•Regression
Model (General Linear System)
→Simple Regression Model (one regressor): Y(t) = a0+a1t+b r(t)+e(t)
•Run 3dDeconvolve with regressor r(t),
a
time series IRF
→Deconvolution and Regression Model (one stimulus with a lag of p TR’s):
• Y(t)
= a0+a1t+b0f(t)+b1f(t-TR)…+bpf(t-p*TR)+e(t)
•Run 3dDeconvolve with stimulus files (containing 0’s and 1’s)
•Model
in Matrix Format: Y = Xb + e
→X: design
matrix - more rows (TR’s) than columns (baseline parameters + beta weights).
→ a0 a1 b a0 a1 b0 …
bp
• ------------------
------------------------
q1 1 r(0) 1 p fp …
f0
q1 2 r(1) 1 p+1 fp+1 … f1
q . . . .
. .
q1 N-1 r(N-1) 1 N-1 fN-1 … fN-p-1
→
→e: random (system) error N(0, s2)
•
•