1 r(0) 1 p fp … f0
1 2 r(1) 1 p+1 fp+1 … f1

.
1 N-1 r(N-1) 1 N-1 fN-1 … fN-p-1

→ ε: random (system) error N(0, σ2)

Basics about Regression

7

• X matrix examples (based on modified HowTo 03 script, stimulus #3):

→ regression: baseline, linear drift, 1 regressor (ideal response function)

→ deconvolution: baseline, linear drift, 5 regressors (lags)

regression deconvolution - with lags (3-7)
1 0 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 2 0.14 1 2 0 0 0 0 0
1 3 9.11 1 3 0 0 0 0 0
1 4 56.05 1 4 1 0 0 0 0
1 5 136.9 1 5 1 1 0 0 0
1 6 188.2 1 6 0 1 1 0 0
1 7 174.2 1 7 0 0 1 1 0
1 8 121.9 1 8 0 0 0 1 1
1 9 78.1 1 9 0 0 0 0 1
1 10 80.63 1 10 1 0 0 0 0
1 11 104.4 1 11 0 1 0 0 0
1 12 112.9 1 12 0 0 1 0 0
1 13 124.9 1 13 1 0 0 1 0
1 14 136.4 1 14 0 1 0 0 1
1 15 130.6 1 15 0 0 1 0 0
1 16 133.2 1 16 1 0 0 1 0
1 17 139.8 1 17 0 1 0 0 1

8

• Solving the Linear System : Y = Xβ + ε
→ the basic goal of 3dDeconvolve

→ Least Square Estimate (LSE): making sum of squares of residual
(unknown/unexplained) error ε’ε minimal Normal equation: (X’X) β = X’Y

→ When X is of full rank (all columns are independent), β^ = (X’X)-1X’Y

• Geometric Interpretation:

→ project vector Y onto a space spanned by the regressors (the column vectors of
design matrix X)

→ find shortest distance from Y to X-space

YY
ε

XX--SpaceSpace
rr11

rr22

XXββ
00

9

• Multicollinearity Problem
→ 3dDeconvolve Error: Improper X matrix (cannot invert X’X)

→ X’X is singular (not invertible) ↔ at least one column of X is linearly dependent on
the other columns

→ normal equation has no unique solution
→ Simple regression case:

• mistakenly provided at least two identical regressor files, or some inclusive
regressors, in 3dDeconvolve

• all regressiors have to be orthogonal (exclusive) with each other
• easy to fix: use 1dplot to diagnose

→ Deconvolution case:
• mistakenly provided at least two identical stimulus files, or some inclusive

stimuli, in 3dDeconvolve
easy to fix: use 1dplot to diagnose

• intrinsic problem of experiment design: lack of randomness in the stimuli
varying number of lags may or may not help.
running RSFgen can help to avoid this

→ see AFNI_data1/ht03/bad_stim/c20.bad_stim

10

• Design analysis
→ X’X invertible but cond(X’X) is huge linear system is sensitive difficult to

obtain accurate estimates of regressor weights
→ Condition number: a measure of system's sensitivity to numerical computation

• cond(M) = ratio of maximum to minimum eigenvalues of matrix M
• note, 3dDeconvolve can generate both X and (X’X)-1, but not cond()

→ Covariance matrix estimate of regressor coefficients vector β:
• s2(β) = (X’X)-1MSE
• t test for a contrast c’β (including regressor coefficient):

t = c’β /sqrt(c’ (X’X)-1c MSE)
contrast for condition A only: c = [0 0 1 0 0]
contrast between conditions A and B: c = [0 0 1 -1 0]
sqrt(c’ (X’X)-1c) in the denominator of the t test indicates the relative stability
and statistical power of the experiment design

• sqrt(c’ (X’X)-1c) = normalized standard deviation of a contrast c’β (including
regressor weight) these values are output by 3dDeconvolve

• smaller sqrt(c’ (X’X)-1c) stronger statistical power in t test, and less sensitivity
in solving the normal equation of the general linear system

• RSFgen helps find out a good design with relative small sqrt(c’ (X’X)-1c)

11

• A bad example: see directory AFNI_data1/ht03/bad_stim/c20.bad_stim
→ 2 stimuli, 2 lags each
→ stimulus 2 happens to follow stimulus 1

baseline linear drift S1 L1 S1 L2 S2 L1 S2 L2
1 0 0 0 0 0
1 1 0 0 0 0
1 2 0 0 0 0
1 3 1 0 0 0
1 4 0 1 1 0
1 5 0 0 0 1
1 6 1 0 0 0
1 7 0 1 1 0
1 8 0 0 0 1
1 9 0 0 0 0
1 10 1 0 0 0
1 11 0 1 1 0
1 12 1 0 0 1
1 13 1 1 1 0
1 14 0 1 1 1
1 15 1 0 0 1
1 16 0 1 1 0
1 17 1 0 0 1
1 18 0 1 1 0
1 19 0 0 0 1

12

• So are these results good?
stim A: h[0] norm. std. dev. = 0.0010

stim B: h[0] norm. std. dev. = 0.0009

stim C: h[0] norm. std. dev. = 0.0011

GLT #1: LC[0] norm. std. dev. = 0.0013

GLT #2: LC[0] norm. std. dev. = 0.0012

GLT #3: LC[0] norm. std. dev. = 0.0013

• And repeat… see the script: AFNI_data1/ht03/@stim_analyze
→ review the script details:

• 100 iterations, incrementing random seed, storing results in separate files
• only the random number seed changes over the iterations

→ execute the script via command: ./@stim_analyze
→ "best" result: iteration 039 gives the minimum sum of the 3 GLTs, among all 100

random designs (see file stim_results/LC_sums)
→ the 3dDeconvolve output is in stim_results/3dD.nodata.039

• Recall the Goal: to design an effective random stimulus presentation (while
preserving statistical power)
→ Solution: the files stim_results/RSF.stim.039.*.1D

RSF.stim.039.1.1D RSF.stim.039.2.1D RSF.stim.039.3.1D12

