Time Series Analysis in [AFNI
‘Outline: 6+ Hours of Edification\

® Philosophy (e.g., theory without equations)

¢ Sample FMRI data

®* Theory underlying FMRI analyses: the HRF

® “Simple” or “Fixed Shape” regression analysis
» Theory and Hands-on examples

* “Deconvolution” or “Variable Shape” analysis
» Theory and Hands-on examples

®* Advanced Topics (followed by brain meltdown)

Goals: Conceptual Understanding + Prepare to Try It Yourself




Data Analysis Philosophy

e Signal = Measurable response to stimulus
 Noise = Components of measurement that interfere
with detection of signal
e Statistical detection theory:
» Understand relationship between stimulus & signal
» Characterize noise statistically
» Can then devise methods to distinguish noise-only
measurements from signal+noise measurements,
and assess the methods’ reliability
» Methods and usefulness depend strongly on the
assumptions

o Some methods are more “robust” against erroneous
assumptions than others, but may be less sensitive




FMRI Philosopy: Signals and Noise

 FMRI Stimulus—Signal connection and noise
statistics are both complex and poorly characterized
e Result: there is no “best” way to analyze FMRI time
series data: there are only “reasonable” analysis
methods
e To deal with data, must make some assumptions
about the signal and noise
o Assumptions will be wrong, but must do something
e Different kinds of experiments require different kinds
of analyses
» Since signal models and questions you ask about
the signal will vary
> It is important to understand what is going on, so
you can select and evaluate “reasonable” analyses
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Meta-method for creating analysis methods
* Write down a mathematical model connecting
stimulus (or “activation”) to signal
* \Write down a statistical model for the noise

® Combine them to produce an equation for
measurements given signal+noise

» Equation will have unknown parameters, which
are to be estimated from the data

> N.B.: signal may have zero strength (no “activation”)

® Use statistical detection theory to produce an
algorithm for processing the measurements to
assess signal presence and characteristics

> e.g., least squares fit of model parameters to data




Time Series Analysis on Voxel Data

®* Most common forms of FMRI analysis involve
fitting an activation+BOLD model to each voxel’s
time series separately (AKA “univariate” analysis)

» Some pre-processing steps do include inter-voxel
computations; e.g.,
o spatial smoothing to reduce noise
o Spatial registration to correct for subject motion

® Result of model fits is a set of parameters at each
voxel, estimated from that voxel’s data

> e.g., activation amplitude (B), delay, shape
> “SPM?” = statistical parametric map; e.g., Bor tor F
® Further analysis steps operate on individual SPMs

* €.g., combining/contrasting data among subjects
o sometimes called “second level” or “meta” analysis




_éome Features of FMRI Voxel Time Series

* FMRI only measures changes due to neural “activity”

> Baseline level of signal in a voxel means little or
nothing about neural activity

> Also, baseline level tends to drift around slowly
(100 s time scale or so; mostly from small subject motions)

®* Therefore, an FMRI experiment must have at least 2
different neural conditions (“tasks” and/or “stimuli”)

> Then statistically test for differences in the MRl
signal level between conditions

» Many experiments: one condition is “rest”

* Baseline is modeled separately from activation
sighals, and baseline model includes “rest” periods

. In AFNI, that is; in SPM, “rest” is modeled explicitly




Why FMRI Analysis Is Hard

* Don’t know true relation between neural “activity”
and BOLD signal:

 What /s neural "activity”, anyway?

* WWhat is connection between “activity” and
hemodynamics and MRI signal?

* Noise in data is poorly characterized
* |[n space and in time, and in its origin
* Noise amplitude > BOLD signal
e Can some of this noise be removed by software?
* Makes both signal detection and statistical

assessment hard

e Especially with 20,000+ voxels in the brain = 20,000+
activation decisions



Why So Many Methods of Analysis?

Different assumptions about activity-to-MRI signal
connection

Different assumptions about noise (= signal
fluctuations of no interest) properties and statistics

Different experiments and different questions about
the results

Result: 4 Many “reasonable” FMRI analysis
methods

Researchers must understand the tools (models and
software) in order to make choices and to detect
glitches in the analysis!!
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‘Some Sample FMRI Data Time Series\

* First sample: Block-trial FMRI data

> “Activation” occurs over a sustained period of time
(say, 10 s or longer), usually from more than one
stimulation event, in rapid succession

» BOLD (hemodynamic) response accumulates from
multiple close-in-time neural activations and is large

> BOLD response is often visible in time series

> Noise magnitude about same as BOLD response
®* Next 2 slides: same brain voxel in 3 (of 9) EPI runs

> black curve (noisy) = data

» red curve (above data) = ideal model response

> blue curve (within data) = model fitted to data

» somatosensory task (finger being rubbed)
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Block-trials: 27 s “on” / 27 s “off’; TR=2.5 s; 130 time points/run
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Same Voxel: Run 3 and Average of all 9

AUYAYATATAUAY
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= Activation amplitude & shape vary among blocks! Why???
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More Sample FMRI Data Time Series

¢ Second sample: Event-Related FMRI
» “Activation” occurs in single relatively brief intervals
» “Events” can be randomly or regularly spaced in
time
o If events are randomly spaced in time, signal model itself
looks noise-like (to the pitiful human eye)

» BOLD response to stimulus tends to be weaker
since fewer nearby-in-time “activations”
have overlapping signal changes
(hemodynamic responses)

® Next slide: Visual stimulation experiment

“Active” voxel shown in next slide !
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Two Voxel Time Series from Same Run

N [B] AFNI 2.56c: ED/runs_temp/ED_rl_vr+orig & ED_rl1_vr@3+orig
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clols _ [B] AFNI 2.56c: ED/runs_temp/ED_rl1_vr+orig & ED_rl1_vr@3+orig
1789
[+140]

Coor YV

correlation with ideal

1649
B - 18 ndex=112 walue=1703 at 224
-h"ll»;k"- ¥: 31 G d 20| Scale: 1.9 pixSdatum | Mean: 1689.427
Z: 14| # 0:135 Base: separate Sigma: 16.33249 m IE

Lesson: ER-FMRI activation is not obvious via casual inspection
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Four different
More Event-Related Data

e White curve = Data (first 136 TRs) Very good fit for ER data
* Orange curve = Model fit (R2=50%) (R2=10-20% more usual).
* Green = Stimulus timing Noise is as big as BOLD!
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Two Fundamental Principles Underlying
Most FMRI Analyses (esp. GLM):

HRF ® Blobs

* Hemodynamic Response Function

e Convolution model for temporal relation
between stimulus/activity and response

e Activation Blobs

e Contiguous spatial regions whose voxel
time series fit HRF model

e e.g., Reject isolated voxels even if HRF
model fit is good there

* Not the topic of these talks on time series analysis
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Hemodynamic Response Function (HRF)

* HRF is the idealization of measurable FMRI signal
change responding to a single activation cycle (up
and down) from a stimulus in a voxe

Response to brief
activation (<1 s):
- delay of 1-2 s

. rise time of 4-5 s
. fall time of 4-6 s
- model equation:

h(t) oc tbe—t/c

. h(t) is signal
change t seconds
after activation

. L 8 40 67 6 86l 8 1% 1018 R 2l 2 1 Brief Activation (Event)
A Time j«
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Linearity (Additivity) of HRF

® Multiple activation cycles in a voxel, closer in time
than duration of HRF:
- Assume that overlapping responses add

{| * Linearity is a pretty
1| good assumption

1| * But not apparently
1| perfect — about 90%
1| correct

]| * Nevertheless, is

|| widely taken to be

{| true and is the basis
1| for the “general linear
1| model” (GLM) in

1l FMRI analysis

3 Brief Activations
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Linearity and Extended Activation

* Extended activation, as in a block-trial experiment:

« HRF accumulates over its duration (= 10 s)

8.

10, -

1| » Black curve =

|| response to a single
1| brief stimulus

1/ * Red curve =

1| activation intervals
1| Green curve =

1| summed up HRFs

1| from activations

]| » Block-trials have

1| larger BOLD signal

]| changes than event-
}l related experiments

il Long Activations (Blocks)
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Convolution Signal Model

* FMRI signal model (in each voxel)

IS taken as sum of the individual
trial HRFs (assumed equal)

» Stimulus timing is assumed
Known (or measured)

» Resulting time series (in blue)

are called the convolution of the

HRF with stimulus timing
» Finding HRF =“deconvolution”

> AFNI code = 3dDeconvolve
(or its daughter 3dREML£i t)

» Convolution models only the
FMRI signhal changes

‘( 1 1 1 1 1 1 1 L 1 1 1 1 1

< 22 s

L

< 120 s >

* Real data starts at and
returns to a nonzero,
slowly drifting baseline
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‘Simple Regression Models\

®* Assume a fixed shape h(t) for the HRF

> e.g., h(t) = t8-6 exp(-1/0.547) [MS Cohen, 1997]

> Convolve with stimulus timing to get ideal response
(temporal pattern) r(r) = 2 h(t—T ) = sum of HRF copies

®* Assume a form for the baselme (data without activation)
> e.g., a+ bt for aconstant plus a linear trend
* In each voxel, fit data Z(t) to a curve of the form
Zt)=a+b-t+ ﬁ - r(t) <«——— The signal model!
. a, b, p are unknown values to be found in each voxel
. a, b are “nuisance” parameters

. [is amplitude of r(t) in data = “how much” BOLD

. In this model, each stimulus assumed to get same BOLD
response — in shape and in amplitude
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Simple Regression: Sample Fits

X! [A] AFNI 2.56¢: rvb/qgqg/mean+orig & mean@1+orig Constant baSEIine: a

1704.8
[+108.8]

1596

T ATR AT

X! [A] AFNI 2.56¢: rvb/qgqg/mean+orig & me

1704.8
[+108.8]

1596
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AHIAL

= 4213 6r d rJ20; 11 25rp1x;dr;::l Mean:  1643.538 Quadratic baseline' a+b.t+c.t2
Z: 13|# 0:129 | Base: separate |s igma: 23.31555 " n

* Necessary baseline model complexity depends on duration
of continuous imaging — e.g., 1 parameter per ~150 seconds
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Duration of Stimuli - Important Caveats

® Slow baseline drift (time scale 100 s and longer) makes
doing FMRI with long duration stimuli difficult

« Learning experiment: where the task is done
continuously for ~15 minutes and the subject is
scanned to find parts of the brain that adapt during
this time interva

« Pharmaceutical challenge: where the subject is
given some psychoactive drug whose action plays
out over 10+ minutes (e.g., cocaine, ethanol)

® Multiple very short duration stimuli that are also very
close in time to each other are very hard to tell apart,
since their HRFs will have 90-95% overlap

« Binocular rivalry, where percept switches ~ 0.5 s
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.. | Is it Baseline Drift? Or Activation?

not real datal

Sum of HRFs

Is this one extended activation?

L L R U

In

dividual HRFs ;.

Or four overlapping activations?
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4 stimulus times (waver + 1dplot)
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Multiple Stimuli = Multiple Regressors

® Usually have more than one class of stimulus or
activation in an experiment

> e.g., want to see size of “face activation” vis-a-vis
“*house activation”; or, “what” vs. “where” activity

®* Need to model each separate class of stimulus with a
separate response function r,(t), r,(t), rsy(t), ...

> Bach r(t) is based on the stimulus timing for
activity in class number |

> Calculate a 5, amplitude = amount of r;(f) in voxel
data time series Z(t) = average BOLD for stim class #/

> Contrast (s to see which voxels have differential
activation levels under different stimulus conditions

o e.g., statistical test on the question g,—3, =0 ?




25—

Multiple Stimuli - Important Caveat

* |In AFNI: do not model baseline (“control”) condition

. e.g., ‘rest’, visual fixation, high-low tone
discrimination, or some other simple task

* FMRI can only measure changes in MR signal
levels between tasks

. So you need some simple-ish task to serve as a
reference point

®* The baseline model (e.g., a+ b-t) takes care of the
signal level to which the MR signal returns when the
“active” tasks are turned off

- Modeling the reference task explicitly would be

redundant (or “collinear”, to anticipate a forthcoming
concept)




—26—

Multiple Stimuli - Experiment Design

* How many distinct stimuli do you need in each
class? Our rough recommendations:

« Short event-related designs: at least 25 events in
each stimulus class (spread across multiple imaging
runs) — and more is better

« Block designs: at least 5 blocks in each stimulus
class — 10 would be better

« While we’re on the subject: How many subjects?

« Several independent studies agree that 20-25
subjects in each category are needed for highly
reliable results

« This number is more than has usually been the
custom in FMRI-based studies!!
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IM Regression - an Aside

¢ |M = Individual Modulation
« Compute separate amplitude of HRF for each event

o Instead of the standard computation of the
average amplitude of all responses to multiple
stimuli in the same class

« Response amplitudes (j3s) for each individual
block/event will be highly noisy

o Can’t use individual activation maps for much

o Must pool the computed fSs in some further
statistical analysis (t-test via 3dttest? inter-voxel
correlations in the [3s? correlate s with something?)

= Further description and examples given in the

Advanced Topics presentation in this series
(afni07_ advanced)
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Multiple Regressors: Cartoon Animation

e Red curve = signal
model for class #1
e Green curve =
signal model for #2
e Blue curve =

By #1+,-#2
where 3, and 3, vary
from 0.1 to 1.7 in the
animation

» Goal of regression is
to find B, and 3, that
make the blue curve
best fit the data time
series
e Gray curve =
1.5-#1+0.6-#2+noise
= simulated data
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Multiple Regressors: Collinearity!!

0 a. 10. 16, 20, 20. 30.

No analysis can distinguish the cases
Z(t)=10+ 5-#1 and
Z(t)= O+15-#1+10-#2+10-#3

and an infinity of other possibilities

3.

—~(Green curve =

signal model for #1

+r+Red curve = signal

model for class #2

+—r*Blue curve = signal

model for #3

| ISPurple curve =

#1+#2+#3
which is exactly = 1
 We cannot — in
principle or in
practice —
distinguish sum of 3
signal models from
constant baseline!!

_» | Collinear designs
are bad bad bad!
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Multiple Regressors: Near Collinearity

-~Red curve = signal
model for class #1

~(Green curve =

signal model for #2

-

Blue curve =
Py-#1+(1=,)-#2
where B, varies
randomly from 0.0
to 1.0 in animation

Gray curve =
0.66-#1+0.33-#2

= simulated data
with no noise

* Lots of different
combinations of #1
Stimuli are too close in time to distinguish || and #2 are decent

response #1 from #2, considering noise fits to gray curve
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The Geometry of Collinearity - 1

22 A
X z=Data value -
Basis vectors o =1.3r+1.1r, Non-collinear
well-posed
0 h (well-posed)
>Z1
Z, A z=Data value ...'....::::::.‘I'
=—1.8r+47.2r, x*°""" ... :
L e Near-collinear
,,,,,,, (ill-posed)
o L.
/’ﬁ
>Z1

e Trying to fit data as a sum of basis vectors that are
nearly parallel doesn’t work well: solutions can be huge

» Exactly parallel basis vectors would be impossible:
e Determinant of matrix to invert would be zero
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The Geometry of Collinearity - 2

4.,
22 A :
"-‘x D | Multi-collinear
X  z=Data value _

.4 =1.7-r,+2.8-r, = more th_an
=5.1.r,-3.1r, one solution
= an oo of other fits the data
combinations i

; = over-determined
: Basis K
* vectors iy
r3 2 r1 e ’:

 Trying to fit data with too many regressors (basis vectors)
doesn’t work: no unique solution
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Equations: Notation

* Will approximately follow notation of manual for the

AFNI program 3dDeconvolve

® Time: continuous in reality, but in steps in the data
» Functions of continuous time are written like f(t)

> Functions of discrete time expressed like f(n-TR)
where n=0,1,2,... and TR=time step

> Usually use subscript notion f, as shorthand
> Collection of numbers assembled in a column is a

Jo

vector of fl
= £
length N ,

| Fv

vector and is

:l‘n

orinted in boldface:

Ay Ay
AIO An
_AM—I,O AM—1,1

Aon-r |
A

I,N-1

A

M—-1,N-1_|

= A= {M X N matrix}
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Equations: Single Response Function
* |[n each voxel, fit data Z, to a curve of the form
Z =a+ bt + [r, forn=0,1,...,N=1 (N=# time pts)
. a, b,  are unknown parameters to be calculated in
each voxel v, = Z;h(tn — 7, ) = sum of HRF copies
. a,b are “nuisance” baseline parameters
. [is amplitude of r(t) in data = “how much” BOLD
. Baseline model should be more complicated for

long (> 150 s) continuous imaging run§ @mm per@
- 150 < T<300 s: a+b-t+ct> L

. Longer: a+b-t+c12 + [ T/150] low frequency components
- 3dbeconvolve actually uses Legendre polynomials for baseline
.- Using pt" order polynomial analogous to a lowpass cutoff = (p-2)/T Hz
- Often, also include as extra baseline components the estimated subject head

movement time series, in order to remove residual contamination from such
artifacts (will see example of this later)
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Equations: Multiple Response Functions

* |[n each voxel, fit data Z, to a curve of the form
Z =~|[baseline] + B, -r+ B, -r?+B,-rP +--.

n n n

- ;is amplitude in data of r,V)=r;(t,) ; i.e., “how much” of
the j " response function is in the data time series

- In simple regression, each r|(t) is derived directly from
stimulus timing and user-chosen HRF model

. In terms of stimulus times:
rt) = 2 _lh] (t, — (j)) = sum of HRF copies

- Where 7'”is the k" stimulus time in the ;" stimulus
class

- These times are input using the —stim times option
to program 3dDeconvolve
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Equations: Matrix-Vector Form
®* Express known data vector as a sum of known

columns with unknown coefficents:

I 7 ] » Const baseline
REEE C 0 - *(1) 7 - Yoy — Linear trend
<o " % « Response to stim#1
Z 1 1 Y r® * Response to stim#2
Z, |= 1l-a+ o) b+ 7’2(1) .ﬂ1+ 1’2(2) .ﬁ2_|_...
|2y | 1] N-1 _i’;@l_)l_ _i’zﬁz_)l_ ‘=’ means “least squares”
or . _  or l
I N O U R N Z = R ﬁ
Z 1 1 rl(l) rl(z) |l b - -~
_ (1) (2) vector matrix of
Z, |=|1 2 g g - B of data columns YECtor
. . of coeff
. . ﬂz T
Z 1 N - 1 I’(l) I’(z) e : 11 . ” 7 .
| Anv-1] L N-1 Tna JL - the “design” matrix; AKA X

z depends on the voxel; R doesn’t
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Visualizing the R Matrix

-» Can graph columns (program 1dplot)
: & But might have 20-50 columns

;e Can plot columns on a grayscale (program
: 1dgrayplot or 3dDeconvolve -xjpeg)

e Easier way to show many columns
e In this plot, darker bars means larger numbers

response to stim B column #4

response to stim A: column #3

linear trend: column #2

constant baseline: column #1
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Solving z=Rp for
®* Number of equations = number of time points
* 100s per run, but perhaps 1000s per subject
®* Number of unknowns usually in range 5-50
* Least squares solution: B=[R'R] R’z
> B denotes an estimate of the true (unknown) 3
> From B, calculate 7 =Rj as the fitted model

/ WAWAWRWAS

Y

o Z — 7 is the residual time series = noise (we hope)
o Statistics measure how much each regressor helps reduce residuals

e Collinearity: when matrix R'R can’t be inverted
> Near collinearity: when inverse exists but is huge
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Simple Regression: Recapitulation

®* Choose HRF model k() [AKA fixed-model regression]
® Build model responses r,(¢) to each stimulus class
» Using h(f) and the stimulus timing
®* Choose baseline model time series
» Constant + linear + quadratic (+ movement?)

® Assemble model and baseline time series into the
columns of the R matrix

® For each voxel time series z, solve z=Rf for 3

* Individual subject maps: Test the coefficients in
that you care about for statistical significance

e Group maps: Transform the coefficients in 3 that
you care about to Talairach/MNI space, and perform
statistics on the collection of  values across subjects



