-1-

Using **AFNI** Interactively — More details than you want to know

- Start AFNI from the command line
 - *** afni** reads datasets from the current directory
 - ♦ If no datasets in current directory, tries to read sub-directories 1 level deeper
 - *** afni dir1 dir2** ... reads datasets from directories listed
 - ***** afni -R reads datasets from the current directory and from all directories below it
- AFNI reads the file named .afnirc from your home directory, if it is present
 - * This file is used to change many of the defaults (cf. File **README.environment**)

AFNI controller window at startup

- <u>Miscellaneous features of the AFNI controller window</u>:
 - ★ *xyz*-coordinate display in upper left corner shows current focus location
 - \diamond By default, the coordinates are in <u>RAI</u> order (from the <u>DICOM</u> standard):
 - $x = \underline{R}$ ight (negative) to Left (positive)
 - $y = \underline{A}$ nterior (negative) to Posterior (positive)
 - $z = \underline{I}$ nferior (negative) to Superior (positive)
 - \diamond This display order can be changed to the neuroscience imaging order <u>LPI</u>:
 - $x = \underline{L}$ eft (negative) to Right (positive)
 - y = Posterior (negative) to Anterior (positive)
 - $rightarrow z = \underline{I}$ nferior (negative) to Superior (positive)
 - → Right-click in coordinate display to change the coordinate order
 - * The [Bhelp] button: when pressed, the cursor changes to a hand shape; use it to click on any AFNI button and you will get a small help popup

AFNI also has 'hints' (AKA 'tooltips')

- ★ Press the [New] button to open a new AFNI controller
- \star Used to look at more than one dataset at a time
 - ♦ [Define Datamode] ⇒ [Lock] can be used to lock controllers together by coordinates
 - → All viewing windows within a controller are *always* locked together
 - Press the [Views] button to close/open the control panel at right
 - Button with inverted colors means that control panel or window is open

- ★ Press the [done] button twice within 5 seconds to exit AFNI
 - The first button press changes 'done' to 'DONE'
 - Fail to press second time in 5 seconds: it changes back to 'done'
 - Whatever you do, don't press a mouse button in the blank square to
 the right of [done]
 - We won't be responsible for the consequences
- * The [Switch] buttons let you control which datasets are being viewed
 - [Switch Session] controls which directory datasets are viewable
 [
 - All datasets in same directory are assumed to be aligned in space
 - Any dataset can be the underlay; any dataset can be the overlay
 - [<u>Underlay</u>] control the background (grayscale) dataset anatomical dataset usually goes here
 - Current underlay dataset determines the resolution of and 3D region covered by image viewers
 - [Overlay] controls the overlay (color) dataset functional (statistical) dataset usually goes here
 - ➡ Functional datasets will be interpolated if needed to the underlay resolution, and flipped — if needed — to that orientation
 - Interpolation method controlled in [Define Datamode] panel
 - Current datasets are named in AFNI controller titlebar: look at it!

-4-

- Dataset "chooser" window
 - ★ List of datasets available in the current directory
 - ★ Left column has prefix names of datasets
 - ★ Right column has a little information about each dataset
 - How dataset was classified in to3d
 - Number of sub-bricks
- <u>To choose a dataset</u>
 - ★ Click on label, or scroll with mouse scroll-wheel, or use keyboard arrows
 - ★ Press [<u>Apply</u>] button to select the highlighted dataset, and also keep the chooser window open
 - ★ Press [Set] button to select the highlighted dataset, and also close the chooser window
 - ★ For the advanced and highly intellectual user:
 - Set environment variable AFNI_DATASET_BROWSE to YES to have AFNI switch to that dataset immediately upon selection (don't need to use [Apply] or [Set])
 - ♦ Environment variables can be set in your **.afnirc** file, or by using the [Edit Environment] control panel (cf. [Define Datamode] \Rightarrow [Misc])

● ⊖ ⊖	X menu		
Choose One Underlay			
EDspgr		[sp	gr]*
all_runs.qqED.8	.glt	[ep	an:3D+t:1360]*
fitts.qqED.8.glt		[ep	an:3D+t:1360]*
iresp_HumanMovie.qqED.8.glt		[ep	an:3D+t:141]*
iresp_HumanPoint.qqED.8.glt		[ep	an:3D+t:141]*
iresp_ToolMovie.qqED.8.glt		[ep	an:3D+t:141]*
iresp_ToolPoint.qqED.8.glt		[ep	an:3D+t:141]*
pb00.qqED.8.glt	.r10.tcat	[ep	an:3D+t:136]*
pb01.qqED.8.glt.r10.tshift		[ep	an:3D+t:136]*
pb02.qqED.8.glt.r10.volreg		[ep	an:3D+t:136]*
pb03.qqED.8.glt.r10.blur		[ep	an:3D+t:136]*
pb04.qqED.8.glt.r10.scale		[ep	an:3D+t:136]*
full_mask.qqED.8.glt		[fi	m]z
stats.qqED.8.glt		[fb	uc:96]*
Quit	Apply		Set

- ★ The [<u>RescanTh</u>] button checks the session (data directory) that you are currently working in for new datasets
 - Use this feature when when you create a new dataset using a command line program (like 3dcalc) outside of the AFNI interface, and then want to see it
 - ↔ [<u>RescanTh</u>] same as [<u>Define Datamode</u>] \Rightarrow [<u>Rescan This</u>]
 - This duplicate button added 02 Feb 2007 in response to AFNI workshop users from Princeton University
 - → If you set AFNI_RESCAN_AT_SWITCH to YES, then [RescanTh] is done whenever you press [Underlay] or [Underlay]
- ★ The [NIML+PO] button tells AFNI to start listening for TCP/IP (network socket) connections from external programs
 - ♦ SUMA = SUrface MApper
 - Can exchange data with AFNI for two-way interactive display of data on cortical surface models in SUMA and in 3D volumes in AFNI

plugout_drive

- Program can send commands to AFNI that act like button presses in the AFNI controller windows
- Example: You can write a <u>script</u> (a list of commands) to make AFNI open image windows, and save an image window to a JPEG file
- You can write your own program to connect to AFNI and send data and send commands (if you are a programmer, that is)
- ♦ [<u>NIML+PO</u>] duplicates buttons on [<u>Define Datamode</u>] ⇒ [<u>Misc</u>] menu — also added on 02 Feb 2007

-5-

The **Define Datamode** Control Panel

N.B.: There is only one lock

Misc Menu

-8-

- -9-
- \star Crosshairs in image window show current focus location (=*xyz* in AFNI controller)
 - Also show the cut planes for the other image viewers
 - When using image montage, other viewers show multiple crosshairs
 - Can control crosshair color and gap size from main AFNI controller
- \star Slider below image lets you move between slices
 - \diamond Left-click and drag 'thumb' to move past many slices
 - \diamond Left-click ahead or behind thumb to move 1 image at a time
 - -Hold button click down to scroll continuously through slices
 - Average And Antipaction And Antipactic An
 - Mouse scroll-wheel action when cursor is over image also changes slices
- ★ Vertical intensity bar to right of image shows mapping from numbers stored in image to colors shown on screen
 - Bottom of intensity bar corresponds to smallest numbers displayed
 A
 - Top corresponds to largest numbers displayed (popup hint shows numerical range)
 - Smallest-to-largest display range is selected from [Disp] control panel
 - or from hidden right-click popup menu on intensity bar
 - All image viewers from all AFNI controllers use the same intensity bar
 - so when you change intensity scale in one viewer, all others viewers change
 - unless AFNI is started with the -uniq command line option, in which case each AFNI controller's viewers have independent intensity bars
 - but all image viewers from same controller always share same intensity bar
 - Mouse scroll-wheel action when cursor is over intensity bar changes contrast

-10-

Colr Swap Norm c V (A) b V (A) r V (A) g V (A) g V (A) 7 V (A) z V (A) period

 \star Buttons at right of image viewer window

- [<u>Colr</u>] changes grayscale to color spectrum, and back (fun & useless)
- ♦ [Swap] swaps top of intensity bar with bottom
- ♦ [Norm] returns the intensity bar to normal (after you mess it up)
- ♦ [<u>c</u>] controls contrast
- [b] controls brightness
 - → Useful combination [c] ▲ 2-3 times, [b] ▼ 2-3 times
- [R] rotates the intensity bar (also fun & useless)
- [g] changes the gamma factor (nonlinearity) for the intensity bar
- ♦ [i] changes the size of the image in the window
- ♦ [9] changes the opacity of the color overlay
 - This control only present for X11 TrueColor displays
- \diamond [z] zooms out and in
- ♦ [pan] lets you pan around when zoomed in
- [crop] lets you crop the image viewing area
- \star At bottom right, the arrowpad controls the crosshairs

- Arrows move 1 pixel in that direction for that window
 - → Sagittal is same as Axial
- Central button closes and opens crosshair gap (for fine control of where the crosshairs are)
- Items on AFNI controller (below xyz display) also alter crosshairs
 - → Can change color, gap size, ...

-11-

* Buttons along bottom of image viewer window provide various services

- [Disp] controls the way images are displayed and saved
 - Pops up its own control window: most controls change image immediately
 - Orientation controls at top allow you to flip image around
 - → [<u>No Overlay</u>] lets you turn color overlays off (crosshairs; function)
 - [Min-to-Max] \Rightarrow intensity bar is data min-to-max
 - → [2\$ to 98\$] \Rightarrow intensity bar is smallest 2% of data to largest 98%
 - Avoids having a few very bright voxels dominate intensity scaling
 - [Free Aspect] lets you distort image shape freely
 - Otherwise, AFNI tries to keep image shape "true" as you stretch/shrink window
 - → [<u>Save panel</u>] controls how images are saved to disk:
 - All buttons off \Rightarrow saved image file contains slice raw data (not what you want)
 - [<u>Nsize Save</u>] \Rightarrow same, but images are 2^N in size
 - [<u>PNM Save</u>] ⇒ images are saved in PPM/PGM format (color/gray)
 - [Save to .xxx(s)] \Rightarrow saves image(s) to specified format
 - [Save One] \Rightarrow for saving montage
 - [<u>Tran OD</u>] lets you transform voxel values before display
 - [Log10] and [SSqrt] useful for images with extreme values
 - [<u>Tran 2D</u>] provides some 2D image filters (underlay only)
 - [Median 9] smoothing can be useful for printing images
 - [<u>Rowgraphs</u>] lets you graph the voxel values from image rows
 - If you want columns, flip the image with [<u>CCW 90</u>]
 - [Surfgraph] lets you graph the voxel values in a surface graph]

No Rotation ♦ CCW 90 ◇ Rot 180 ◇ CW 90 + LR Mirror □ No Overlau ♦ Min-to-Max > 2%-to-98% Free Aspect ♦ Nsize Save ♦ PNM Save Save to .ppm(s) Save to .jpg(s) Save to .gif(s) ♦ Save to .tif(s) ♦ Save to .bmp(s) ♦ Save to .eps(s) ♦ Save to .png(s) Save One ♦ Save Anim GIF ♦ Save Anim MPG Project -none- 🗖 Slab +- 0 🗖 Tran OD -none- 🗖 Tran 2D -none-RowGraphs 0 📼 SurfGraph No 🗖 🗆 Flatten Sharpen Edge Detect Reset Done

- Three extra imaging processing filters are provided at the bottom
 - [<u>Sharpen</u>] is sometimes useful for deblurring images
- ← [Reset] sets controls back to what they were when you opened [Disp]
- ► [Done] closes this control window
- ★ [<u>Save</u>] lets you save images from viewer to disk files
 - Warning: Images are saved as sent to the viewer, not as displayed
 - Means that aspect ratio of saved image may be wrong (non-square pixels)
 - \rightarrow Can fix this with [Define Datamode] \Rightarrow [Warp Anat on Demand]
 - Or by setting **AFNI_IMAGE_SAVE SQUARE** to **YES**
 - [Save:bkg] means it will save the background image data itself, whatever the format it may be in (bytes, shorts, floats, complex numbers, RGB byte triples)
 - - → PPM for color, PGM for gray-only images
 - You might have to convert this to some other format
 - See AFNI FAQ #57 for instructions on image format conversion
 - [Sav1:xxx] means it will save the entire Montage in format "xxx"
 - → This is the <u>only</u> way to save a Montage layout (within AFNI)
 - [Save] options will only save single slice images (one or more)
 - ♦ [Save.xxx] means it will save image in the "xxx" format
 - You can also set this using the hidden right-click popup on the [<u>Save</u>] Button itself (so you don't need to open & close [<u>Disp</u>] just for this)
 - Format list depend on presence of image conversion programs on your system

After you press [<u>Save</u>], then it asks for a filename prefix

Except for [Sav1.xxx], it then asks for 'from' and 'to' slice indexes

- ➡ You can save many images this way
- → Filenames are like are like prefix.0037.ppm, for slice #37, ppm format
- [Sav1.xxx] immediately saves its one file after prefix is entered
- **★** [Mont] lets you display a rectangular layout of images (i.e., montage)
 - Pops up its own little control window
 - Controls at top do nothing until an action is selected on bottom row
 - [<u>Across</u>] and [<u>Down</u>] determine number of sub-images shown
 - [<u>Spacing</u>] determines how far apart the selected slices are
 - Every n^{th} slice, for n = 1, 2, ...
 - Multiple crosshairs in other image viewers will show montage slices
 - [Border] lets you put some blank pixels between sub-images
 - → [Color] lets you choose the color of the border pixels

At bottom row, the action buttons cause something to happen:

- [Quit] closes the Montage control window
- [1x1] changes Across and Down back to 1
- [Draw] actually causes the montage to be drawn
- \rightarrow [Set] \Leftrightarrow [Draw] then [Quit]

-14-

🔶 Off

-- Cancel --

🔷 Next One

◇Stay On ◆After End

🔷 Before Star

🔷 Insert --

♦ Insert ++
♦ OverWrite

🔷 -- OverWrite

++ OverWrite

- * [<u>Rec</u>] lets you record images for later <u>Save</u>-ing
 - ◆ So you can build a sequence of images using any set of AFNI controls
 - → Change color maps, functional thresholds, datasets, ...
 - \diamond Then save them to disk for animation, etc.
 - → If Unix programs whirlgif and/or gifsicle are installed on your system, AFNI can write GIF animations directly (e.g., for fun Web pages)
 - → If program mpeg_encode is installed, AFNI can write MPEG-1 animations
 - Source code for these free programs is included with AFNI source code
 - [Rec] button pops down a menu that sets the record mode
 - → $[Off] \Rightarrow$ recording is off
 - \rightarrow [Next One] \Rightarrow next image displayed is recorded, then back to [Off]
 - \rightarrow [Stay On] \Rightarrow record each image when displayed
 - Controls below the line determine where in the recording sequence the saved images will be stored as they are created
 - Recorded images go into a special new image viewer
 - Slider moves between recorded images
 - → [Kill] deletes 1 image from recorded sequence
 - [Save] will save record images
 - Right-click on [<u>Save</u>] for format menu
 - [Done] to close the recorded image viewer

-15-

Jumpback Jump to (xyz)

Jump to (ijk) Jump to (MNI)

-Talairach to

-Where Am I? -Atlas Colors

Image display Edit Environment

Draw ROI plugin

= 0.111538

★ Hidden image popup menu (using Button 3 or right-click)

♦ [Jumpback] lets you jump the focus position back to its last place

- For when you click in the wrong place and get lost
- [<u>Jump to (xyz)</u>] lets you enter *xyz*-coordinates (in mm), and then the
 focus position will jump there
 - → External program 3dclust can generate *xyz* coordinates of interest
 - \rightarrow Once you have +tlrc dataset, can jump to regions from Talairach atlas
- [<u>Jump to (ijk)</u>] lets you jump to a particular voxel index location
 [
]
- [<u>Image display</u>] lets you turn control widgets on and off
 - Can unclutter screen a little; useful if you want to make a screenshot
- Other items bring up controls that are discussed in other presentations

★ Hidden intensity bar popup menu

Choose Display Range			
Choose Zero Color			
Choose Flatten Range			
Choose Sharpen factor			
🗖 Plot Overlay Plots			
Display Graymap Plot			
Label	Off 🗖		
Size	Medium 🗖		
Tick Div. 0 🗖			
Tick Size 1 📼			

- [<u>Choose Display Range</u>] lets you pick the exact range of numbers that
 are mapped to intensity bar colors
 [
]
]
 - Normally, each slice image is mapped to colors separately when it is displayed
 - Using Min-to-Max or 2%-to-98% from [Disp]
 - If you want each image to be mapped the same way, then must give bottom-to-top values via this menu item (separate them with spaces)
 - → If you set third (optional) input 'ztop' to 1, values above 'top' are set to 0
 - To restore normal auto-mapping, set 'bot' and 'top' both to 0

- [<u>Choose Zero Color</u>] lets you choose the color that is displayed
 for voxel values that are exactly 0
 - Can be useful for filling in regions that were set to 0 by some program
 - For example, values below 'bot' from Choose Display Range (and above 'top' if 'ztop' was set to 1)
 - Choose the 'none' color to return to normal display
- [Choose Flatten Range] is used to control the Flatten filter from the [Disp] control window
 [Disp]
 - → This is almost useless don't bother to try it
- [Choose Sharpen Factor] is used to control the Sharpen filter
 from the [Disp] control window
 [Disp]
 - Larger values mean more sharpening (and more image graininess)
- [<u>Plot Overlay Plots</u>] turns overlay graphs on and off
 - Among other things, controls overlay of cortical surface geometry sent to AFNI from the SUMA program
- [Label] and [Size] control display of slice coordinate overlay plot
- [<u>Tick Div</u>] controls tick marks plotted around the outside of image

-17-

- Keyboard shortcuts while cursor is in the image window
 - \star **q** = quit = close the viewer window
 - \star v or v = video = move through slices automatically
 - \star **r** or **R** = rebound video
 - \star z or z = zoom out or in
 - \star **p** = turn panning on or off (when zoomed in)
 - ★ c = turn cropping rectangle on or off
 - \star i or I = change image fraction down or up
 - ★ m = switch between Min-to-Max and 2%-to-98% scaling
 - ★ a = fix image aspect ratio (if it gets deranged by windowing system)
 - ★ D = open Disp window
 - ***** M = Open Mont window (N.B.: Disp and Mont are mutually exclusive!)
 - ★ S = open Save window
 - ★ o = turn color overlay display on and off (like [See Overlay] in AFNI GUI)
 - \star **u** = switch the overlay dataset to be the underlay dataset temporarily
 - ★ keyboard arrow keys = move cursor one voxel (like arrowpad)
 - ★ PageUp and PageDown = change slice
 - ★ Delete = ROI drawing plugin 'Undo'
 - \star F2 = Change to 'pencil' mode when using the ROI drawing plugin

- Mousing shortcuts in the image viewer
 - ★ Click down Button 1 (left button) in the image window and *hold it down*, then drag around while holding
 - ♦ Changes contrast and brightness
 - With a little practice, becomes an easy way to adjust images to your liking
 - Click-and-release in the same spot just causes crosshairs to move
 - You must move cursor a small distance while doing click-and-hold before the contrast/brightness change starts
 - ★ As mentioned earlier, scroll-wheel in the image window moves through slices
 - ★ Keyboard ALT (option on Macintosh) while using scroll-wheel in the image window will change the functional overlay threshold slider in the main AFNI GUI window
 - ♦ This action affects all image viewers in the current AFNI controller
 - Shift+scroll and Control+scroll are special on the Macintosh, and so are not used in AFNI
- As mentioned earlier, scroll-wheel in the intensity bar changes contrast
 - * **ALT** or **option** plus scroll-wheel in intensity bar changes brightness

-18-

• Touring the Graph Viewer

Graph Viewer with data (black) and reference waveforms (red)

- \star Graph viewer takes voxel values from same dataset as image viewer
 - If dataset has only 1 sub-brick, graph viewer only shows numbers
 - → Not very useful unless you are an MRI physics type, perhaps
 - ♦ To look at images from one dataset locked to graphs from another dataset, must use 2 AFNI controllers and [<u>Define Datamode</u>] ⇒ [<u>Lock</u>] on AFNI control panel
- ★ If graph and image viewer in same slice orientation are both open, crosshairs in image window change to show a box containing dataset voxels being graphed
- ★ Central sub-graph (current focus location) is outlined in yellow
 - Current time index is marked with small red diamond on data graph
 - Left-clicking in a non-central sub-graph moves that location to focus
 - Left-clicking in central sub-graph moves time index to nearest point
 - -Can also use [Index] control in AFNI controller to change time
 - Right-clicking in any sub-graph pops up some statistics of its data
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 - Left-clicking in icon (lower left corner) causes icon and menu buttons to disappear
 - → Useful if you want to do a screenshot to save AFNI window(s)
 - Left-clicking in same place will bring icon and buttons back

★ [<u>Opt</u>] menu buttons let you control how graphs appear

- Any items have <u>keyboard</u> shortcuts
 - Make sure you are typing into the correct window!
- - Mapping from voxel values to screen pixels
 - → **Down** [<u>-</u>] shrinks graphs vertically; **Up** [<u>+</u>] expands them
 - Auto [a] makes AFNI pick a nice scale factor
 - → [<u>Choose</u>] lets you pick exact scale factor
 - Positive values (pix/datum) or negative (datum/pix)
 - pix/datum = number of y screen pixels for each change of 1 in data
 - or datum/pix = size of change in data to get 1 y screen pixel
 - Current scale factor is shown below graphs
 - Scale factor does *not* change when you resize graph, change matrix, etc.
 - You usually have to auto-scale [a] afterwards
- [Matrix] changes number of sub-graphs
 - → Down [m] and Up [M] decrease and increase number
 - → [<u>Choose</u>] lets you pick number exactly
 - Alternative: keyboard [<u>N</u>], type number, then [<u>Enter</u>] key
 - Range of allowable matrix size is 1..21

	Ca
	Scale
	Matrix
	Grid
	Slice
	Colors,
	Baseline
	🗆 Show T
	Save PNM
	Write Ce Set 'w'
s them	Tran OD
	Tran 1D
	Double P

(-axis

Done

ncel -

[q]

[Grid] lets you change spacing of vertical grid lines

- → Useful for showing regular timing interval (e.g., block timings)
- → Down [g] and Up [G] decrease and increase spacing
- → [<u>Choose</u>] lets you pick number exactly
- Current grid spacing is shown below graphs
- → [Index Pin] lets you pick the horizontal length of the sub-graph
 - Default **Top** is number of sub-bricks in dataset
 - Make it longer \Rightarrow graphs end before window
 - Make it shorter \Rightarrow graphs are truncated
 - Useful when switching between datasets of different lengths
 - Set **Bot** and **Top** to 0 to get back to default operation
 - · Current number of time points is shown below graphs
- **Horz** [<u>h</u>] will put in a dashed line at the y = 0 level in sub-graphs
 - Only useful if data range spans negative and positive values!
- [<u>Slice</u>] lets you change slices
 - → Down [Z] and Up [Z] move one slice
 - Can also choose slice directly from menu
 - Current voxel indexes are shown below graphs
 - Corresponds to [<u>Voxel Coords?</u>] Display in AFNI controller (from Define Datamode ⇒ Misc menu)

-23-

	Axial		
Boxes	black 🗖		
🗆 Use	Thick Lines		
BackG	white 🗖		
Grid	yellow 🗖		
🗆 Use	Thick Lines		
Text	black 🗖		
Data	black 🗖		
💷 Use	Thick Lines		
♦ Graph Points			
♦ Points+Lines			
_			
Ideal	red 🗖		
	red □ Thick Lines		
∎ Use Ort	Thick Lines		
∎ Use Ort ∎ Use	Thick Lines green 🗖		
∎ Use Ort ∎ Use	Thick Lines green Thick Lines		
■ Use Ort □ Use Ignore Dplot	Thick Lines green □ Thick Lines dk-blue □		
Use Ort Use Ignore Dplot	Thick Lines green = Thick Lines dk-blue = red =		
■ Use Ort □ Use Ignore Dplot ■ Use ♦ Grap	Thick Lines green Thick Lines dk-blue red Thick Lines		
Use Ort Use Ignore Dplot Use Orap Poin	Thick Lines green Thick Lines dk-blue red Thick Lines h Points		

[Colors, Etc.] lets you alter the colors/lines used for drawing
 Lines used for sub-graph frame boxes, grid lines, data graphs, FIM orts/ideals, and double plots can have color changes and be made thicker

- · Grid color is also used to highlight central sub-graph
- Can choose to graph curves as lines, points, or both together
- Can change color of background and text
- Can change gap between sub-graph boxes
- ♦ Baseline [b] changes how the sub-graphs are plotted
 - All sub-graphs have same scale factor, to convert values into vertical pixels
 - Baseline is value that gets plotted to bottom of sub-graph
 - → Individual: all sub-graphs have different baselines
 - Baseline = smallest value in each displayed time series
 - This can be confusing; same vertical location *doesn't* mean same value
 - Shown below graphs as Base: separate
 - → <u>Common</u>: all sub-graphs shown at any one time get same baseline
 - Baseline = smallest value in all displayed time series
 - Shown below graphs as Base: common
 - Usually need to rescale [<u>a</u>] after changing baseline
 - <u>Global</u>: all sub-graphs get same baseline even when spatial position changes
 - Set from [Baseline] \Rightarrow [Set Global] menu item
 - Default global level is smallest value in entire dataset

-Range of central sub-graph is shown at left of graph region

- · Central sub-graph bottom (baseline) value is shown at lower left
- Upper left shows value at top of central sub-graph box
- Number in [brackets] shows data range of one sub-graph box's height
- If baselines are separate, bot/top values only apply to *central* sub-graph
- ♦ Show text? [t] allows you to see text display of values instead of graphs
- ♦ Save PNM [S] lets you save a snapshot of window to a PNM image file
 - → But: if filename ends in ".jpg", will actually write a JPEG image file!
- ♦ Write Center [w] lets you write data from central sub-graph to a file
 - \Rightarrow File is in ASCII format \Rightarrow can be imported into other programs
 - → Filename is of form xxx_yyy_zzz.suffix.1D (using voxel indexes)
 - → Suffix is chosen using [Set 'w' suffix] button
- ♦ [<u>Tran 0D]</u> and [<u>Tran 1D</u>] let you transform the data before it is graphed
 - [Log10] and [SSqrt] useful for images with extreme values
 - ➡ [Median3] and [OSfilt3] are for are for smoothing time series
 - Other choices are functions controlled by/from plugins
 - [Double Plot] lets you plot output of [Tran 1D] and original data together
 - Color of transformed data from [Dplot] on the [Colors, Etc.] menu
 - [Dataset#2] transformation lets you plot two datasets together
 - [Dataset#N] lets you plot multiple datasets as overlay

- ♦ [X-axis] menu lets you choose how graph x-axis is chosen
 - \rightarrow <u>Default</u>: *x* is linear in time
 - \rightarrow Can instead choose *x* from a .1D format file from disk
 - Useful only in very limited circumstances!
- Done [q] closes the graph viewer window
- *** Keystrokes** in graphs that have no menu items are:
 - or left-arrow key moves time index down by 1
 - \diamond [>] or right-arrow key moves time index up by 1
 - \diamond [1] moves time index to beginning (time index = 0)
 - * [1] moves time index to end
 - \diamond [${\tt L}$] turns off/on the AFNI logo in the corner
 - \diamond [v V r R] are video mode operations, like in the image viewer
 - → Moving through time index, rather than slice index
 - An easy way to animate an EPI time series, to look for subject motion
- ***** [**FIM**] menu controls interactive functional image calculations
 - Not documented here
 - See 'Educational materials' pages at AFNI Web site (maybe)

Brief Tour of the Functional Color Overlay Controls

* Open with [Define Overlay] button on AFNI controller

AFNI Plugins

- Plugins are modules (programs) that attach themselves to AFNI when AFNI starts and add some interactive capabilities to the GUI program
- There is a (somewhat old) manual for writing plugins
- Useful plugins:

* <u>3D Registration</u>:

Provides a GUI control for time series registration (same as 3dvolreg)

* Dataset Copy:

Copy a dataset (useful as a start for ROI drawing)

***** Dataset NOTES:

Add arbitrary text notes to a dataset header

* Draw Dataset, Gyrus Finder:

Draw regions-of-interest (ROIs) on 2D slices

* <u>Histogram</u>:

Graph the histogram of a sub-brick, or some parts of it

* Deconvolution, Nlfit & Nlerr:

Do linear and nonlinear regression interactively on the dataset time series being displayed in a graph viewer

Plugins Menu

Cancel	Dataset#N	NLfit & NLerr
2D Registration	Deconvolution	Nudge Dataset
3D Cluster	Draw Dataset	Permutation Test
3D Correlation	Dset Zeropad	Power Spectrum
3D Dump98	Edit Tagset	Render [new]
3D Edit	Expr OD	Render Dataset
3D Registration	Fourier Stuff	Reorder
3D+t Extract	Gyrus Finder	RETROICOR
3D+t Statistic	Hemi-subtract	ROI Average
4D Dump	Hilbert Delay98	ROI Plot
BRIK Compressor	Histogram	ScatterPlot
Coord Order	Histogram: BFit	SingleTrial Avg
Dataset Copy	Histogram: CC	Threshold
Dataset Dup	L1_Fit & Dtr	TS Generate
Dataset NOTES	LSqFit & Dtr	Vol2Surf
Dataset Rename	maskcalc	Wavelets
Dataset#2	Maxima	

Colors of plugin buttons can be set in your .afnirc file

*** Render Dataset**: Volume rendering with functional overlays

Being close to your FMRI data doesn't get any better than this!

Using **AFNI** in Batch Mode

- Batch mode programs are run by typing commands directly to the computer, or by putting these commands into text files (*scripts*) and later executing them
- Advantages of batch mode (over graphical user interface)
 - ★ Can process new datasets exactly the same way as previous ones
 - ★ Can link together a series of programs to produce custom results
 - ★ Programs that take a long time to operate are easier to 'fire and forget' from a script than if they had a GUI
 - \star It's easier to write a batch mode program
- Disadvantages of batch mode
 - ★ Requires typing, rather than pointing-and-clicking
 - ★ Requires learning/remembering how a program works all at once, rather than (re)discovering it through a kinder gentler interface
 - ★ Many younger (born after 1970) researchers have virtually no experience with a command line interface, or anything like it
- Many significant AFNI capabilities are only available in batch mode programs
 - ★ This is especially true of functions that combine data from multiple datasets to produce new datasets

• The 3d* series of programs (generally) take as input one or more AFNI datasets, and produce as output one (or more) new AFNI datasets

• Time series activation analysis programs:

* <u>3dfim</u>, <u>3dfim</u>+, <u>3ddelay</u>

Variations on 'classical' correlation analysis of each voxel's time series with a single reference (ideal) waveform

* 3dDeconvolve:

Multiple linear regression and/or linear deconvolution to fit each voxel's time series to a multi-dimensional signal model (similar models are found in SPM)

* 3dNLfim:

Nonlinear regression to fit each voxel's time series to an arbitrary functional model provided by the user

• Time series utility programs:

* <u>3dFourier</u>:

Fourier domain filtering voxels time series

* <u>3dTcorrelate</u>:

Compute correlation coefficient of 2 datasets, voxel-by-voxel

* 3dTsmooth:

Smooth voxel time series

-31-

***** 3dTqual, 3dToutcount:

Examine voxel time series for statistical 'outliers'

* 3dTcat:

Shift voxel time series to a common temporal region

*** 3dTstat**:

Basic statistics on voxel time series

* 3dvolreg:

Volume registration to suppress motion artifacts, and to align same-subject data from different scanning sessions

• Multi-dataset statistical operations:

* 3dttest:

Voxel-by-voxel t-tests

*** 3danova**, **3danova2**, **3danova3**:

1-, 2-, and 3-way voxel-by-voxel ANOVAs, including random effects and nested models

* <u>3dFriedman</u>:

Voxel-by-voxel nonparametric statistical tests analogous to ANOVAs

* <u>3dRegAna</u>:

General linear regression models and tests derived therefrom

• Miscellaneous operations on datasets:

* 3dAnatNudge:

Try to align high-resolution anatomical volume with low-resolution EPI volume

* 3dClipLevel:

Find the voxel value to threshold EPI volume so as to remove most of the non-brain tissue

*** 3dIntracranial**:

Strip the scalp and other non-brain tissue from a high-resolution T1weighted anatomical volume

***** <u>3dMean</u>:

Compute the mean of a collection of datasets, voxel-by-voxel

* 3dmaskdump, 3dmaskave, 3dROIstats:

Extract values from datasets and write to ASCII files

* 3dUndump:

Take values from ASCII files and write into a dataset

* 3dmerge:

Lots of options to edit datasets and combine them in multifarious and nefarious ways

* 3dZeropad, 3dZcutup, 3dZcat, 3dZregrid:

Utilities to add/subtract/resample datasets in the slice (z) direction

*** 3daxialize**:

Re-write a dataset in a new slice direction

*** 3dcalc**:

General purpose voxel-by-voxel dataset calculator

* <u>3dresample</u>, <u>3dfractionize</u>:

Resample a binary mask dataset from one resolution to another

* <u>3drotate:</u>

Rotate a dataset to a new orientation in space

* 3dpc:

Extract principal components from a collection of datasets

* 3dWinsor:

Spatially filter a T1-weighted anatomical dataset to reduce noise and make the gray-white matter boundary a little more distinct

* <u>3dclust:</u>

Find clusters of activated voxels and print out statistics about them

* 3dExtrema:

Find local extrema (maxima or minima) in a dataset --- intended for functional activation maps