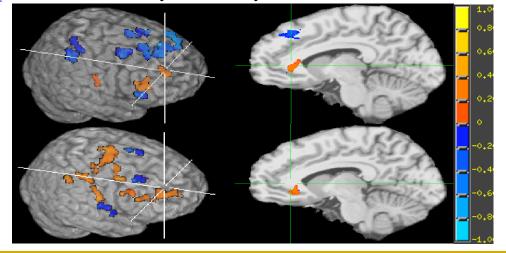
FMRI Connectivity Analysis in AFNI

Gang Chen
SSCC/NIMH/NIH

Structure of this lecture

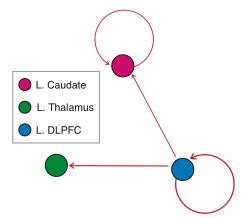
- Overview
- Correlation analysis
 - Simple correlation
 - □ Context-dependent correlation (PPI)
- Structural equation modeling (SEM)
 - Model validation
 - Model search
- Granger causality (GC)
 - □ Bivariate: exploratory ROI search
 - Multivariate: validating path strength among pre-selected ROIs

Overview: FMRI connectivity analysis

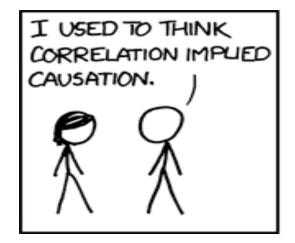

- All about FMRI
 - Not for DTI
 - □ Some methodologies may work for MEG, EEG-ERP
- Information we have
 - Anatomical structures
 - Exploratory: A seed region in a network, or
 - Validating: A network with all relevant regions known
 - □ Brain output (BOLD signal): regional time series
- What can we say about inter-regional communications?
 - □ Inverse problem: make inference about intra-cerebral neural processes from extra-cerebral/vascular signal
 - Based on response similarity (and sequence)

Approach I: seed-based; ROI search

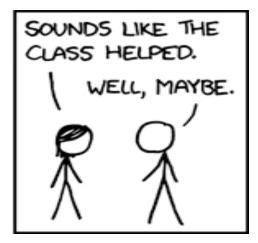
- Regions involved in a network are unknown
 - □ Bi-regional/seed vs. whole brain (3d*): brain volume as input
 - Mainly for ROI search
 - Popular name: functional connectivity
 - Basic, coarse, exploratory with weak assumptions
 - Methodologies: simple correlation, PPI, bivariate GC


■ Weak interpretation: may or may not indicate directionality

/causality


Approach II: ROI-based

- Regions in a network are known
 - Multi-regional (1d*): ROI data as input
 - Model validation, connectivity strength testing
 - Popular name: effective or structural connectivity
 - □ Strong assumptions: specific, but with high risk
 - Methodologies: SEM, multivariate GC, DCM
 - Directionality, causality (?)



Interpretation Trap: Correlation vs. Causation!

- Some analyses require fine time resolution we usually lack
- Path from (or correlation btw) A to (and) B doesn't necessarily mean causation
 - □ Bi-regional approach simply ignores the possibility of other regions involved
 - Analysis invalid if a relevant region is missing in a multi-regional model
- Robust: connectivity analysis < regression analysis
- Determinism in academics and in life
 - □ Linguistic determinism: Sapir-Whorf hypothesis

Preparatory Steps

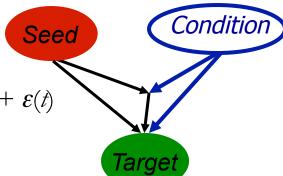
- Warp brain to standard space
 - adwarp, @auto-tlrc, align_epi_anat.py
- Create ROI
 - □ Sphere around a peak activation voxel: **3dUndump** —**master** ... —**srad** ...
 - □ Activation cluster-based (biased unless from independent data): localizer
 - Anatomical database
 - Manual drawing
- Extract ROI time series
 - □ Average over ROI: 3dmaskave —mask, or 3dR0Istats —mask
 - □ Principal component among voxels within ROI: **3dmaskdump**, then **1dsvd**
 - □ Seed voxel with peak activation: **3dmaskdump** -noijk -dbox
- Remove effects of no interest
 - 3dSynthesize and 3dcalc
 - 3dDetrend —polort
 - □ RETROICORR/RetroTS.m
 - 3dBandpass

Simple Correlation Analysis

- Seed vs. rest of brain
- ROI search based on response similarity
 - Looking for regions with similar signal to seed
- Correlation at individual subject level
 - Usually have to control for effects of no interest: drift, head motion, physiological variables, censored time points, tasks of no interest, etc.
- Applying to experiment types
 - Straightforward for resting state experiment
 - □ With tasks: correlation under specific condition(s) or resting state?
- Program: 3dfim+ or 3dDeconvolve
 - $lue{r}$: not general, but **linear**, relation; slope for standardized Y and X
 - \Box β : slope, amount of linear change in Y when X increases by 1 unit
- Two interactive tools: AFNI and SUMA
 - □ InstaCor, GroupInstaCor

Simple Correlation Analysis

Group analysis


- Run Fisher-transformation of r to Z-score and t-test: 3dttest
- \square Take β and run t-test (pseudo random-effects analysis): **3dttest**
- □ Take β + t-statistic and run random-effects model: **3dMEMA**

Caution: don't over-interpret

- Not proof for anatomical connectivity
- No golden standard procedure and so many versions in analysis: seed region selection, covariates, $r(Z)/\beta$, bandpass filtering, ...
- □ Just Pearson correlation (information limited if other regions present in network)
- Be careful with group comparison (normal vs. disease): assuming within-group homogeneity, can we claim
 - No between-group difference → same correlation/connectivity across groups?
 - o Between-group difference → different correlation/connectivity across groups?

Context-Dependent Correlation

- Popularized name: Psycho-Physiological Interaction (PPI)
- 3 explanatory variables
 - \Box Condition (or contrast) effect: C(t)
 - \Box Seed effect on rest of brain: S(t)
 - □ Interaction between seed and condition (or contrast): I(C(t), S(t))
 - Directionality here!
- Model for each subject
 - Original GLM: $y = [C(t) \text{ Others}] \beta + \varepsilon(t)$
 - □ New model: $y = [C(t) S(t) I(C(t), S(t)) Others] \beta + \varepsilon(t)$
 - 2 more regressors than original model
 - Others NOT included in SPM
 - □ What we care for: r or β for I(C(t), S(t))

Context-Dependent Correlation

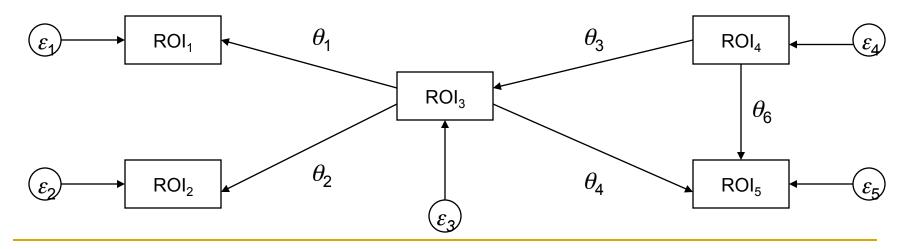
- How to formulate I(C(t), S(t))?
 - BOLD signal is an indirect measure of brain activity: Interaction occurs at neuronal, not BOLD, level
 - Deconvolution: derive "neuronal response" at seed based on BOLD response with 3dTfitter
 - Impulse convolved with Neuronal events = BOLD response
 - □ A difficult and an inaccurate process!
 - Deconvolution matters more for event-related than block experiments

Group analysis

- \square Run Fisher-transformation of r to Z-score and t-test: **3dttest**
- f Take m eta and run t-test (pseudo random-effects analysis): **3dttest**
- □ Take β and t-statistic and run random-effects model: **3dMEMA**

PPI Caution: avoid over-interpretation

- Not proof for anatomical connectivity
- Just Pearson correlation (interpretation weakened if other regions involved in the network)
- Neuronal response is hard to decode: Deconvolution is very far from reliable, plus we have to assume a shape-fixed HRF (same shape regardless of condition or regions in the brain)
- Doesn't say anything about interaction between seed and target on seed
- Doesn't differentiate whether modulation is
 - □ Condition on neuronal connectivity from seed to target, or
 - □ Neuronal connectivity from seed to target on condition effect
- Be careful with group comparison (normal vs. disease group): assuming within -group homogeneity, can we claim
 - No between-group difference => same correlation/connectivity across groups?
 - □ Between-group difference => different correlation/connectivity across groups?


Context-Dependent Correlation: hands-on

Data

- Downloaded from http://www.fil.ion.ucl.ac.uk/spm/data/attention/
- □ Event-related attention to visual motion experiment
- 4 conditions: fixation, stationary, attention motion (att), no attention motion (natt)
- \square TR=3.22s, 360 time points = 90 TR's/run × 4 runs, seed ROI = V2
- □ All steps coded in commands.txt: tcsh −x commands.txt (~5 minutes)
- Should effects of no interest be included in PPI model?
 - Compare results between AFNI and SPM
- If stimulus was presented in a resolution finer than TR
 - □ Use **1dUpsample n** to interpolate ROI time series *n* times finer before deconvolution with **3dTffiter**
 - Then downsample interaction regressor back to original resolution with **1dcat** + selector '{0..\$(n)}'

Structural Equation Modeling (SEM) or Path Analysis

- All possible regions involved in network are included
- All regions are treated equally as endogenous (dependent) variable
- Residuals (unexplained) are exogenous (independent) variables
- Analysis based on summarized data (not original ROI times series) with model specification, covariance/correlation matrix,
 DF and residual error variances (?) as input

SEM: theory

- Hypothetical model $X = KX + \varepsilon$
 - \square X: *i*-th row $x_i(t)$ is *i*-th ROI time series
 - \Box K: matrix of path coefficients θ 's whose diagonals are all 0's
 - \Box ε : *i*-th row $\varepsilon_i(t)$ is residual time series of *i*-th ROI
- Predicted (theoretical) covariance

$$\sum(\theta) = (I - K)^{-1} E[\varepsilon(t)\varepsilon(t)^T][(I - K)^{-1}]^T \text{ as } X = (I - K)^{-1}\varepsilon$$

 ML discrepancy/cost/objective function btw predicted and estimated covariance (P: # of ROIs)

$$F(\theta) = \ln \sum_{i=0}^{\infty} (\theta_i) + tr[C\sum_{i=0}^{-1} (\theta_i)] - \ln |C| - P$$

- Input: model specification; covariance (correlation?) matrix C; DF (calculating model fit statistic chi-square); residual error variances?
- □ Usually we're interested in a network under resting state or specific condition

SEM: 1st approach - validation

- Knowing directional connectivity btw ROIs, data support model?
- Null hypothesis H_0 : It's a good model
- If H_0 is **not** rejected, what are the path strengths, plus fit indices?
- Analysis for whole network, path strength estimates by-product
- 2 programs
 - □ **1dSEM** in C
 - Residual error variances as input (DF was a big concern due to limited number of time points)
 - Group level only; no CI and *p* value for path strength
 - Based on <u>Bullmore et al.</u>, How Good is Good Enough in Path Analysis of fMRI Data? NeuroImage 11, 289-301 (2000)
 - □ **1dSEMr.R** in R
 - Residual error variances not used as input
 - CI and p value for path strength
 - Individual and group level

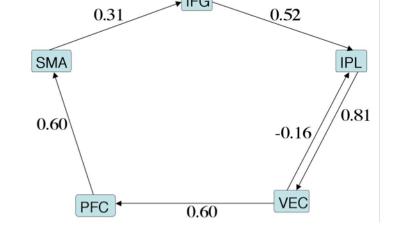
SEM: 2nd approach - search

- All possible ROIs known with some or all paths are uncertain
- Estimate unknown path strengths
- Start with a minimum model (can be empty)
- Grow (add) one path at a time that lowers cost
- How to add a path?
 - □ Tree growth: branching out from previous generation
 - □ Forest growth: whatever lowers the cost no inheritance
- Program 1dSEM: only at group level
- Various fit indices other than cost and chi-square:
 - □ AIC (Akaike's information criterion)
 - □ RMSEA (root mean square error of approximation)
 - □ CFI (comparative fit index)
 - □ GFI (goodness fit index)

SEM: caution I

- Correlation or covariance: What's the big deal?
 - ☐ Almost **ALL** publications in FMRI use correlation as input
 - $exttt{ iny }$ A path connecting from region A to B with strength $oldsymbol{ heta}$
 - Not correlation coefficient
 - o If A increases by one SD from its mean, B would be expected to increase by θ units (or decrease if θ is negative) of its own SD from its own mean while holding all other relevant regional connections constant.
 - With correlation as input
 - May end up with different connection and/or path sign
 - o Results are not interpretable
 - o Difficult to compare path strength across models/groups/studies,...
 - □ Scale ROI time series to 1 (instead of 100 as usual)
- □ ROI selection very important
 - □ If one ROI is left out, whole analysis (and interpretation) would be invalid

SEM: caution II


Validation

- □ It's validation, not proof, when not rejecting null hypothesis
- □ Different network might be equally valid, or even with lower cost: model comparison possible if nested
- Search: How much faith can we put into final 'optimal' model?
 - Model comparison only meaningful when nested (tree > forest?)
 - □ Is cost everything considering noisy FMRI data? (forest > tree?)
 - □ Fundamentally SEM is about validation, not discovery
- Only model regional relationship at current moment
 - $\Box X = KX + \varepsilon$
 - No time delays

SEM: hands-on

Model validation

- □ Data: Bullmore *et al.* (2000)
- Correlation as input
- □ Residual error variances as input
- □ **SEMscript.csh** maybe useful
- □ **1dSEM**: tcsh —x commands.txt
- □ **1dSEMr.R**: sequential mode

Model search

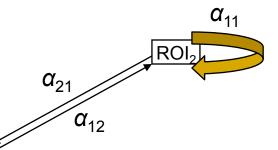
- □ Data courtesy: Ruben Alvarez (MAP/NIMH/NIH)
- □ 6 ROIs: PHC, HIP, AMG, OFC, SAC, INS
- □ Tree growth
- □ Covariance as input for **1dSEM**
- □ Shell script **SEMscript.csh** taking subject ROI time series and minimum model as input: tcsh –x commands.txt (~10 minutes)

Granger Causality: introduction

- Classical univariate autoregressive model AR(p)

 - Current state depends linearly on immediate past ones with a random error
 - □ Why called autoregressive?
 - Special multiple regression model (on past p values)
 - o Dependent and independent variable are the same
- What we typically deal with in GLM
 - $y = X\beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2 V)$, σ^2 varies spatially (across voxels)
 - □ Difficulty: *V* has some structure (*e.g.*, ARMA(1,1) in 3dREMLfit) and may vary spatially
 - \square We handle autocorrelation structure in noise ε
 - Sometimes called time series regression

Rationale for Causality in FMRI


- Networks in brain should leave some signature (e.g, latency) in fine texture of BOLD signal because of dynamic interaction among ROIs
- Response to stimuli does not occur simultaneously across brain: latency
- Reverse engineering: signature may reveal network structure
- Problem: latency might be due to neurovascular differences!

Start simple: bivariate AR model

- Granger causality: A Granger causes B if
 - time series at A provides statistically significant information about another at B at some time delays (order)
- 2 ROI time series, $y_1(t)$ and $y_2(t)$, with a VAR(1) model

$$y_{1}(t) = \alpha_{10} + \alpha_{11}y_{1}(t-1) + \alpha_{12}y_{2}(t-1) + \varepsilon_{1}(t)$$

$$y_{2}(t) = \alpha_{20} + \alpha_{21}y_{1}(t-1) + \alpha_{21}y_{2}(t-1) + \varepsilon_{2}(t)$$

Assumptions

Linearity

Stationarity/invariance: mean, variance, and autocovariance

 α_{11}

- □ White noise, positive definite contemporaneous covariance matrix, and no serial correlation in individual residual time series
- Matrix form: $Y(t) = \alpha + AY(t-1) + \epsilon(t)$, where

$$Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} \qquad \alpha = \begin{bmatrix} \alpha_{10} \\ \alpha_{20} \end{bmatrix} \qquad A = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \qquad \varepsilon(t) = \begin{bmatrix} \varepsilon_1(t) \\ \varepsilon_2(t) \end{bmatrix}$$

Multivariate AR model

• n ROI time series, $y_1(t), ..., y_n(t)$, with VAR(p) model

$$y_{1}(t) = \alpha_{10} + \sum_{k=1}^{p} \alpha_{11k} y_{1}(t-k) + \dots + \sum_{k=1}^{p} \alpha_{1nk} y_{n}(t-k) + \varepsilon_{1}(t)$$

$$\vdots$$

$$y_{n}(t) = \alpha_{20} + \sum_{k=1}^{p} \alpha_{n1k} y_{1}(t-k) + \dots + \sum_{k=1}^{p} \alpha_{nnk} y_{n}(t-k) + \varepsilon_{n}(t)$$

■ Hide ROIs: $Y(t) = \alpha + A_1 Y(t-1) + ... + A_p Y(t-p) + \mathbf{\epsilon}(t)$,

$$Y(t) = \alpha + \sum_{i=1}^{p} A_{i}Y(t-i) + \varepsilon(t) \quad \alpha = \begin{bmatrix} \alpha_{10} \\ \vdots \\ \alpha_{n0} \end{bmatrix} Y(t) = \begin{bmatrix} y_{1}(t) \\ \vdots \\ y_{n}(t) \end{bmatrix} \quad A_{i} = \begin{bmatrix} \alpha_{11i} & \cdots & \alpha_{1ni} \\ \vdots & \ddots & \vdots \\ \alpha_{n1i} & \cdots & \alpha_{n1i} \end{bmatrix} \varepsilon(t) = \begin{bmatrix} \varepsilon_{1}(t) \\ \vdots \\ \varepsilon_{n}(t) \end{bmatrix}$$

VAR: convenient forms

- Matrix form (hide ROIs) $Y(t) = \alpha + A_1 Y(t-1) + ... + A_p Y(t-p) + ε(t)$
- Nice VAR(1) form (hide ROIs and lags): Z(t) = v + BZ(t-1) + u(t)

$$Z(t) = \begin{bmatrix} Y(t) \\ Y(t-1) \\ \vdots \\ Y(t-p+1) \end{bmatrix} \quad v = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad B = \begin{bmatrix} A_1 & \cdots & A_{p-1} & A_p \\ I_n & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & I_n & 0 \end{bmatrix} \quad u(t) = \begin{bmatrix} \varepsilon(t) \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Even neater form (hide ROIs, lags and time): Y=BZ+U

$$Y = [Y(p+1), \dots, Y(T)], \qquad B = [\alpha, A_1, \dots, A_p], \qquad U = [\varepsilon(p+1), \dots, \varepsilon(T)],$$

$$Z = \begin{bmatrix} 1 & 1 & \dots & 1 \\ Y(p) & Y(p+1) & \dots & Y(T-1) \\ \vdots & \vdots & \vdots & \vdots \\ Y(1) & Y(2) & \dots & Y(T-p) \end{bmatrix}$$

■ Solve it with OLS:

$$\hat{B} = YZ^{+} = YZ^{t} (ZZ^{t})^{-1}$$

VAR extended with covariates

- Standard VAR(p) $Y(t) = α + A_1Y(t-1) + ... + A_pY(t-p) + ε(t)$
- Covariates are all over the place!
 - □ Trend, tasks/conditions of no interest, head motion, time breaks (due to multiple runs), censored time points, physiological noises, etc.
- \blacksquare Extended VAR(p)

$$Y(t) = \alpha + A_1 Y(t-1) + ... + A_p Y(t-p) + BZ_1(t) + ... + B_q Z_q(t) + \mathbf{E}(t),$$

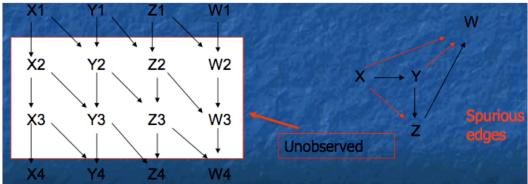
where $Z_1, ..., Z_q$ are covariates

- Endogenous (dependent: ROI time series)
- Exogenous (independent: covariates) variables
- Path strength significance: t-statistic (F in BrainVoyager)

Model quality check

- Order selection: 4 criteria (1st two tend to overestimate)
 - AIC: Akaike Information Criterion
 - FPE: Final Prediction Error
 - HQ: Hannan-Quinn
 - SC: Schwartz Criterion
- Stationarity: VAR(p) $Y(t) = \alpha + A_1 Y(t-1) + ... + A_p Y(t-p) + \epsilon(t)$
 - □ Check characteristic polynomial $\det(I_n A_1 z ... A_p z^p) \neq 0$ for $|z| \leq 1$
- Residuals normality test
 - □ Gaussian process: Jarque-Bera test (dependent on variable order)
 - □ Skewness (symmetric or tilted?)
 - □ Kurtosis (leptokurtic or spread-out?)

Model quality check (continued)


- Residual autocorrelation
 - Portmanteau test (asymptotic and adjusted)
 - □ Breusch-Godfrey LM test
 - Edgerton-Shukur *F* test
- Autoregressive conditional heteroskedasticity (ARCH)
 - □ Time-varying volatility
- Structural stability/stationarity detection
 - Is there any structural change in the data?
 - Based on residuals or path coefficients

GC applied to FMRI

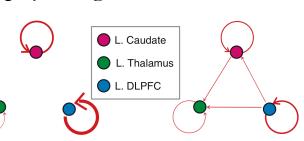
- Resting state
 - Ideal situation: no cut and paste involved
 - □ Physiological data maybe essential?
- Block experiments
 - □ Duration \geq 5 seconds?
 - Extraction via cut and paste
 - Important especially when handling confounding effects
 - Tricky: where to cut especially when blocks not well-separated?
- Event-related design
 - With rapid event-related, might not need to cut and paste (at least impractical)
 - Other tasks/conditions as confounding effects

GC: caveats

- Assumptions (stationarity, linearity, Gaussian residuals, no serial correlations in residuals, etc.)
- Accurate ROI selection
- Sensitive to lags
- o Interpretation of path coefficient: slope, like classical regression
- Confounding latency due to vascular effects
- No transitive relationship: If $Y_3(t)$ Granger causes $Y_2(t)$, and $Y_2(t)$ Granger causes $Y_1(t)$, it does not necessarily follow that $Y_3(t)$ Granger causes $Y_1(t)$.
- Time resolution? Not so serious a problem? Not neuronal signal, but blurred through IRF

GC in AFNI

- Exploratory: ROI searching with 3dGC
 - Seed vs. rest of brain
 - Bivariate model
 - □ 3 paths: seed to target, target to seed, and self-inflicted effect
 - Group analysis with 3dMEMA or 3dttest
- Path strength significance testing in network: 1dGC
 - Pre-selected ROIs
 - Multivariate model
 - Multiple comparisons issue
 - Group analysis
 - path coefficients only
 - path coefficients + standard error
 - F-statistic (BrainVoyager)


GC: hands-on

Exploratory: ROI searching with 3dGC

- Seed: sACC
- Sequential and batch mode (~5 minutes)
- Data courtesy: Paul Hamilton (Stanford)

- Data courtesy: Paul Hamilton (Stanford)
- Individual subject
 - 3 pre-selected ROIs: left caudate, left thalamus, left DLPFC
 - 8 covariates: 6 head motion parameters, 2 physiological datasets
- Group analysis
 - path coefficients only
 - path coefficients + standard errors

Summary: connectivity analysis

- 2 basic categories
 - Seed based method for ROI searching
 - ROI-based for network validation
- 3 approaches
 - Correlation analysis
 - Structural equal modeling
 - Granger causality
- A lot of interpretation traps
 - Over-interpretation seems everywhere
 - I may have sounded too negative about connectivity analysis
- Causality regarding the class: Has it helped you somehow?
 - □ Well, maybe?

Other approaches

- Multivariate (data-driven)
 - □ Techniques from machine learning, pattern recognition
 - □ Training + prediction
 - □ PCA/ICA
 - □ SVM: 3dsvm, plug-in
 - Kernel methods

Acknowledgments

- Suggestions and help
 - Daniel Glen
 - Bob Cox
 - □ Rick Reynolds
 - □ Brian Pittman
 - Ziad Saad
- Data support
 - □ Paul Hamilton
 - Ruben Alvarez