FMRI Connectivity Analysis in AFNI

Gang Chen
SSCC/NIMH/NIH
Structure of this lecture

- Overview
- Correlation analysis
 - Simple correlation
 - Context-dependent correlation (PPI)
- Structural equation modeling (SEM)
 - Model validation
 - Model search
- Granger causality (GC)
 - Bivariate: exploratory - ROI search
 - Multivariate: validating – path strength among pre-selected ROIs
Overview: FMRI connectivity analysis

- All about FMRI
 - Not for DTI
 - Some methodologies may work for MEG, EEG-ERP

- Information we have
 - Anatomical structures
 - Seed-based: A seed region in a network, or
 - Network-based: A network with all relevant regions known
 - Brain output (BOLD signal): regional time series

- What can we say about inter-regional communications?
 - Inverse problem: make inference about intra-cerebral neural processes from extra-cerebral/vascular signal
 - Based on response similarity (and sequence)
Approach I: seed-based; ROI search

- Regions involved in a network are unknown
 - Bi-regional (seed vs. whole brain) (3d*): brain volume as input
 - Mainly for ROI search
 - Popular name: functional connectivity
 - Basic, coarse, exploratory with weak assumptions
 - Methodologies: simple correlation, PPI, bivariate GC
 - Weak interpretation: may or may not indicate directionality/causality
Approach II: network-based

- Regions in a network are known
 - Multi-regional $\mathbf{1d*}$: ROI data as input
 - Model validation, connectivity strength testing
 - Popular name: effective or structural connectivity
 - Strong assumptions: specific, but with high risk
 - Methodologies: SEM, multivariate GC, DCM
 - Directionality, causality (?)
Interpretation Trap: Correlation vs. Causation!

- Some analyses require fine time resolution we usually lack
- Path from (or correlation btw) A to (and) B doesn’t necessarily mean causation
 - Bi-regional approach simply ignores the possibility of other regions involved
 - Analysis invalid if a relevant region is missing in a multi-regional model
- Robust: connectivity analysis < regression analysis
- Determinism in academics and in life
 - Linguistic determinism: Sapir-Whorf hypothesis

(Adopted from http://xkcd.com/552/)
Preparatory Steps

- Warp brain to standard space
 - `adwarp`, `@auto-tlrc`, `align_epi_anat.py`

- Create ROI
 - Sphere around a peak activation voxel: `3dUndump -master ... -srad ...`
 - Activation cluster-based (biased unless from independent data?): `localizer`
 - Anatomical database
 - Manual drawing

- Extract ROI time series
 - Average over ROI: `3dmaskave -mask`, or `3dROIstats -mask`
 - Principal component among voxels within ROI: `3dmaskdump`, then `1dsvd`
 - Seed voxel with peak activation: `3dmaskdump -noijk -dbox`

- Remove effects of no interest
 - `3dSynthesize` and `3dcalc`
 - `3dDetrend -polort`
 - `RETROICORR/RetroTS.m`
 - `3dBandpass`
Simple Correlation Analysis

- Seed vs. rest of brain
- ROI search based on response similarity
 - Looking for regions with similar signal to seed
- **Correlation** at individual subject level
 - Usually have to control for effects of no interest: drift, head motion, physiological variables, censored time points, tasks of no interest, etc.
- Applying to experiment types
 - Straightforward for resting state experiment: default mode network (DMN)
 - With tasks: correlation under specific condition(s) or resting state?
- **Program:** `3dfim+` or `3dDeconvolve`
 - r: not general, but **linear** relation; slope for standardized Y and X
 - β: slope, amount of **linear** change in Y when X increases by 1 unit
- Interactive tools in AFNI and SUMA: **InstaCor**, **GroupInstaCor**
Simple Correlation Analysis

- **Group analysis**
 - Run Fisher-transformation of r to Z-score and t-test: \texttt{3dttest}
 - Take β and run t-test (pseudo random-effects analysis): \texttt{3dttest}
 - Take $\beta + t$-statistic and run random-effects model: \texttt{3dMEMA}

- **Caution**: don’t over-interpret
 - Not proof for anatomical connectivity
 - No golden standard procedure and so many versions in analysis: seed region selection, covariates, $r (Z)/\beta$, bandpass filtering, …
 - Information limited if other regions present in network
 - Be careful with group comparison (normal vs. disease): assuming within-group homogeneity, can we claim
 - No between-group difference \Rightarrow same correlation/connectivity across groups?
 - Between-group difference \Rightarrow different correlation/connectivity across groups?
Context-Dependent Correlation

- Popularized name: Psycho-Physiological Interaction (PPI)
- 3 explanatory variables
 - Condition (or contrast) effect: $C(\hat{t})$
 - Seed effect on rest of brain: $S(\hat{t})$
 - Interaction between seed and condition (or contrast): $I(C(\hat{t}), S(\hat{t}))$
 - Directionality here!
- Model for each subject
 - Original GLM: $y = [C(\hat{t}) \text{ Others}] \beta + \varepsilon(\hat{t})$
 - New model: $y = [C(\hat{t}) S(\hat{t}) I(C(\hat{t}), S(\hat{t})) \text{ Others}] \beta + \varepsilon(\hat{t})$
 - 2 more regressors than original model
 - Others NOT included in SPM
 - What we care for: r or β for $I(C(\hat{t}), S(\hat{t}))$
Context-Dependent Correlation

- How to formulate $I(C(t), S(t))$?
 - Interaction occurs at neuronal, not BOLD (an indirect measure) level
 - **Deconvolution**: derive “neuronal response” at seed based on BOLD response
 - **3dTfitter**: Impulse \otimes Neuronal events = BOLD response
 - A difficult and an inaccurate process!
 - Deconvolution matters more for event-related than block experiments
 - Useful tool: **timing_tool.py** can convert stimulus timing into 0s and 1s

- If stimuli were presented in a resolution finer than TR
 - Use **1dUpsample n**: interpolate time series $n \times$ finer before deconvolution **3dTfitter**
 - Downsample interaction regressor back to original TR with **1dcat** with selector '{0..$(n)}'

- Group analysis
 - Run Fisher-transformation of r to Z-score and t-test: **3dttest**
 - Take β and run t-test (pseudo random-effects analysis): **3dttest**
 - Take β and t-statistic and run random-effects model: **3dMEMA**

PPI Caution: avoid over-interpretation

- Not proof for anatomical connectivity
- Information limited if other regions involved in the network
- Neuronal response is hard to decode: Deconvolution is very far from reliable, plus we have to assume a shape-fixed HRF (same shape regardless of condition or regions in the brain)
- Doesn’t say anything about interaction between seed and target on seed
- Doesn’t differentiate whether modulation is
 - Condition on neuronal connectivity from seed to target, or
 - Neuronal connectivity from seed to target on condition effect
- Be careful with group comparison (normal vs. disease group): assuming within-group homogeneity, can we claim
 - No between-group difference => same correlation/connectivity across groups?
 - Between-group difference => different correlation/connectivity across groups?
Context-Dependent Correlation: hands-on

- **Data**
 - Downloaded from http://www.fil.ion.ucl.ac.uk/spm/data/attention/
 - Event-related attention to visual motion experiment
 - 4 conditions: fixation, stationary, attention motion (att), no attention motion (natt)
 - TR=3.22s, 360 time points = 90 TR’s/run × 4 runs, seed ROI = V2
 - All steps coded in commands.txt: `tcsh -x commands.txt` (~5 minutes)

- **Should effects of no interest be included in PPI model?**
 - Compare results between AFNI and SPM
Structural Equation Modeling (SEM) or Path Analysis

- All possible regions involved in network are included
- All regions are treated equally as endogenous (dependent) variable
- Residuals (unexplained) are exogenous (independent) variables
- Analysis based on summarized data (not original ROI times series) with model specification, covariance/correlation matrix, DF and residual error variances (?) as input

\[
\begin{align*}
\epsilon_1 & \rightarrow ROI_1 \\
\epsilon_2 & \rightarrow ROI_2 \\
\epsilon_3 & \rightarrow ROI_3 \\
\epsilon_3 & \rightarrow ROI_4 \\
\epsilon_5 & \rightarrow ROI_5
\end{align*}
\]
SEM: theory

- Hypothetical model \(X = KX + \varepsilon \)
 - \(X \): \(i \)-th row \(x_i(t) \) is \(i \)-th ROI time series
 - \(K \): matrix of path coefficients \(\theta \)'s whose diagonals are all 0's
 - \(\varepsilon \): \(i \)-th row \(\varepsilon_i(t) \) is residual time series of \(i \)-th ROI

- Predicted (theoretical) covariance
 \[
 \Sigma(\theta) = (I-K)^{-1}E[\varepsilon(t)\varepsilon(t)^T][(I-K)^{-1}]^T \quad \text{as} \quad X = (I-K)^{-1}\varepsilon
 \]

- ML discrepancy/cost/objective function btw predicted and estimated covariance (\(P \): # of ROIs)
 \[
 F(\theta) = ln \Sigma(\theta) + tr[C\Sigma^{-1}(\theta)] - ln |C| - P
 \]
 - Input: model specification; covariance (correlation?) matrix \(C \); DF (calculating model fit statistic chi-square); residual error variances?
 - Usually we’re interested in a network under resting state or specific condition
SEM: 1st approach - validation

- Knowing directional connectivity btw ROIs, data support model?
- **Null hypothesis** H_0: It’s a good model
- If H_0 is **not** rejected, what are the path strengths, plus fit indices?
- Analysis for whole network, path strength estimates by-product
- 2 programs
 - 1dSEM in C
 - Residual error variances as input (DF was a big concern due to limited number of time points)
 - Group level only; no CI and p value for path strength
 - 1dSEMr.R in R
 - Residual error variances not used as input
 - CI and p value for path strength
 - Individual and group level
SEM: 2nd approach - search

- All possible ROIs known with some or all paths are uncertain
- Estimate unknown path strengths
- Start with a minimum model (can be empty)
- Grow (add) one path at a time that lowers cost
- How to add a path?
 - Tree growth: branching out from previous generation
 - Forest growth: whatever lowers the cost – no inheritance
- Program 1dSEM: only at group level
- Various fit indices other than cost and chi-square:
 - AIC (Akaike's information criterion)
 - RMSEA (root mean square error of approximation)
 - CFI (comparative fit index)
 - GFI (goodness fit index)
Correlation or covariance: What’s the big deal?

- Almost **ALL** publications in FMRI use correlation as input
- A path connecting from region A to B with strength θ
 - Not correlation coefficient
 - If A increases by one SD from its mean, B would be expected to increase by θ units (or decrease if θ is negative) of its own SD from its own mean while holding all other relevant regional connections constant
 - With correlation as input
 - May end up with different connection and/or path sign
 - Results are not interpretable
 - Difficult to compare path strength across models/groups/studies,...

- **Scale ROI time series to 1** (instead of 100 as usual)

- **ROI selection very important**
 - If one ROI is left out, whole analysis (and interpretation) would be invalid
SEM: caution II

- Validation
 - It’s validation, not proof, when not rejecting null hypothesis
 - Different network might be equally valid, or even with lower cost: model comparison possible if nested

- Search: How much faith can we put into final ‘optimal’ model?
 - Model comparison only meaningful when nested (tree > forest?)
 - Is cost everything considering noisy FMRI data? (forest > tree?)
 - Fundamentally SEM is about validation, not discovery

- Only model regional relationship at current moment
 - $X = KX + \varepsilon$
 - No time delays
SEM: hands-on

- Model validation
 - Data: Bullmore et al. (2000)
 - Correlation as input
 - Residual error variances as input
 - \texttt{SEMscript.csh} maybe useful
 - \texttt{1dSEM}: tcsh –x commands.txt
 - \texttt{1dSEMr.R}: sequential mode

- Model search
 - Data courtesy: Ruben Alvarez (MAP/NIMH/NIH)
 - 6 ROIs: PHC, HIP, AMG, OFC, SAC, INS
 - Tree growth
 - Covariance as input for \texttt{1dSEM}
 - Shell script \texttt{SEMscript.csh} taking subject ROI time series and minimum model as input: tcsh –x commands.txt (~10 minutes)
Granger Causality: introduction

- Classical univariate autoregressive model AR(p)
 - \(y(t) = \alpha_0 + \alpha_1 y(t-1) + \ldots + \alpha_p y(t-p) + \epsilon(t) = \alpha_0 + \sum_{k=1}^{p} \alpha_k y(t-k) + \epsilon(t) \) white
 - Current state depends linearly on immediate past ones with a random error
 - Why called autoregressive?
 - Special multiple regression model (on past \(p \) values)
 - Dependent and independent variable are the same
 - AR(1): \(y(t) = \alpha_0 + \alpha_1 y(t-1) + \epsilon(t) \)

- What we typically deal with in GLM
 - \(y = X\beta + \epsilon, \epsilon \sim N(0, \sigma^2 V) \), \(\sigma^2 \) varies spatially (across voxels)
 - Difficulty: \(V \) has some structure (e.g., ARMA(1,1) in 3dREMLfit) and may vary spatially
 - We handle autocorrelation structure in noise \(\epsilon \)
 - Sometimes called time series regression
Rationale for Causality in FMRI

- Networks in brain should leave some signature (e.g., latency) in fine texture of BOLD signal because of dynamic interaction among ROIs
- Response to stimuli does not occur simultaneously across brain: latency
- Reverse engineering: signature may reveal network structure
- **Problem**: latency might be due to neurovascular differences!
Start simple: bivariate AR model

- Granger causality: A Granger causes B if
 - the time series at A provides statistically significant information about the time series at B at some time delays (order)
- 2 ROI time series, \(y_1(t) \) and \(y_2(t) \), with a VAR(1) model

 \[
 y_1(t) = \alpha_{10} + \alpha_{11} y_1(t-1) + \alpha_{12} y_2(t-1) + \epsilon_1(t) \\
 y_2(t) = \alpha_{20} + \alpha_{21} y_1(t-1) + \alpha_{22} y_2(t-1) + \epsilon_2(t)
 \]

- Assumptions
 - Linearity
 - Stationarity/invariance: mean, variance, and autocovariance
 - White noise, positive definite contemporaneous covariance matrix, and no serial correlation in individual residual time series
- Matrix form: \(Y(t) = \alpha + AY(t-1) + \epsilon(t) \), where

 \[
 Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} \quad \alpha = \begin{bmatrix} \alpha_{10} \\ \alpha_{20} \end{bmatrix} \quad A = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \quad \epsilon(t) = \begin{bmatrix} \epsilon_1(t) \\ \epsilon_2(t) \end{bmatrix}
 \]
Multivariate AR model

- \(n \) ROI time series, \(y_1(t), \ldots, y_n(t) \), with VAR(\(p \)) model

\[
y_1(t) = \alpha_{10} + \sum_{k=1}^{p} \alpha_{11k} y_1(t-k) + \ldots + \sum_{k=1}^{p} \alpha_{1nk} y_n(t-k) + \varepsilon_1(t)
\]

\[
\vdots
\]

\[
y_n(t) = \alpha_{n0} + \sum_{k=1}^{p} \alpha_{n1k} y_1(t-k) + \ldots + \sum_{k=1}^{p} \alpha_{nwk} y_n(t-k) + \varepsilon_n(t)
\]

- Hide ROIs: \(Y(t) = \alpha + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \varepsilon(t), \)

\[
Y(t) = \alpha + \sum_{i=1}^{p} A_i Y(t-i) + \varepsilon(t)
\]

\[
\begin{bmatrix}
\alpha_{10} \\
\vdots \\
\alpha_{n0}
\end{bmatrix}
\begin{bmatrix}
y_1(t) \\
\vdots \\
y_n(t)
\end{bmatrix}
\begin{bmatrix}
\alpha_{11i} & \ldots & \alpha_{1ni} \\
\vdots & \ddots & \vdots \\
\alpha_{n1i} & \ldots & \alpha_{nni}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1(t) \\
\vdots \\
\varepsilon_n(t)
\end{bmatrix}
\]
VAR: convenient forms

Matrix form (hide ROIs) \(Y(t) = \alpha + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \varepsilon(t) \)

Nice VAR(1) form (hide ROIs and lags): \(Z(t) = \nu + BZ(t-1) + u(t) \)

\[
Z(t) = \begin{bmatrix}
Y(t) \\
Y(t-1) \\
\vdots \\
Y(t-p+1)
\end{bmatrix} \\

\nu = \begin{bmatrix}
\alpha \\
0 \\
\vdots \\
0
\end{bmatrix} \\
B = \begin{bmatrix}
A_1 & \ldots & A_{p-1} & A_p \\
I_n & \ldots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & I_n & 0
\end{bmatrix} \\
\varepsilon(t) = \begin{bmatrix}
\varepsilon(t) \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

Even neater form (hide ROIs, lags and time): \(Y = BZ + U \)

\[
Y = [Y(p+1), \ldots, Y(T)], \quad B = [\alpha, A_1, \ldots, A_p], \quad U = [\varepsilon(p+1), \ldots, \varepsilon(T)],
\]

\[
Z = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
Y(p) & Y(p+1) & \ldots & Y(T-1) \\
\vdots & \vdots & \ddots & \vdots \\
Y(1) & Y(2) & \ldots & Y(T-p)
\end{bmatrix}
\]

Solve it with OLS:

\[
\hat{B} = YZ' = YZ'(ZZ')^{-1}
\]
VAR extended with covariates

- **Standard VAR(p)** \[Y(t) = \alpha + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \varepsilon(t) \]
- **Covariates are all over the place!**
 - Trend, tasks/conditions of no interest, head motion, time breaks (due to multiple runs), censored time points, physiological noises, etc.
- **Extended VAR(p)**
 \[Y(t) = \alpha + A_1 Y(t-1) + \ldots + A_p Y(t-p) + B Z_1(t) + \ldots + B_q Z_q(t) + \varepsilon(t), \]
 where Z_1,\ldots, Z_q are covariates
 - Endogenous (dependent: ROI time series)
 - Exogenous (independent: covariates) variables
 - Path strength significance: t-statistic (F in BrainVoyager)
Model quality check

- **Order selection**: 4 criteria (1st two tend to overestimate)
 - AIC: Akaike Information Criterion
 - FPE: Final Prediction Error
 - HQ: Hannan-Quinn
 - SC: Schwartz Criterion

- **Stationarity**: \(\text{VAR}(p) \ Y(t) = \alpha + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \epsilon(t) \)
 - Check characteristic polynomial \(\det(I_n - A_1 z - \ldots - A_p z^p) \neq 0 \) for \(|z| \leq 1 \)

- **Residuals normality test**
 - Gaussian process: Jarque-Bera test (dependent on variable order)
 - Skewness (symmetric or tilted?)
 - Kurtosis (leptokurtic or spread-out?)
Model quality check (continued)

- Residual autocorrelation
 - Portmanteau test (asymptotic and adjusted)
 - Breusch-Godfrey LM test
 - Edgerton-Shukur F test

- Autoregressive conditional heteroskedasticity (ARCH)
 - Time-varying volatility

- Structural stability/stationarity detection
 - Is there any structural change in the data?
 - Based on residuals or path coefficients
GC applied to FMRI

- Resting state
 - Ideal situation: no cut and paste involved
 - Physiological data maybe essential?

- Block experiments
 - Duration \geq 5 seconds?
 - Extraction via cut and paste
 - Important especially when handling confounding effects
 - Tricky: where to cut especially when blocks not well-separated?

- Event-related design
 - With rapid event-related, might not need to cut and paste (at least impractical)
 - Other tasks/conditions as confounding effects
GC: caveats

- Assumptions (stationarity, linearity, Gaussian residuals, no serial correlations in residuals, etc.)
- Accurate ROI selection
- Sensitive to lags
- Interpretation of path coefficient: slope, like classical regression
- Confounding latency due to vascular effects
- **No transitive relationship**: If $Y_3(t)$ Granger causes $Y_2(t)$, and $Y_2(t)$ Granger causes $Y_1(t)$, it does not necessarily follow that $Y_3(t)$ Granger causes $Y_1(t)$.
- Time resolution? Not so serious a problem? Not neuronal signal, but blurred through IRF
GC in AFNI

- **Exploratory: ROI searching with 3dGC**
 - Seed vs. rest of brain
 - Bivariate model
 - 3 paths: seed to target, target to seed, and self-effect
 - Group analysis with 3dMEMA or 3dttest

- **Path strength significance testing in network: 1dGC**
 - Pre-selected ROIs
 - Multivariate model
 - Multiple comparisons issue
 - Group analysis
 - path coefficients only
 - path coefficients + standard error
 - F-statistic (BrainVoyager)
GC: hands-on

- **Exploratory: ROI searching with 3dGC**
 - Seed: sACC
 - Sequential and batch mode (~5 minutes)
 - Data courtesy: Paul Hamilton (Stanford)

- **Path strength significance testing in network: 1dGC**
 - Data courtesy: Paul Hamilton (Stanford)
 - Individual subject
 - 3 pre-selected ROIs: left caudate, left thalamus, left DLPFC
 - 8 covariates: 6 head motion parameters, 2 physiological datasets
 - Group analysis
 - path coefficients only
 - path coefficients + standard errors
Summary: connectivity analysis

- 2 basic categories
 - Seed-based method for ROI searching
 - Network-based for network validation

- 3 approaches
 - Correlation analysis
 - Structural equal modeling
 - Granger causality

- A lot of interpretation traps
 - Over-interpretation seems everywhere
 - I may have sounded too negative about connectivity analysis

- Causality regarding the class: Has it helped you somehow?
 - Well, maybe?
Interpretation Trap: Correlation vs. Causation!

- Some analyses require fine time resolution we usually lack
- Path from (or correlation btw) A to (and) B doesn’t necessarily mean causation
 - Bi-regional approach simply ignores the possibility of other regions involved
 - Analysis invalid if a relevant region is missing in a multi-regional model
- Robust: connectivity analysis < regression analysis
- Determinism in academics and in life
 - Linguistic determinism: Sapir-Whorf hypothesis

![Image](http://xkcd.com/552/)
Other approaches

- Multivariate (data-driven)
 - Techniques from machine learning, pattern recognition
 - Training + prediction
 - PCA/ICA
 - SVM: 3dsvm, plug-in
 - Kernel methods