AFNI Start to Finish: How to Analyze Data with AFNI

- picture this experiment as your own
 - decisions on processing were made by you (and your colleagues), hopefully before acquiring any data
 - there is no single "correct" way to analyze data,
- focus on understanding the processing steps
 in light of your having chosen which steps to perform
 - in light of your having chosen which steps to perio
- practice the good habit of reviewing results
 - * do the initial images look good?
 - review each processing step along with data
 - * are the EPI and anat well aligned by the end?
 - * do the statistical results look reasonable?
- how does one create a processing script (based on design decisions)?
 * use afni_proc.py, or write script by hand
- how does one get data to a standard space for group analysis?
 - * tell **afni_proc.py** do to it
 - * or apply anatomical transformation to results via adwarp

Review of stimulus conditions

- Speech Perception Task: Subjects were presented with audiovisual speech that was presented in a predominantly auditory or predominantly visual modality.
- A digital video system was used to capture auditory and visual speech from a female speaker.
- There were 2 types of stimulus conditions:

(1) Auditory-Reliable

Example: Subjects can clearly *hear* the word "cat," but the video of a woman mouthing the word is degraded.

(2) Visual-Reliable

Example: Subjects can clearly *see* the video of a woman mouthing the word "cat," but the audio of the word is degraded.

-2-

✤ Experiment Design:

- There were 3 runs in a scanning session.
- Each run consisted of 10 blocked trials:
 - 5 blocks contained Auditory-Reliable (Arel) stimuli, and
 - 5 blocks contained Visual-Reliable (Vrel) stimuli.
- Each block contained 10 trials of *Arel* stimuli OR 10 trials of *Vrel* stimuli.
 - Each block lasted for 20 seconds (1 second for stimulus presentation, followed by a 1-second inter-stimulus interval).
- Each baseline block consisted of a 10-second fixation point.

✤ <u>Data Collected:</u>

- 2 Anatomical datasets for each subject, collected at 3 tesla.
 - 175 sagittal slices
 - voxel dimensions = 0.938 x 0.938 x 1.0 mm
- 3 Time Series (EPI) datasets for each subject.
 - 33 axial slices x 152 volumes = 5016 slices per run
 - TR = 2 sec; voxel dimensions = 2.75 x 2.75 x 3.0 mm
- Sample size, <u>n</u> = 10 (all right-handed subjects)

afni_proc.py

- What is **afni_proc.py**?
 - * a program used to generate processing scripts for single subject analysis
 - senerated scripts are in tcsh syntax
 - * scripts are written to be easily read and modified
 - * why create a script?
 - it is a permanent record of the processing steps
 - it can be re-run or modified to run on more subjects
- What information is needed by **afni_proc.py**?
 - * minimum: EPI data and stimulus timing files (in order to do regression)
 - basis functions for regression (GAM, BLOCK, etc.)
 - * choose processing blocks: align EPI/anat? tlrc? despike? RETROICOR?
 - * many options are available:
 - estimate smoothness, censor TRs with excessive motion, etc.
 - > see "afni_proc.py -help" for details

• Pros

- quick way to create a processing script
- user does not need to be a master of shell scripting
- more trust that syntax does not have typos
- sood for learning (FMRI processing, Unix/shell scripting, AFNI commands)
- can compare against manually generated scripts
 - \succ for sanity checks and bug detection
- * processing script generates many files to help review data/detect problems
 - outlier counts (outcount*.1D), motion estimates (dfile.*.1D, motion*.1D), ideal regressors/sum of ideals (ideal*.1D, sum_ideal.1D), estimates of data smoothness (blur_est*.1D), script to quickly review original EPI data (@epi_review.\$subj)

Cons

- some users may not bother to review script
- * not every AFNI program has an afni_proc.py interface
 - have 'empty' processing block for such commands
- not yet done:
 - -stim_times_IM/AM/AM2: requires (easy) script changes
 - varying basis functions: requires (easy) script changes
 - GUI (on the way!)

afni_proc.py help sections

- there is a lot of help to be found in the "afni_proc.py -help" output
- * list of main sections in the help:
 - program introduction
 - PROCESSING BLOCKS
 - > DEFAULTS
 - > EXAMPLES
 - NOTE sections
 - TIMING FILE NOTE
 - MASKING NOTE
 - WARP TO TLRC NOTE
 - RETROICOR NOTE
 - RUNS OF DIFFERENT LENGTHS NOTE
 - SCRIPT EXECUTION NOTE
 - > OPTIONS
 - informational
 - general execution
 - block options

- : basic overview of the program
- : list of possible processing blocks
- : basic defaults, per processing block
- : common examples of running this program
- : details on various topics

- : descriptions of all program options
- : options to get quck information and quit program
- : options not specific to a processing block
- : specific to blocks, in default block order

Overview of Remaining Steps

- * data is under AFNI_data6/FT_analysis
- * review directory contents and note suject data under directory FT
- * review the afni_proc.py command
- * execute the afni_proc.py command to create processing script
- * execute the "proc" script to process the data
- review processed data
 - > use "proc" script as a guide for what data to view
 - focus on run 1 here, to save time
 - > use multiple **afni** controllers to view both input and output of each block
- * get results to standard space
- * run group analysis (3dANOVA2 or 3dMEMA)

• Class Work:

1.go to directory AFNI_data6/FT_analysis; see what is there cd AFNI_data6/FT_analysis ls -1 FT cat FT/AV1_vis.txt

2. review the afni_proc.py command cat s01.ap.simple

3.execute s01.ap.simple (note the output script, proc.FT) ./s01.ap.simple (or: tcsh s01.ap.simple) ls -1

4. process the data (as suggested by afni_proc.py) 1. takes ~5 minutes (on my laptop) tcsh -xef proc.FT |& tee output.proc.FT

5. while processing data, review "proc" script gedit proc.FT

6.review processed data (input and output of each step)
 cd FT.results
 afni &

1. Note what is under **AFNI_data6/FT_analysis**.

FT

- s01.ap.simple
- s02.ap.align
- s09.cleanup
- s11.proc.FT
- s12.proc.FT.align

under FT

- AV1_vis.txt
- AV2_aud.txt
- FT_anat+orig.BRIK/HEAD
- FT_epi_r1+orig.BRIK/HEAD
- FT_epi_r2+orig.BRIK/HEAD
- FT_epi_r3+orig.BRIK/HEAD

<u>AV1_vis.txt</u>:

60 90 120 180 240 120 150 180 210 270 0 60 120 150 240

- subject data directory
- class afni_proc.py script
- more advanced script
- remove analysis results
- result of **s01.ap.simple**
- result of **s01.ap.align**
- visual reliable timing
- autidory reliable timing
- anatomical dataset
- EPI run 1
- EPI run 2
 - EPI run 3

2. Review the contents of the **s01.ap.simple** script.

```
afni_proc.py -subj_id FT \
 -dsets FT/FT_epi_r?+orig.HEAD \
 -copy_anat FT/FT_anat+orig \
 -tcat_remove_first_trs 2 \
 -regress_stim_times FT/AV*.txt \
 -regress_stim_labels Vrel Arel \
 -regress_basis 'BLOCK(20,1)' \
 -regress_opts_3dD \
 -gltsym 'SYM: Vrel -Arel'
```

Options:

- -subj_id: subject ID, which will be used in dataset names
- -dsets: the EPI datasets, one per run
- -copy_anat: the anatomical dataset will be copied to the results dir
- > -tcat_remove_first_trs: # TRs to remove from the beginning of each run (prior to magnetization steady state)
- -regress_stim_times: the list of stimulus timing files
- -regress_basis: basis function used by 3dDeconvolve in the regression
- -regress_est_blur_errts: estimate data smoothness from residuals
- -regress_opts_3dD: extra options given directly to 3dDeconvolve