Time Series Analysis in AFNII

Outline: 6+ Hours of Edification

- Philosophy (e.g., theory without equations)
- Sample FMRI data
- Theory underlying FMRI analyses: the HRF
- "Simple" or "Fixed Shape" regression analysis
 - > Theory and Hands-on examples
- "Deconvolution" or "Variable Shape" analysis
 - > Theory and Hands-on examples
- Advanced Topics (followed by brain meltdown)

Goals: Conceptual <u>Understanding</u> + Prepare to Try It Yourself

Data Analysis Philosophy

- <u>Signal</u> = Measurable response to stimulus
- Noise = Components of measurement that interfere with detection of signal
- Statistical detection theory:
 - Understand relationship between stimulus & signal
 - Characterize noise statistically
 - Can then devise methods to distinguish noise-only measurements from signal+noise measurements, and assess the methods' reliability
 - Methods and usefulness depend strongly on the assumptions
 - o Some methods are more "robust" against erroneous assumptions than others, but may be less sensitive

FMRI Philosopy: Signals and Noise

- FMRI <u>Stimulus→Signal</u> connection and <u>noise</u>
 <u>statistics</u> are both complex and poorly characterized
- Result: there is no "best" way to analyze FMRI time series data: there are only "reasonable" analysis methods
- To deal with data, must make some assumptions about the signal and noise
- Assumptions will be wrong, but must do something
- Different kinds of experiments require different kinds of analyses
 - Since signal models and questions you ask about the signal will vary
 - ➤ It is important to <u>understand</u> what is going on, so you can select and evaluate "reasonable" analyses

Meta-method for creating analysis methods

- Write down a mathematical model connecting stimulus (or "activation") to signal
- Write down a statistical model for the noise
- Combine them to produce an equation for measurements given signal+noise
 - > Equation will have unknown parameters, which are to be estimated from the data
 - > N.B.: signal may have zero strength (no "activation")
- Use statistical detection theory to produce an algorithm for processing the measurements to assess signal presence and characteristics
 - > e.g., least squares fit of model parameters to data

Time Series Analysis on Voxel Data

- Most common forms of FMRI analysis involve fitting an activation+BOLD model to each voxel's time series separately (AKA "univariate" analysis)
 - Some pre-processing steps do include inter-voxel computations; e.g.,
 - o spatial smoothing to reduce noise
 - spatial registration to correct for subject motion
- Result of model fits is a set of parameters at each voxel, estimated from that voxel's data
 - > e.g., activation amplitude (戌), delay, shape
 - > "SPM" = statistical parametric map; e.g., β or t or F
- Further analysis steps operate on individual SPMs
 - ★ e.g., combining/contrasting data among subjects
 - o sometimes called "second level" or "meta" analysis

Some Features of FMRI Voxel Time Series

- FMRI only measures <u>changes</u> due to neural "activity"
 - Baseline level of signal in a voxel means little or nothing about neural activity
 - Also, baseline level tends to drift around slowly (100 s time scale or so; mostly from small subject motions)
- Therefore, an FMRI experiment must have at least 2 different neural conditions ("tasks" and/or "stimuli")
 - Then statistically test for differences in the MRI signal level between conditions
 - Many experiments: one condition is "rest"
- Baseline is modeled separately from activation signals, and <u>baseline model includes "rest" periods</u>
 - In AFNI, that is; in SPM, "rest" is modeled explicitly

Why FMRI Analysis Is Hard

- Don't know true relation between neural "activity" and BOLD signal:
 - What is neural "activity", anyway?
 - What is connection between "activity" and hemodynamics and MRI signal?
- Noise in data is poorly characterized
 - In space and in time, and in its origin
 - Noise amplitude ≥ BOLD signal
 - Can some of this noise be removed by software?
 - Makes both signal detection and statistical assessment hard
 - Especially with 20,000+ voxels in the brain = 20,000+ activation decisions

Why So Many Methods of Analysis?

- Different assumptions about activity-to-MRI signal connection
- Different assumptions about noise (= signal fluctuations of no interest) properties and statistics
- Different experiments and different questions about the results
- Result: 3 Many "reasonable" FMRI analysis methods
- Researchers <u>must</u> understand the tools (models and software) in order to make choices and to detect glitches in the analysis!!

Some Sample FMRI Data Time Series

- First sample: Block-trial FMRI data
 - "Activation" occurs over a sustained period of time (say, 10 s or longer), usually from more than one stimulation event, in rapid succession
 - BOLD (hemodynamic) response accumulates from multiple close-in-time neural activations and is large
 - > BOLD response is often visible in time series
 - Noise magnitude about same as BOLD response
- Next 2 slides: same brain voxel in 3 (of 9) EPI runs
 - black curve (noisy) = data
 - > red curve (above data) = ideal model response
 - > blue curve (within data) = model fitted to data
 - somatosensory task (finger being rubbed)

Block-trials: 27 s "on" / 27 s "off"; TR=2.5 s; 130 time points/run

Same Voxel: Run 3 and Average of all 9

⇒ Activation amplitude & shape vary among blocks! Why???

More Sample FMRI Data Time Series

- <u>Second sample</u>: Event-Related FMRI
 - "Activation" occurs in single relatively brief intervals
 - "Events" can be randomly or regularly spaced in time
 - If events are randomly spaced in time, signal model itself looks noise-like (to the pitiful human eye)
 - BOLD response to stimulus tends to be weaker, since fewer nearby-in-time "activations" have overlapping signal changes
 - (hemodynamic responses)
- Next slide: Visual stimulation experiment

t

"Active" voxel shown in next slide

Two Voxel Time Series from Same Run

Lesson: ER-FMRI activation is not obvious via casual inspection

More Event-Related Data

Four different visual stimuli

- White curve = Data (first 136 TRs)
- Orange curve = Model fit (R²=50%)
- Green = Stimulus timing

Very good fit for ER data (R²=10-20% more usual). Noise is as big as BOLD!

Two Fundamental Principles Underlying Most FMRI Analyses (esp. GLM): HRF Blobs

- Hemodynamic Response Function
 - Convolution model for temporal relation between stimulus/activity and response
- Activation Blobs
 - Contiguous spatial regions whose voxel time series fit HRF model
 - e.g., Reject isolated voxels even if HRF model fit is good there
 - Not the topic of these talks on time series analysis

Hemodynamic Response Function (HRF)

 HRF is the idealization of measurable FMRI signal change responding to a single activation cycle (up and down) from a stimulus in a voxel

Response to brief activation (< 1 s):

- delay of 1-2 s
- rise time of 4-5 s
- fall time of 4-6 s
- model equation:

$$h(t) \propto t^b e^{-t/c}$$

h(t) is signal change t seconds
 after activation

1 Brief Activation (Event)

Linearity (Additivity) of HRF

- Multiple activation cycles in a voxel, closer in time than duration of HRF:
 - Assume that overlapping responses add

- Linearity is a pretty good assumption
- But not apparently perfect — about 90% correct
- Nevertheless, is widely taken to be true and is the basis for the "general linear model" (GLM) in FMRI analysis

3 Brief Activations

Linearity and Extended Activation

- Extended activation, as in a block-trial experiment:
 - HRF accumulates over its duration (≈ 10 s)

Convolution Signal Model

- FMRI signal model (in each voxel) is taken as sum of the individual trial HRFs (assumed equal)
 - Stimulus timing is assumed known (or measured)
 - Resulting time series (in blue) are called the *convolution* of the HRF with stimulus timing
 - > Finding HRF = "deconvolution"
 - > AFNI code = <u>3dDeconvolve</u>
 (or its daughter <u>3dREMLfit</u>)
 - Convolution models only the FMRI signal changes

 Real data starts at and returns to a nonzero, slowly drifting baseline

Simple Regression Models

- Assume a <u>fixed shape</u> h(t) for the HRF
 - > e.g., $h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]
 - > Convolve with stimulus timing to get ideal response (temporal pattern) $r(t) = \sum_{k=1}^{K} h(t \tau_k) = \text{sum of HRF copies}$
- Assume a form for the baseline (data without activation)
 - \triangleright e.g., $a + b \cdot t$ for a constant plus a linear trend
- In each voxel, fit data Z(t) to a curve of the form $Z(t) \approx a + b \cdot t + \beta \cdot r(t)$ The signal model!
 - a, b, ß are unknown values to be found in each voxel
 - a, b are "nuisance" parameters
 - β is amplitude of r(t) in data = "how much" BOLD
 - In this model, each stimulus assumed to get same BOLD response in shape and in amplitude

Simple Regression: Sample Fits

 Necessary baseline model complexity depends on duration of continuous imaging — e.g., 1 parameter per ~150 seconds

<u>Duration of Stimuli - Important Caveats</u>

- Slow baseline drift (time scale 100 s and longer) makes doing FMRI with long duration stimuli difficult
 - Learning experiment: where the task is done continuously for ~15 minutes and the subject is scanned to find parts of the brain that adapt during this time interval
 - Pharmaceutical challenge: where the subject is given some psychoactive drug whose action plays out over 10+ minutes (e.g., cocaine, ethanol)
- Multiple very <u>short duration</u> stimuli that are also very close in time to each other are very hard to tell apart, since their HRFs will have 90-95% overlap
 - Binocular rivalry, where percept switches ~ 0.5 s

<u>Multiple Stimuli = Multiple Regressors</u>

- Usually have more than one class of stimulus or activation in an experiment
 - > e.g., want to see size of "face activation" vis-à-vis "house activation"; or, "what" vs. "where" activity
- Need to model each separate class of stimulus with a separate response function $r_1(t)$, $r_2(t)$, $r_3(t)$,
 - \succ Each $r_j(t)$ is based on the stimulus timing for activity in class number j
 - \gt Calculate a β_j amplitude = amount of $r_j(t)$ in voxel data time series Z(t) = average BOLD for stim class $\#_j$
 - > Contrast \(\beta \) s to see which voxels have differential activation levels under different stimulus conditions
 - o e.g., statistical test on the question $\beta_1 \beta_2 = 0$?

Multiple Stimuli - Important Caveat

- In AFNI: do <u>not</u> model baseline ("control") condition
 - e.g., "rest", visual fixation, high-low tone discrimination, or some other simple task
- FMRI can only measure <u>changes</u> in MR signal levels between tasks
 - So you need some simple-ish task to serve as a reference point
- The baseline model (e.g., a + b · t) takes care of the signal level to which the MR signal returns when the "active" tasks are turned off
 - Modeling the reference task explicitly would be redundant (or "collinear", to anticipate a forthcoming concept)

Multiple Stimuli - Experiment Design

- How many distinct stimuli do you need in each class? Our rough recommendations:
 - Short event-related designs: at least 25 events in each stimulus class (spread across multiple imaging runs) — and more is better
 - Block designs: at least 5 blocks in each stimulus class — 10 would be better
- While we're on the subject: How many subjects?
 - Several independent studies agree that 20-25 subjects in each category are needed for highly reliable results
 - This number is more than has usually been the custom in FMRI-based studies!!

M Regression - an Aside

- IM = Individual Modulation
 - Compute separate amplitude of HRF for each event
 - Instead of the standard computation of the average amplitude of all responses to multiple stimuli in the same class
 - Response amplitudes (βs) for each individual block/event will be highly noisy
 - Can't use individual activation maps for much
 - o Must pool the computed β s in some further statistical analysis (*t*-test via **3dttest**? inter-voxel correlations in the β s? correlate β s with something?)
 - Further description and examples given in the Advanced Topics presentation in this series (afni07_advanced)

Multiple Regressors: Cartoon Animation

- Red curve = signal model for class #1
- <u>Green</u> curve = signal model for #2
- Blue curve = $\beta_1 \cdot #1 + \beta_2 \cdot #2$ where β_1 and β_2 vary from 0.1 to 1.7 in the animation
- Goal of regression is to find β_1 and β_2 that make the blue curve best fit the data time series
- Gray curve = 1.5·#1+0.6·#2+noise = simulated data

Multiple Regressors: Collinearity!!

Multiple Regressors: Near Collinearity

Stimuli are too close in time to distinguish response #1 from #2, considering noise

- Red curve = signal model for class #1
- Green curve =signal model for #2
- Plue curve = $\beta_1 \cdot \#1 + (1 \beta_1) \cdot \#2$ where β_2 varies

where β_1 varies randomly from 0.0 to 1.0 in animation

- Gray curve =
 - $0.66 \cdot #1 + 0.33 \cdot #2$
- = simulated data with no noise
- Lots of different combinations of #1 and #2 are decent fits to gray curve

The Geometry of Collinearity - 1

- Trying to fit data as a sum of basis vectors that are nearly parallel doesn't work well: solutions can be huge
- Exactly parallel basis vectors would be impossible:
 - Determinant of matrix to invert would be zero

The Geometry of Collinearity - 2

Trying to fit data with too many regressors (basis vectors)
 doesn't work: no unique solution

Equations: Notation

- Will approximately follow notation of manual for the AFNI program 3dDeconvolve
- Time: continuous in reality, but in steps in the data
 - \succ Functions of continuous time are written like f(t)
 - > Functions of discrete time expressed like $f(\underline{n} \cdot \underline{TR})$ where n=0,1,2,... and TR=time step
 - \triangleright Usually use subscript notion f_n as shorthand
 - > Collection of numbers assembled in a column is a

$$\begin{cases} \mathbf{vector} \text{ of } \\ \mathbf{length} \ N \end{cases} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{bmatrix} = \mathbf{f} \quad \begin{bmatrix} A_{00} & A_{01} & \cdots & A_{0,N-1} \\ A_{10} & A_{11} & \cdots & A_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{M-1,0} & A_{M-1,1} & \cdots & A_{M-1,N-1} \end{bmatrix} = \mathbf{A} = \{ \mathbf{M} \times \mathbf{N} \text{ matrix} \}$$

Equations: Single Response Function

• In each voxel, fit data Z_n to a curve of the form

$$Z_n \approx a + b \cdot t_n + \beta \cdot r_n$$
 for $n=0,1,...,N-1$ ($N=\#$ time pts)

- a, b, β are unknown parameters to be calculated in each voxel $r_n = \sum_{k=1}^{K} h(t_n \tau_k) = \text{sum of HRF copies}$
- a,b are "nuisance" baseline parameters
- β is amplitude of r(t) in data = "how much" BOLD
- Baseline model should be more complicated for long (> 150 s) continuous imaging runs:
 - $150 < T < 300 \text{ s: } a+b\cdot t+c\cdot t^2$
 - Longer: $a+b\cdot t+c\cdot t^2+\lceil T/150\rceil$ low frequency components
 - 3dDeconvolve actually uses Legendre polynomials for baseline
 - Using p^{th} order polynomial analogous to a lowpass cutoff $\approx (p-2)/T$ Hz
 - Often, also include as extra baseline components the estimated subject head movement time series, in order to remove residual contamination from such artifacts (will see example of this later)

Equations: Multiple Response Functions

• In each voxel, fit data Z_n to a curve of the form

$$Z_n \approx [\text{baseline}]_n + \beta_1 \cdot r_n^{(1)} + \beta_2 \cdot r_n^{(2)} + \beta_3 \cdot r_n^{(3)} + \cdots$$

- β_j is amplitude in data of $r_n^{(j)} = r_j(t_n)$; i.e., "how much" of the jth response function is in the data time series
- In simple regression, each $r_j(t)$ is derived directly from stimulus timing **and** user-chosen HRF model
 - In terms of stimulus times:

$$r_n^{(j)} = \sum_{k=1}^{K_j} h_j(t_n - \tau_k^{(j)}) = \text{sum of HRF copies}$$

- Where $\tau_{k}^{(j)}$ is the k^{th} stimulus time in the j^{th} stimulus class
- These times are input using the -stim_times option to program 3dDeconvolve

Equations: Matrix-Vector Form

Express known data vector as a sum of known columns with unknown coefficents:

z depends on the voxel; R doesn't

Visualizing the R Matrix

- Can graph columns (program 1dplot)
 - But might have 20-50 columns
- Can plot columns on a grayscale (program
- 1dgrayplot Or 3dDeconvolve -xjpeg)
 - Easier way to show many columns
 - In this plot, darker bars means larger numbers

Solving $z \approx R\beta$ for β

- Number of equations = number of time points
 - ★ 100s per run, but perhaps 1000s per subject
- Number of unknowns usually in range 5–50
- Least squares solution: $\hat{\beta} = [\mathbf{R}^T \mathbf{R}]^{-1} \mathbf{R}^T \mathbf{z}$
 - $\rightarrow \hat{\beta}$ denotes an *estimate* of the true (unknown) β
 - > From $\hat{\beta}$, calculate $\hat{z} = R\hat{\beta}$ as the *fitted model*

- o $\mathbf{Z} \hat{\mathbf{Z}}$ is the **residual time series** = noise (we hope)
- o Statistics measure how much each regressor helps reduce residuals
- Collinearity: when matrix R^TR can't be inverted
 - > Near collinearity: when inverse exists but is huge

Simple Regression: Recapitulation

- Choose HRF model h(t) [AKA fixed-model regression]
- Build model responses $r_n(t)$ to each stimulus class
 - \rightarrow Using h(t) and the stimulus timing
- Choose baseline model time series
 - Constant + linear + quadratic (+ movement?)
- Assemble model and baseline time series into the columns of the R matrix
- For each voxel time series z, solve $z \approx R\beta$ for β
- Individual subject maps: Test the coefficients in $\hat{\beta}$ that you care about for statistical significance
- **Group maps**: Transform the coefficients in $\hat{\beta}$ that you care about to Talairach/MNI space, and perform statistics on the collection of $\hat{\beta}$ values across subjects