Advanced Adventures in FMRI Time Series Analysis

On the off chance that you weren’t confused enough already
IM Regression

- **IM** = Individual **M**odulation
 - Compute *separate* amplitude of response for each stimulus time given in input file
 - Instead of computing average amplitude of responses to multiple stimuli in the same class
 - Response amplitudes (βs) for each individual block/event will be highly noisy
 - Can’t use individual activation map for much
 - Must pool the computed βs in some further statistical analysis (t-test via 3dttest? inter-voxel correlations in the βs? correlate βs with something else?)
 - Usage: `-stim_times_IM k tname model`
 - Like `-stim_times`, but creates a separate regression matrix column for each time given
AM Regression - 1

- **AM** = **Amplitude Modulated** (SPM: Parametric Modulation)
 - Have extra data measured about *each* response to a stimulus
 - Reaction time; Galvanic skin response; Pain level perception; …
- Want to find active voxels whose activation level also depends on ABI
 - *3dDeconvolve* is a linear program, so must assume that change in FMRI signal as ABI changes is proportional to change in ABI values
- Need to make 2 separate regressors
 - One to find the mean FMRI response (the usual `-stim_times` analysis)
 - One to find the variations in the FMRI response as the ABI data varies;
 Second regressor has the form \(r_{AM2}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot (a_k - \bar{a}) \)
 - Where \(a_k \) = value of \(k^{th} \) ABI value, and \(\bar{a} \) = average ABI value
- Response (\(\beta \)) for first regressor is standard activation map
- Statistics and \(\beta \) for second regressor make activation map of places whose BOLD response changes with changes in ABI
 - Using 2 regressors allows separation of voxels that are active but are *not* detectably modulated by the ABI from voxels that *are* ABI-sensitive
AM Regression - 2

- New-ish feature of `3dDeconvolve`: `-stim_times_AM2`
- Usage is very similar to standard `-stim_times`
 - `-stim_times_AM2 1 times_ABI.1D 'BLOCK(2,1)'`
 - `times_ABI.1D` file has time entries that are “married” to ABI values:

10*5	23*4	27*2	39*5
17*2	32*5		
 * |
 |16*2|24*3|37*5|41*4|

- Such files can be created from 2 standard ASCII .1D files using the `1dMarry` program
 - The `-divorce` option can be used to split them up

- `3dDeconvolve` automatically creates the two regressors (unmodulated and amplitude modulated)
 - Use `-fout` option to get statistics for activation of pair of regressors (i.e., testing null hypothesis that both β weights are zero: that there is no ABI-independent or ABI-proportional signal change)
 - Use `-tout` option to test each β weight separately
 - Can `1dplot X` matrix columns to see each regressor
 - Can have more than one ABI parameter per event (polygamy?)
AM Regression - 3

- Alternative to AM: use IM to get individual βs for each block/event and then do external regression and/or statistics on those values
- Could do nonlinear fitting (to these βs) via 3dNLfim, or inter-class contrasts via 3dttest, 3dLME, 3dANOVA, or intra-class correlations via 3dICC, etc.
- What is better: AM or IM+ something more?
 - We don’t know – experience with these options is limited – you can always try both!
 - If AM doesn’t fit your models/ideas, then IM+ is clearly the way to go
 - Probably need to consult with SSCC to get some hints/advice
Solving a visually presented puzzle:
 a) subject sees puzzle
 b) subject cogitates a while
 c) subject responds with solution

We expect some voxels to be significant in phase (b) as well as phases (a) and/or (c) – (b) is probably what you care about!

Variable length of phase (b) means that shape for its response varies between trials
 • Which is contrary to the whole idea of averaging trials together to get decent statistics

Could assume response *amplitude* in phase (b) is constant across trials, and response *duration* of (b) equals the time between phases (a) and (c)
 • Need to use three HRFs
 • HRF (b): use the *dmBLOCK* response function
 • Can combine DM with AM (or IM) if needed
Allowing for Serial Correlation

- **t-** and **F-statistics denominators:** estimates of noise variance
 - **White noise estimate of variance:**
 - $N = \text{number of time points}$
 - $m = \text{number of fit parameters}$
 - $N - m = \text{degrees of freedom} = \text{how many equal-variance independent random values are left after time series is fit with } m \text{ regressors}$
 - **Problem:** if noise values at successive time points are correlated, this estimate of variance is biased to be too small, since there aren’t really $N - m$ independent random values left
 - Denominator too small implies t- and F-statistics are too large!
 - And number of degrees of freedom is also too large.
 - So significance (p-value) of activations in individuals is overstated.
 - **Solution #1:** estimate correlation structure of noise and then adjust statistics (downwards) appropriately
 - **Solution #2:** estimate correlation structure of noise **and** also estimate β fit parameters using more efficient “generalized least squares”, using this correlation, all at once
AFNI's Program: **3dREMLfit**

- Implements Solution #2
 - REML is a method for simultaneously estimating variance + correlation parameters *and* estimating regression fit parameters (βs)
 - Correlation structure of noise is ARMA(1,1)
 - 2 parameters a (AR) and b (MA) in each voxel
 - a describes how fast the noise de-correlates over time
 - b describes the short-range correlation in time (1 lag)
 - Unlike SPM and FSL, *each voxel* gets a separate estimate of its own correlation parameters

- Inputs to **3dREMLfit**
 - run **3dDeconvolve** first to setup `.xmat.1D` matrix file and GLTs (don't have to let **3dDeconvolve** finish analysis: `-x1D_stop`)
 - **3dDeconvolve** also outputs a command line to run **3dREMLfit**
 - then, input matrix file and 3D+time dataset to **3dREMLfit**

- Output datasets are structured as if from **3dDeconvolve**
Nonlinear Regression

- Linear models aren’t the only possibility
 - e.g., could try to fit HRF of the form \(h(t) = a \cdot t^b \cdot e^{-t/c} \)
 - Unknowns \(b \) and \(c \) appear nonlinearly in this formula
- Program 3dNLfim can do nonlinear regression (including nonlinear deconvolution)
 - User must provide a C function that computes the model time series, given a set of parameters (e.g., \(a, b, c \))
 - We could help you develop this C model function
 - Several sample model functions in the AFNI source code distribution
 - Program then drives this C function repeatedly, searching for the set of parameters that best fit each voxel
 - Has been used to fit pharmacological models to FMRI data acquired during pharmacological challenges
 - e.g., injection of nicotine, cocaine, ethanol, etc.
 - these are difficult experiments to do and to analyze
 - e.g., Dynamic Contrast Enhanced MRI (for brain tumor analyses)
Deconvolution: The Other Direction

• Signal model: \(Z(t) = H(t) \ast A(t) + \text{baseline model} + \text{noise} \)
 \[Z(t) = H(t) \ast A(t) + \text{baseline model} + \text{noise} \]

 \(H(t) = \text{HRF} = \text{response magnitude} \ t \ \text{seconds after activation} \)

 - \(H(t) \) is **causal** = zero for \(t < 0 \)

 - “\ast” is symbol for convolution, not multiplication!

• **3dDeconvolve**: find out something about \(H(t) \) given \(A(t) \)

• Sometimes (PPI, DSC) want to solve the problem in the other direction: assume a model for \(H(t) \) and find time series \(A(t) \)

 - Convolution is commutative: \(H(t) \ast A(t) = A(t) \ast H(t) \)

 - So the other direction looks to be the same problem

 - But isn’t, since \(H(t) \) is causal but \(A(t) \) is not

 - Also, \(H(t) \ast A(t) \) smooths out rough spots in \(A(t) \), so un-doing this deconvolution adds roughness — including noise, which is already rough — which must be controlled or output \(A(t) \) will be horrible junk

• Program **3dTfitter** can solve this type of problem

 - Also can allow for *per voxel* model components

 - Unlike **3dDeconvolve**, where each voxel has same model
Multi-Voxel Statistics
Spatial Clustering & False Discovery Rate:
“Correcting” the Significance
Basic Problem

• Usually have 50-200K FMRI voxels in the brain

• Have to make at least one decision about each one:
 - Is it “active”?
 - That is, does its time series match the temporal pattern of activity we expect?
 - Is it differentially active?
 - That is, is the BOLD signal change in task #1 different from task #2?

• Statistical analysis is designed to control the error rate of these decisions
 - Making *lots* of decisions: hard to get perfection in statistical testing
• **Two Approaches to the “Curse of Multiple Comparisons”**

 - Control **FWE** to keep expected total number of false positives below 1
 - Overall significance: \(\alpha_{FW} = \text{Prob}(\geq \text{one false positive voxel in whole brain}) \)
 - **Bonferroni correction**: \(\alpha_{FW} = 1 - (1-p)^N \approx Np \), if \(p \ll N^{-1} \)
 - Use \(p = \alpha/N \) as individual voxel significance level to achieve \(\alpha_{FW} = \alpha \)
 - Too stringent and overly conservative: \(p = 10^{-8} \ldots 10^{-6} \)
 - What can rescue us from this hell of statistical super-conservatism?
 - **Correlation**: Voxels in the brain are not independent
 - Especially after we smooth them together!
 - Means that Bonferroni correction is *way way way* too stringent
 - **Contiguity**: Structures in the brain activation map
 - We are looking for activated “blobs”: the chance that pure noise (\(H_0 \)) will give a set of seemingly-activated voxels next to each other is lower than getting false positives that are scattered around far apart
 - Control FWE based on spatial correlation (smoothness of image noise) and minimum cluster size we are willing to accept
 - Control false discovery rate (\(\text{FDR} \)) — More on this a little later!
 - \(\text{FDR} = \text{expected proportion of false positive voxels among all detected voxels} \)
 - Give up on the idea of having (almost) no false positives at all
Cluster Analysis: 3dClustSim

FWE control in AFNI

- Monte Carlo simulations with program 3dClustSim [supersedes AlphaSim]
 - Named for a place where primary attractions are randomization experiments
 - Randomly generate some number (e.g., 10,000) of brain volumes with white noise (spatially uncorrelated)
 - That is, each “brain” volume is purely in $H_0 = \text{no activation}$
 - Noise images can be blurred to mimic the smoothness of real data
 - Count number of voxels that are false positives in each simulated volume
 - Including how many are false positives that are spatially together in clusters of various sizes (1, 2, 3, ...)
 - Parameters to program
 - Size of dataset to simulate
 - Mask (e.g., to consider only brain-shaped regions in the simulated 3D brick)
 - Spatial correlation FWHM: from 3dBlurToFWMH or 3dFWHMx
 - Connectivity radius: how to identify voxels belonging to a cluster?
 - Default = NN connection = touching faces
 - Individual voxel significance level = uncorrected p-value
 - Output
 - Simulated (estimated) *overall significance level* (corrected p-value $\equiv \alpha$)
 - Corresponding *minimum cluster size* at the input uncorrected p-value
• Example:
 \texttt{3dClustSim -nxyz 64 64 30 -dxyz 3 3 3 -fwhm 7}

\begin{verbatim}
 # 3dClustSim -nxyz 64 64 30 -dxyz 3 3 3 -fwhm 7
 # Grid: 64x64x30 3.00x3.00x3.00 mm^3 (122880 voxels)
 # CLUSTER SIZE THRESHOLD(pthr,\alpha) in Voxels
 # -NN 1 | alpha = Prob(Cluster >= given size)
 # pthr | 0.100 0.050 0.020 0.010
 # ------ | ------ ------ ------ -----
 0.020000 | 89.4 99.9 114.0 123.0
 0.010000 | 56.1 62.1 70.5 76.6
 0.005000 | 38.4 43.3 49.4 53.6
 0.002000 | 25.6 28.8 33.3 37.0
 0.001000 | 19.7 22.2 26.0 28.6
 0.000500 | 15.5 17.6 20.5 22.9
 0.000200 | 11.5 13.2 16.0 17.7
 0.000100 | 9.3 10.9 13.0 14.8
\end{verbatim}

At a per-voxel $p=0.005$, a cluster should have \textbf{44+} voxels to occur with $\alpha < 0.05$ from noise \textit{only}

\texttt{3dClustSim} can be run by \texttt{afni_proc.py}: results get stored into statistics dataset, and then used in \texttt{AFNI Clusterize} GUI
Interactive Clustering

- Principal Component time series over cluster #2
- Cluster α level: interpolated from 3dClustSim table
- This panel controls the cluster operation
- Report on clusters of above-threshold voxels
False Discovery Rate in \(\text{AFNI}\)

- Situation: making many statistical tests at once
 - e.g., Image voxels in FMRI; associating genes with disease
- Want to set threshold on statistic (e.g., \(F\)- or \(t\)-value) to control false positive error rate
- Traditionally: set threshold to control probability of making a single false positive detection
 - But if we are doing 1000s (or more) of tests at once, we have to be very stringent to keep this probability low
- **FDR**: accept the fact that there will be multiple erroneous detections when making lots of decisions
 - Control the fraction of positive detections that are wrong
 - Of course, no way to tell which individual detections are right!
 - Or at least: control the expected value of this fraction
Basic Ideas Behind FDR q

- If all the null hypotheses are true, then the statistical distribution of the p-values will be uniform.
 - Deviations from uniformity at low p-values ⇒ true positives
 - Baseline of uniformity indicates how many true negatives are hidden in the low p-value region ("significant" voxels)

![Histogram of p-values](image)

- Red = ps from Full-F
- Black = ps from pure noise (simulation) (baseline level=false +)

- 31,555 voxels
- 50 histogram bins

- True +
- False +
- threshold h
FDR curves in **AFNI** Datasets

- **3dDeconvolve, 3dANOVAx, 3dttest**, and **3dNLfim** now compute FDR curves for all statistical sub-bricks and store them in output header.
- **3drefit -addFDR** does the same for other datasets.
 - **3drefit -unFDR** can be used to delete such information.
- **AFNI** now shows *p*- and *q*-values below the threshold slider bar.
 - Interpolates FDR curve from header (threshold → z → q).
 - Can be used to adjust threshold by “eyeball”

$q = \text{N/A}$ means it’s Not Available.
These 2 methods control Type I error in different senses

- **FWE**: $\alpha_{FW} = \text{Prob}\left(\geq \text{one false positive voxel/cluster in the whole brain}\right)$
 - Frequentist’s perspective: Probability among many hypothetical activation maps gathered under identical conditions
 - Advantage: can directly incorporate smoothness into estimate of α_{FW}
- **FDR** = expected fraction of false positive voxels among all detected voxels
 - Focus: controlling false positives among detected voxels in one activation map, as given by the experiment at hand
 - Advantage: not afraid of making a few Type I errors in a large field of true positives

Concrete example

- Individual voxel $p = 0.001$ for a brain of 50,000 EPI voxels
- Uncorrected $\rightarrow \approx 50$ false positive voxels in the brain
- FWE: corrected $p = 0.05 \rightarrow \approx 5\%$ of the time would expect one or more purely false positive clusters in the entire volume of interest
- FDR: $q = 0.05 \rightarrow \approx 5\%$ of voxels among those positively labeled ones are false positive

What if your favorite blob (activation area) fails to survive correction?

- Tricks (don’t tell anyone we told you about these; we'll lie and say we never heard of you)
 - One-tail t-test? NN=3 clustering?
 - ROI-based statistics – e.g., grey matter mask, or whatever regions you focus on
- Analysis on surface; *or*, Use better group analysis tool (*3dLME*, *3dMEMA*, etc.)