

Just in case you weren't confused enough already

Other Features of 3dDeconvolve - 1

- -input1D = used to process a single time series, rather than a dataset full of time series
 - e.g., test out a stimulus timing sequence on sample data
 - -nodata option can be used to check X matrix for collinearity
- $\cancel{-censor}$ = used to turn off processing for some time points
 - for time points that are "bad" (e.g., too much movement; scanner problem)
 - -CENSORTR 2:37 = newer way to specify omissions (e.g., run #2, index #37)
- -sresp = output standard deviation of HRF (β) estimates
 - can then plot error bands around HRF in AFNI graph viewer
- -errts = output residuals (difference between fitted model and data)
 - for statistical analysis of time series noise

-2-

- **-TR_times dt** = calculate **-iresp** and **-sresp** HRF results with time step **dt** (instead of input dataset TR)
 - Can be used to make HRF graphs look better
- $\lambda jobs N = run$ with independent threads N of them
 - extra speed, if you have a dual-CPU system (or more)!

http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSummer2004.html http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/DeconSpring2007.html

- Equation solver: Program computes condition number for X matrix (measures of how sensitive regression results are to changes in X)
 - If the condition number is "bad" (too big), then the program will not actually proceed to compute the results
 - You can use the <u>-GOFORIT</u> option on the command line to force the program to run despite X matrix warnings
 - But you should strive to understand why you are getting these warnings!!
- Other matrix checks:
 - Duplicate stimulus filenames, duplicate regression matrix columns, all zero matrix columns

Check the screen output for WARNINGs and ERRORS

Such messages also saved into file 3dDeconvolve.err

All-zero regressors *are* allowed (via -allzero_ok or -goforit)

- Will get zero weight in the solution
- Example: task where subject makes a choice for each stimulus (e.g., male or female face?)
 - You want to analyze correct and incorrect trials as separate cases
 - What if some subject makes no mistakes? Hmmm...
 - Can keep the all-zero regressor (e.g., all -stim_times = *)
 - Input files and output datasets for error-making and perfectperforming subjects will be organized the same way
- **3dDeconvolve_f** program can be used to compute linear regression results in single precision (7 decimal places) rather than double precision (16 places)
 - For better speed, but with lower numerical accuracy
 - Best to do at least one run *both* ways to check if results differ significantly (Equation solver *should* be safe, but ...)

- Default output format is 32-bit floating point numbers
 - -short option gives 16-bit short integers (with scaling factor for each sub-brick to convert it to floats) — less precision, and less disk space
- **3dDeconvolve** recommends a **-polort** value, and prints

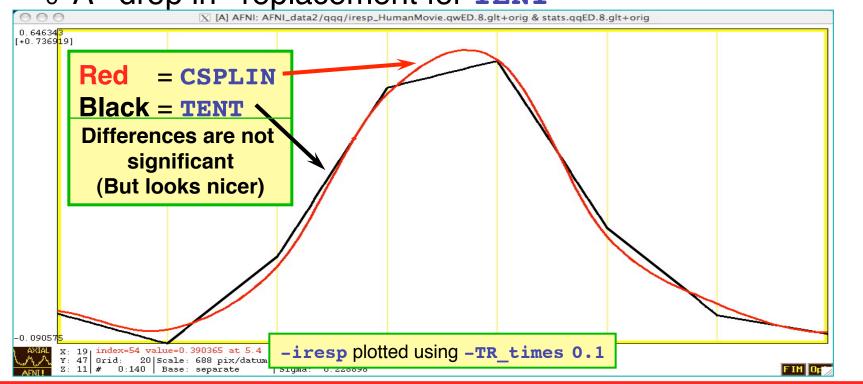
that out as well as the value you chose (or defaulted to)

- -polort A can be used to let the program set the detrending (AKA "high pass filtering", since detrending removes low frequency content from data) level automatically
- -stim_file is used to input a column directly into X matrix
 - Motion parameters (as in previous examples)
 - If you create a stimulus+response model outside
 3dDeconvolve (e.g., using program waver)

-5-

K-stim_times has other basis function options for HRF model
besides BLOCK and TENT

- CSPLIN = cubic spline, instead of TENT = linear spline
 - Same parameters: (start, stop, number of regressors)
 A "drop in" replacement for **TENT**



- TENTzero & CSPLINzero = force start & end of HRF = 0
- MION = model from Leite et al. (*NeuroImage* 2002)

-6-

- **_fitts** option is used to create a synthetic dataset
 - each voxel time series is full (signal+baseline) model as fitted to the data time series in the corresponding voxel location

3dSynthesize program can be used to create synthetic datasets from subsets of the full model

- Uses -x1D and -cbucket outputs from 3dDeconvolve
 - **-cbucket** stores β coefficients for each X matrix column into dataset
 - o -x1D stores the matrix columns (and -stim_labels, etc.)
- Potential uses:
 - Baseline only dataset
 - 3dSynthesize -cbucket fred+orig -matrix fred.xmat.
 1D -select baseline -prefix fred_base
 - Could subtract this dataset from original data (via 3dcalc) to get signal+noise dataset that has no baseline component left
 - Just one stimulus class model (+ baseline) dataset
 - 3dSynthesize -cbucket fred+orig -matrix fred.xmat.
 1D -select baseline Faces -prefix fred_Faces

-7-

Other Recent Small Changes

• Defaults are changed:

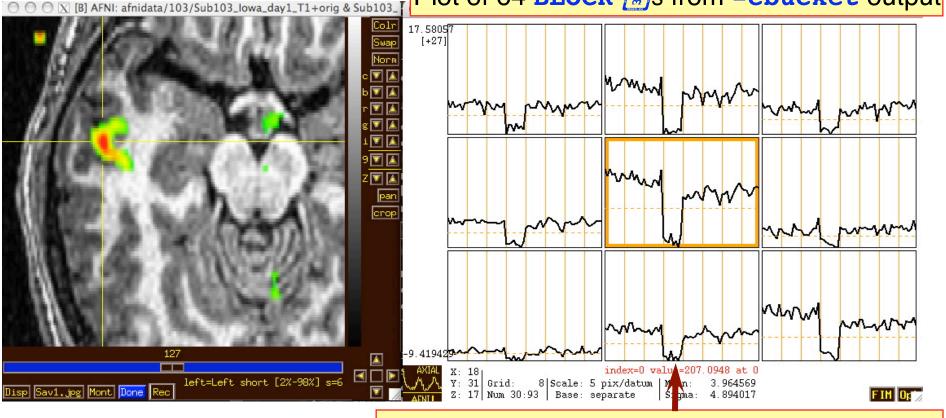
-8-

- -nobout & -full_first & -bucket & -x1D are always implied
- Names of statistics sub-bricks are slightly altered (to be more consistent)
- Checks if -stim_times inputs are out of range (AKA: the PSFB syndrome)
 - Prints WARNING message, but continues analysis
- When using <u>-nodata</u> with <u>-stim_times</u>, it is important to give the number of time points and the TR, as in <u>-nodata 250 2.3</u>
 - With -input1D, use -TR_1D 2.3 to specify TR

- IM = Individual Modulation
 - Compute separate amplitude of response for each stimulus
 - Instead of computing average amplitude of responses to multiple stimuli in the same class
 - Response amplitudes (βs) for each individual block/ event will be highly noisy
 - Can't use individual activation map for much
 - Must pool the computed βs in some further statistical analysis (*t*-test via 3dttest? inter-voxel correlations in the βs? Correlate βs with something else?)
 - Usage: -stim_times_IM k tname model
 - Like -stim_times, but creates a separate regression matrix column for each time given

-9-

- First application of IM was checking some data we received from another institution
- Experiment: 64 blocks of sensorimotor task (8 runs each with 8 blocks)
 Plot of 64 BLOCK S from -cbucket output



N.B.: sign reversal in run #4 = stimulus timing error!

- IM works naturally with blocks, which only have 1 amplitude parameter per stimulus
- With event-related experiment and *deconvolution*, have multiple amplitude parameters per stimulus
 - Difficulty: each event in same class won't get the same shaped HRF this way
 - Desideratum: allow response shape to vary (that's deconvolution), but only allow amplitude to vary between responses in the same stimulus class
 - Problem: get unknowns that multiply each other (shape parameters × amplitude parameters) — and we step outside the realm of *linear* analysis
 - Possible solution: semi-linear regression (nonlinear in global shape parameters, linear in local amplitude params)

- AM = Amplitude Modulated (or Modulation)
 - Have some extra data measured about each response to a stimulus, and *maybe* the BOLD response amplitude is modulated by this
 - Reaction time; Galvanic skin response; Pain level perception; Emotional valence (happy or sad or angry face?)
- Want to see if some brain activations vary proportionally to this ABI (Auxiliary Behaviorial Information)
- Discrete levels (2 or maybe 3) of ABI:
 - Separate the stimuli into sub-classes that are determined by the ABI ("on" and "off", maybe?)
 - Use a GLT to test if there is a difference between the FMRI responses in the sub-classes

```
3dDeconvolve ...
-stim_times 1 regressor_on.1D 'BLOCK(2,1)' -stim_label 1 'On' \
-stim_times 2 regressor_off.1D 'BLOCK(2,1)' -stim_label 2 'Off' \
-gltsym 'SYM: +On | +Off' -glt_label 1 'On+Off' \
-gltsym 'SYM: +On -Off' -glt_label 2 'On-Off' ...
```

- "On+Off" tests for any activation in *either* the "on" or "off" conditions
- "On-Off" tests for differences in activation *between* "on" and "off" conditions
- Can use 3dcalc to threshold on *both* statistics at once to find a conjunction

-12-

- Continuous (or several finely graded) ABI levels
 - Want to find active voxels whose activation level also depends on ABI
 - 3dDeconvolve is a linear program, so must make the assumption that the change in FMRI signal as ABI changes is linearly proportional to the changes in the ABI values
- Need to make 2 separate regressors
 - One to find the mean FMRI response (the usual **-stim_times** analysis)
 - One to find the variations in the FMRI response as the ABI data varies
- The second regressor is $r_{AM2}(t) = \sum_{k=1}^{K} h(t \tau_k) \cdot (a_k \overline{a})$
 - Where a_k = value of k^{th} ABI value, and a is the average ABI value
 - N.B.: If UNIX environment variable AFNI_3Deconvolve_rawAM2 is set to YES, then mean of the a_k is not removed.
- Response (β) for first regressor is standard activation map
- Statistics and β for second regressor make activation map of places whose BOLD response changes with changes in ABI
 - Using 2 regressors allows separation of voxels that are active but are not detectably modulated by the ABI from voxels that are ABI-sensitive

-13-

- New feature of 3dDeconvolve: -stim_times_AM2
- Use is very similar to standard -stim_times
 - -stim_times_AM2 1 times_ABI.1D 'BLOCK(2,1)'
 - The times_ABI.1D file has time entries that are "married" to ABI values:
 10*5 23*4 27*2 39*5

```
10 3 23 4 27 2 39 3
17*2 32*5
*
16*2 24*3 37*5 41*4
```

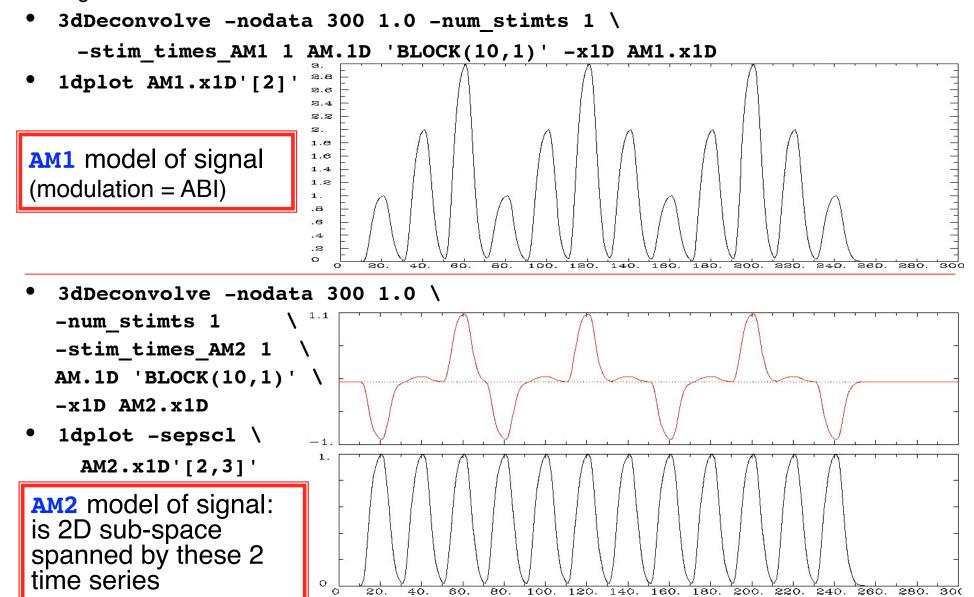
- Such files can be created from 2 standard ASCII .1D files using the new 1dMarry program
 - The -divorce option can be used to split them up
- **3dDeconvolve** automatically creates the two regressors (unmodulated and amplitude modulated)
 - Use -fout option to get statistics for activation of pair of regressors (i.e., testing null hypothesis that both β weights are zero: that there is no ABI-independent or ABI-proportional signal change)
 - Use -tout option to test each
 B weight separately
 - Can 1dplot X matrix columns to see each regressor

-14-

- The **AM** feature is new, and so needs more practical user experiences before it can be considered "standard practice"
 - In particular: don't know how much data or how many events are needed to get good ABI-dependent statistics
- If you want, **-stim_times_AM1** is also available
 - It only builds the regressor proportional to ABI data directly, with no mean removed: $r_{AM1}(t) = \sum_{k=1}^{K} h(t - \tau_k) \cdot a_k$
 - Can't imagine what value this option has, but you never know ... (if you can think of a good use, let me know)
- Future directions:
 - Allow more than one amplitude to be married to each stimulus time (insert obligatory polygamy/polyandry joke here) this is done now
 - How many ABI types at once is too many? I don't know.
 - How to deal with unknown nonlinearities in the BOLD response to ABI values? I don't know. (Regress each event separately, then compute MI?)
 - Deconvolution with amplitude modulation? Requires more thought.

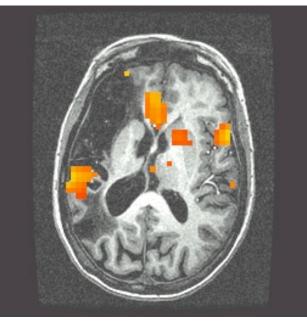
-15-

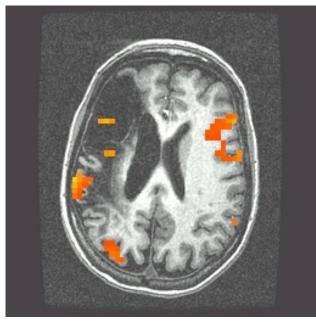
Timing: AM.1D = 10*1 30*2 50*3 70*1 90*2 110*3 130*2 150*1 170*2 190*3 210*2 230*1



-16-

- First actual user: Whitney Postman (formerly NIDCD; PI=AI Braun)
- Picture naming task in aphasic stroke patient
- ABI data = number of alternative names for each image (e.g., "balcony" & "porch" & "veranda", vs. "strawberry"), from 1 to 18
 - 8 imaging runs, 144 stimulus events
- 2 slices showing activation map for BOLD responses proportional to ABI (^β_{AM2})
 - What does this mean? Don't ask me!





-17-

- Alternative: use **IM** to get individual ^Bs for each block/event and then do external regression statistics on those values
- Could do nonlinear fitting (to these βs) via 3dNLfim, or inter-class contrasts via 3dttest, 3dLME, 3dANOVA, or intra-class correlations via 3dICC, etc.
- What is better: **AM** or **IM**+*something more* ?
 - We don't know experience with these options is limited thus far – you can always try both!
 - If **AM** doesn't fit your models/ideas, then **IM**+ is clearly the way to go
 - Probably need to consult with SSCC to get some hints/advice

-18-

Other Advanced Topics in Regression

- Can have activations with multiple phases that are not always in the same time relationship to each other; e.g.:
 - a) subject gets cue #1

-19-

- b) variable waiting time ("hold")
- c) subject gets cue #2, emits response
 - which depends on both cue #1 and #2

timing of events is known

- Cannot treat this as one event with one HRF, since the different waiting times will result in different overlaps in separate responses from cue #1 and cue #2
- Solution is multiple HRFs: separate HRF (fixed shape or deconvolution) for cue #1 times and for cue #2 times
 - Must have significant variability in inter-cue waiting times, or will get a nearly-collinear model
 - impossible to tell tail end of HRF #1 from the start of HRF #2, if always locked together in same temporal relationship
 - How much variability is "significant"? Good question.

More Complicated Experiment

- Solving a visually presented puzzle:
 - a) subject sees puzzle
 - b) subject cogitates a while
 - c) subject responds with solution
- The problem is that we expect some voxels to be significant in phase (b) as well as phases (a) and/or (c)
- Variable length of phase (b) means that shape for its response varies between trials
 - Which is contrary to the whole idea of averaging trials together to get decent statistics (which is basically what linear regression for the β weights does, in an elaborate sort of way)
- Could assume response *amplitude* in phase (b) is constant across trials, and response *duration* varies directly with time between phases (a) and (c)
 - Need three HRFs
 - Can't generate (b) HRF in 3dDeconvolve

timing of events is measured

Yes we can!

dmBLOCK model

Noise Issues

- "Noise" in FMRI is caused by several factors, not completely characterized
 - MR thermal noise (well understood, unremovable)
 - Cardiac and respiratory cycles (partly understood)
 - In principle, could measure these sources of noise separately and then try to regress them out
 - RETROICOR program
 - Scanner fluctuations (e.g., thermal drift of hardware, timing errors)
 - Small subject head movements (10-100 μm)
 - Very low frequency fluctuations (periods longer than 100 s)
- Data analysis should try to remove what can be removed and should allow for the statistical effects of what can't be removed
 - "Serial correlation" in the noise time series affects the *t*and *F*-statistics calculated by 3dDeconvolve
 - Next slides: new AFNI program for dealing with this issue

Allowing for Serial Correlation

- t- and *F*-statistics denominators: estimates of noise variance
 - White noise estimate of variance:
 - \circ **N** = number of time points
 - o m = nun∘ *N−m* =

$$m =$$
 number of fit parameters $N - m_{i=0}$
 $N - m =$ degrees of freedom = how many equal-variance independent
random values are left after time series is fit with *m* regressors

 $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N-1} [\text{data}_i - \text{fit}_i]^2$

- Problem: if noise values at successive time points are correlated, this estimate of variance is biased to be too small, since there aren't really N-m independent random values left
 - Denominator too small implies t- and F-statistics are too large!
 - And number of degrees of freedom is also too large.
 - So significance (*p*-value) of activations in individuals is overstated.
- Solution #1: estimate correlation structure of noise and then adjust statistics (downwards) appropriately
- Solution #2: estimate correlation structure of noise and also estimate β fit parameters using more efficient "generalized least squares", using this correlation, all at once (REML method)

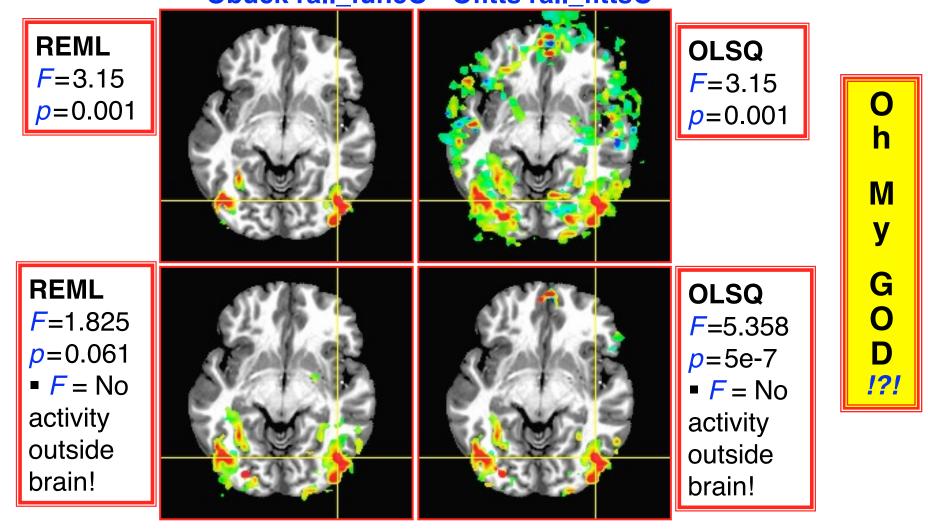
-22-

New Program: 3dREMLfit

- Implements Solution #2
 - REML is a method for simultaneously estimating variance + correlation parameters *and* estimating regression fit parameters (^βs)
 - Correlation structure of noise is ARMA(1,1)
 - o 2 parameters a (AR) and b (MA) in each voxel
 - *a* describes how fast the noise de-correlates over time
 - b describes the short-range correlation in time (1 lag)
 - Unlike SPM and FSL, *each voxel* gets a separate estimate of its own correlation parameters
- Inputs to **3dREMLfit**
 - run 3dDeconvolve first to setup .xmat.1D matrix file and GLTs (don't have to let 3dDeconvolve finish analysis: -x1D_stop)
 3dDeconvolve also outputs a command line to run 3dREMLfit
 - then, input matrix file and 3D+time dataset to 3dREMLfit
- Output datasets are similar to those in 3dDeconvolve

Sample Outputs

- Compare with AFNI_data3/afni/rall_regress results
- 3dREMLfit -matrix rall_xmat.x1D -input rall_vr+orig -fout -tout \
 - -Rvar rall_varR -Rbuck rall_funcR -Rfitts rall_fittsR \ -Obuck rall funcO -Ofitts rall fittsO

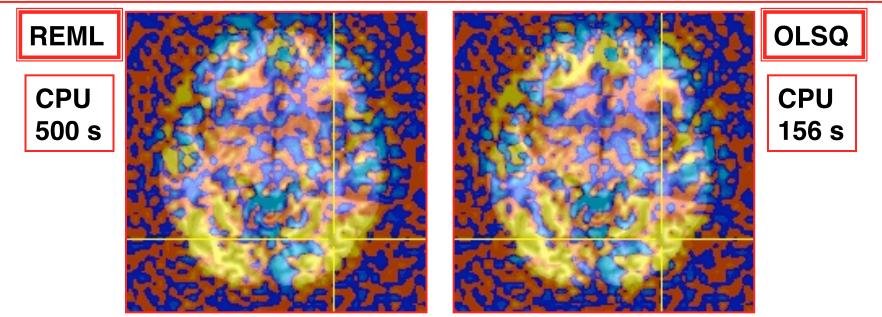


-24-

It's Not So Bad: <code> It's Not So Bad: <code> It's Not So Bad: </code></code>

- For individual activation maps, **3dREMLfit**-ized *t* and *F* statistics are significantly different, and more accurate
- But ... There are at present very few applications for such individual FMRI activation maps
 - pre-surgical planning; some longitudinal study?
- For standard group analysis, inputs are only β fit parameters
 - Which don't change so much between REML and OLSQ

Color Overlay = β weight from analysis on previous slide, no threshold

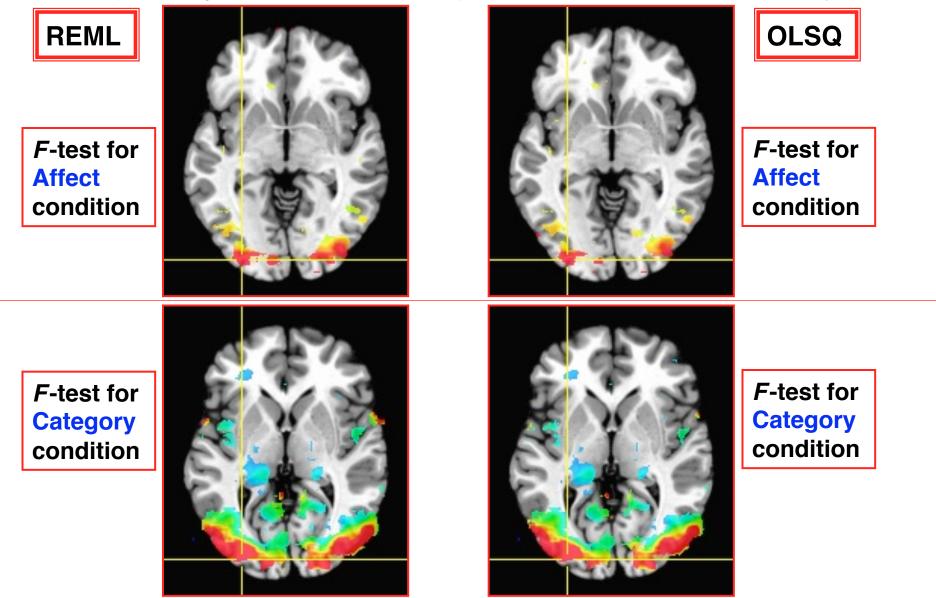


-25-

It's Not So Bad At All: Group Analysis!

• Group analysis activation maps (3danova3) from 16 subjects

-26-



Nonlinear Regression

- Linear models aren't the only possibility
 - e.g., could try to fit HRF of the form $h(t) = a \cdot t^b \cdot e^{-t/c}$
 - Unknowns b and c appear nonlinearly in this formula
- Program 3dNLfim can do nonlinear regression (including nonlinear deconvolution)
 - User must provide a C function that computes the model time series, given a set of parameters (e.g., a, b, c)
 - We could help you develop this C model function
 - Several sample model functions in the AFNI source code distribution
 - Program then drives this C function repeatedly, searching for the set of parameters that best fit each voxel
 - Has been used to fit pharmacological wash-in/wash-out models (difference of two exponentials) to FMRI data acquired during pharmacological challenges
 - o e.g., injection of nicotine, cocaine, ethanol, etc.
 - these are difficult experiments to do *and* to analyze

-27-

Deconvolution: The Other Direction

- Signal model: $Z(t) = H(t) \star A(t) + baseline model + noise$
- H(t) = HRF = response magnitude t seconds after activation
 - H(t) is **causal** = zero for t < 0
 - " \star " is symbol for convolution, not multiplication!
- **3dDeconvolve**: find out something about H(t) given A(t)
- Sometimes (PPI) want to solve the problem in the other direction: assume a model for H(t) and find time series A(t)
 - Convolution is commutative: $H(t) \star A(t) = A(t) \star H(t)$
 - So the other direction looks to be the same problem
 - But isn't, since H(t) is causal but A(t) is not
 - Also, $H(t) \star A(t)$ smooths out rough spots in A(t), so undoing this deconvolution adds roughness including noise, which is already rough which must be controlled or output A(t) will be junk
- Program 3dTfitter solves this type of problem
 - Also can allow for *per voxel* baseline model components

-28-

Spatial Models of Activation

- Smooth data in space before analysis
- Average data across anatomicallyselected regions of interest ROI (before or after analysis)
 - Labor intensive (*i.e.*, hire more students)
 - <u>Or</u> could use ROIs from atlases, <u>or</u> from FreeSurfer per-subject parcellation
- Reject isolated small clusters of abovethreshold voxels after analysis

-29-

Spatial Smoothing of Data

- Reduces number of comparisons
- Reduces noise (by averaging)
- Reduces spatial resolution
 - Blur it enough: Can make FMRI results look like low resolution (1990s) PET data
- Smart smoothing: average only over nearby brain or gray matter voxels
 - Uses resolution of FMRI cleverly
 - 3dBlurToFWHM and 3dBlurInMask
 - <u>Or</u>, average over selected ROIs
 - <u>Or</u>, cortical surface based smoothing
- Estimate smoothness with 3dFWHMx

3dBlurToFWHM

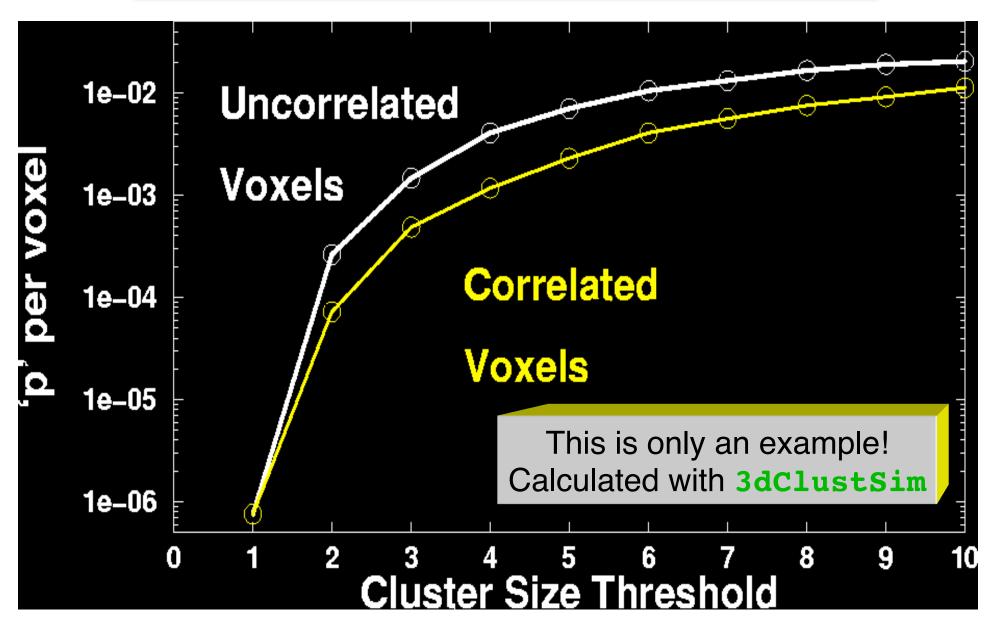
- Program to smooth FMRI time series datasets to a specified smoothness (as estimated by FWHM of noise spatial correlation function)
 - Don't just add smoothness (à la 3dmerge) but control it (locally and globally)
 - Goal: use datasets from diverse scanners
- Why blur FMRI time series?
 - Averaging neighbors will reduce noise
 - Activations are (usually) blob-ish (several voxels across)
 - Diminishes the multiple comparisons problem
- **3dBlurToFWHM** and **3dBlurInMask** blur only inside a mask region
 - To avoid mixing air (noise-only) and brain voxels
 - Partial Differential Equation (PDE) based blurring method
 - 2D (intra-slice) or 3D blurring



Spatial Clustering

- Analyze data, create statistical map (*e.g.*, *t* statistic in each voxel)
- Threshold map at a low t value, in each voxel separately
 - Will have many false positives
- Threshold map by rejecting clusters of voxels below a given size
- Can control false-positive rate by adjusting t (or F) threshold and clustersize thresholds together: 3dClustSim

Cluster-Based Detection



What the World Needs Now

- Unified HRF/Decon × Blob analysis
 - Time×Space patterns computed all at once, instead of arbitrary spatial smoothing
 - Increase statistical power by bringing data from multiple voxels together cleverly
 - Instead of time analysis followed by spatial analysis (described earlier)
 - Instead of component-style analyses (e.g., ICA) that do not use stimulus timing
- Difficulty: models for spatial blobs
 - Little information à priori -> must be adaptive

In the Thinking Stages

- "Area under curve" addition to -gltsym to allow testing of pieces of HRF models from -stim_times
- Slice- and/or voxel-dependent regressors
 - For physiological noise cancellation, etc.
 - To save memory? (Could process each slice separately)

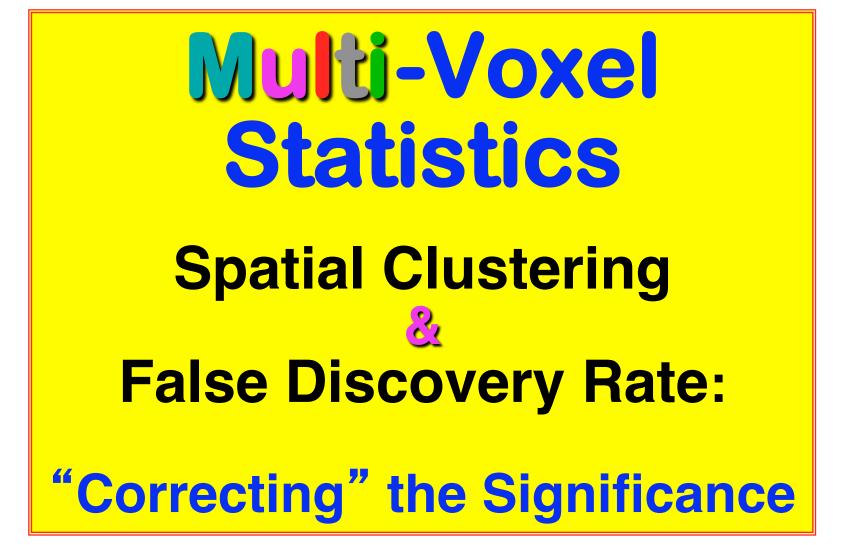
 One slice-at-a-time regression can be done in a Unix script, using 3dZcutup and 3dZcat programs
 Or 3dREMLfit

Very close

now

- Extend AM regression to allow for more than 1 piece of auxiliary information at each stimulus time — Done!
- Interactive tool to examine -x1D matrix for problems
 - and 3dDeconvolve testing of GLT submatrices
- Semi-linear deconvolution program

-35-



Basic Problem

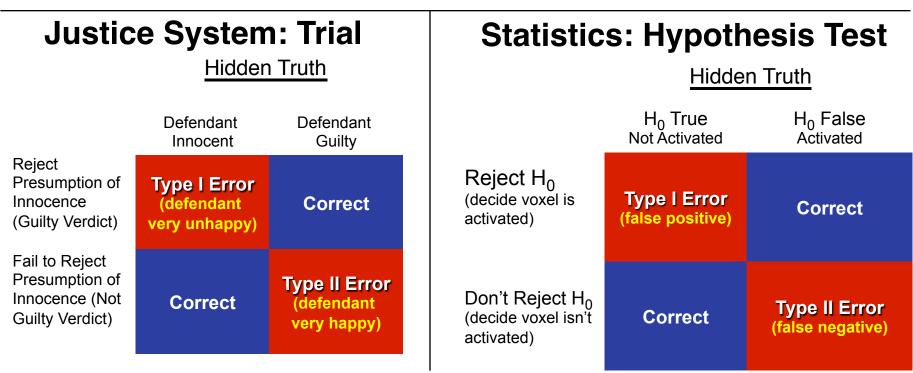
- Usually have 50-200K FMRI voxels in the brain
- Have to make at least one decision about each one:
 - Is it "active"?
 - That is, does its time series match the temporal pattern of activity we expect?
 - Is it differentially active?
 - That is, is the BOLD signal change in task #1 different from task #2?
- Statistical analysis is designed to control the error rate of these decisions
 - Making *lots* of decisions: hard to get perfection in statistical testing

-37-

Multiple Testing Corrections

• Two types of errors

- What is H_0 in FMRI studies? H_0 = no effect (activation, difference, ...) at a voxel
- <u>Type I error</u> = Prob(reject H₀ when H₀ is true) = false positive = p value <u>Type II error</u> = Prob(accept H₀ when H₁ is true) = false negative = β **power** = 1- β = probability of detecting true activation
- Strategy: controlling type I error while increasing power (decreasing type II errors)
- Significance level **a** (magic number 0.05) : p < a



-38-

• Family-Wise Error (FWE)

- Multiple testing problem: voxel-wise statistical analysis
 - With N voxels, what is the chance to make a false positive error (Type I) in one or more voxels?

<u>Family-Wise Error</u>: $\alpha_{FW} = 1 - (1 - p)^N \rightarrow 1$ as N increases

- ∘ For *Np* small (compared to 1), $\alpha_{FW} \approx Np$
- $N \approx 50,000 + \text{voxels}$ in the brain
- $_{\circ}$ To keep probability of even one false positive ${\it a}_{\rm FW}$ < 0.05 (the "corrected" p-value), need to have p < 0.05 / 5×10^4 = 10^{-6}
- This constraint on the per-voxel ("uncorrected") p-value is so stringent that we would end up rejecting a lot of true positives (Type II errors) also, just to be safe on the Type I error rate
- Multiple testing problem in FMRI
 - 3 occurrences of multiple tests: Individual, Group, and Conjunction
 - Group analysis is the most severe situation (have the least data, considered as number of independent samples = subjects)

-39-

Two Approaches to the "Curse of Multiple Comparisons"

- Control FWE to keep expected total number of false positives below 1
 - Overall significance: $a_{FW} = Prob(\geq one false positive voxel in the whole brain)$
 - Bonferroni correction: $\alpha_{FW} = 1 (1-p)^N \approx Np$, if $p \ll N^{-1}$
 - Use $p = \alpha/N$ as individual voxel significance level to achieve $\alpha_{FW} = \alpha$
 - Too stringent and overly conservative: $p = 10^{-8} \dots 10^{-6}$
 - What can rescue us from this hell of statistical super-conservatism?
 - <u>Correlation</u>: Voxels in the brain are not independent
 - Especially after we smooth them together!
 - Means that Bonferroni correction is way way too stringent
 - <u>Contiguity</u>: Structures in the brain activation map
 - We are looking for activated "blobs": the chance that pure noise (H₀) will give a set of seemingly-activated voxels next to each other is lower than getting false positives that are scattered around far apart
 - Control FWE based on spatial correlation (smoothness of image noise) and minimum cluster size we are willing to accept
- Control false discovery rate (FDR) Much more on this a little later!
 - FDR = expected proportion of false positive voxels among all detected voxels
 - Give up on the idea of having (almost) no false positives at all

-40-

Cluster Analysis: 3dClustSim

• FWE control in AFNI

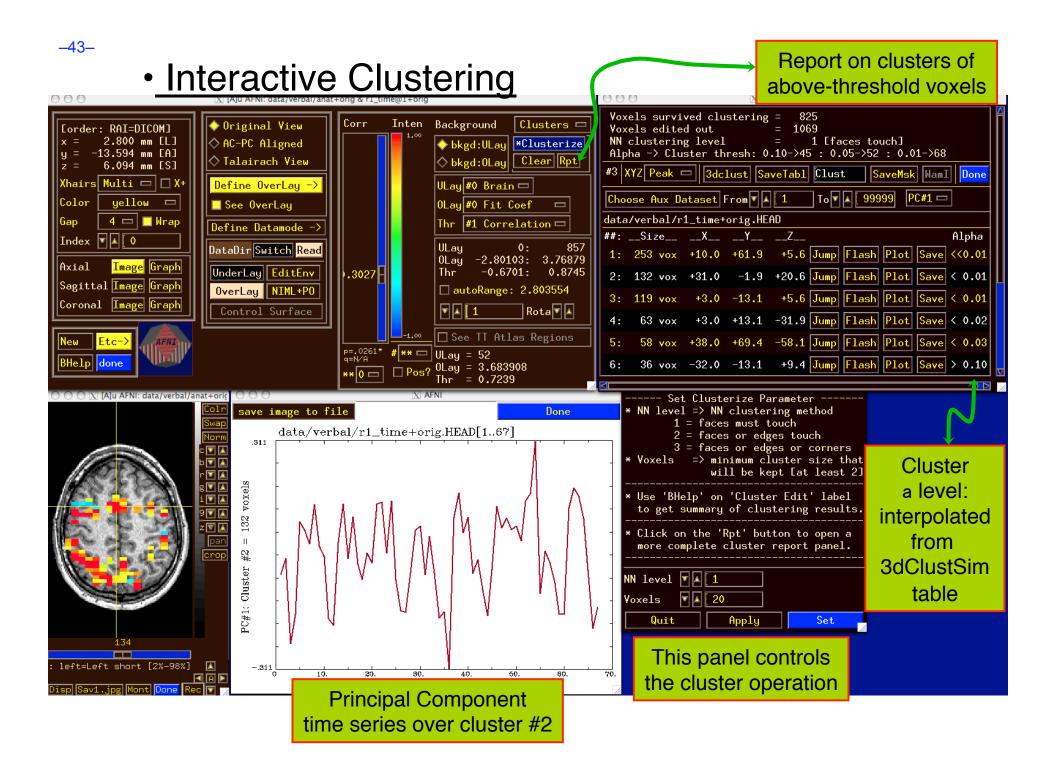
- Monte Carlo simulations with program 3dClustSim [supersedes AlphaSim]
 - Named for a place where primary attractions are randomization experiments
 - Randomly generate some number (*e.g.*, 10,000) of brain volumes with white noise (spatially uncorrelated)
 - That is, each "brain" volume is purely in H_0 = no activation
 - Noise images can be blurred to mimic the smoothness of real data
 - Count number of voxels that are false positives in each simulated volume
 - Including how many are false positives that are spatially together in clusters of various sizes (1, 2, 3, ...)
 - Parameters input to program
 - Size of dataset to simulate
 - Mask (e.g., to consider only brain-shaped regions in the simulated 3D brick)
 - Spatial correlation FWHM: from **3dBlurToFWHM** or **3dFWHMx**
 - Connectivity radius: how to identify voxels belonging to a cluster?
 - Default = NN connection = touching faces
 - Individual voxel significance level = uncorrected *p*-value
 - o Output
 - Simulated (estimated) overall significance level (corrected *p*-value = α)
 - Corresponding minimum cluster size at the input uncorrected *p*-value

-42-

• Example: 3dClustSim -nxyz 64 64 30 -dxyz 3 3 3 -fwhm 7

	<pre># 3dClustS # Grid: 64 # CLUSTER</pre>	x64x30 ⁻ 3	00 x 3.0	0 x 3.00	mm^3 (122	2880 voxels)
	# -NN 1	alpha =	Prob (C	luster	>= given	size)
	# pthr	0.100	0.050	0.020	0.010	
	#					
	0.020000	89.4	99.9	114.0	123.0	
	0.010000	56.1	62.1	70.5	76.6	
;	0.005000	38.4	43.3 ←	49.4	53.6	
	0.002000	25.6	28.8	33.3	37.0	
	0.001000	19.7	22.2	26.0	28.6	
	0.000500	15.5	17.6	20.5	22.9	
).3000	0.000200	11.5	13.2	16.0	17.7	
	0.000100	9.3	10.9	13.0	14.8	
•p=,0050 ← q=,0400	<i>p</i> -value of threshold	At a per-voxel $p=0.005$, a cluster should have 44+ voxels to occur with $\alpha < 0.05$ from noise only				

3dClustSim can be run by afni_proc.py: results get stored into statistics dataset, and then used in AFNI Clusterize GUI



False Discovery Rate in AFN

- Situation: making many statistical tests at once
 - e.g, Image voxels in FMRI; associating genes with disease
- Want to set threshold on statistic (e.g., *F* or *t*-value) to control *false positive* error rate
- Traditionally: set threshold to control probability of making a *single* false positive detection
 - But if we are doing 1000s (or more) of tests at once, we have to be very stringent to keep this probability low
- FDR: accept the fact that there will be multiple erroneous detections when making lots of decisions
 - Control the *fraction* of positive detections that are wrong o Of course, no way to tell which individual detections are right!
 - Or at least: control the *expected value* of this fraction

-44-

FDR: *q* [and *z*(*q*)]

- Given some collection of statistics (say, *F*-values from <u>3dDeconvolve</u>), set a threshold *h*
- The uncorrected *p*-value of *h* is the probability that
 F > *h* when the null hypothesis is true (no activation)
 - "Uncorrected" means "per-voxel"
 - The "corrected" *p*-value is the probability that *any* voxel is above threshold in the case that they are all *un*activated
 - If have N voxels to test, p_{corrected} = 1−(1−p)^N ≈ Np (for small p) o Bonferroni: to keep p_{corrected} < 0.05, need p < 0.05 / N, which is very tiny
- The FDR *q*-value of *h* is the fraction of false positives expected when we set the threshold to *h*
 - Smaller q is "better" (more stringent = fewer false detections)
 - z(q) = conversion of q to Gaussian z: e.g, z(0.05)≈1.95996
 o So that larger is "better" (in the same sense) e.g, z(0.01)≈2.57583

Basic Ideas Behind FDR q

- If all the null hypotheses are true, then the statistical distribution of the p-values will be uniform
 - Deviations from uniformity at low *p*-values
 → true positives
 - Baseline of uniformity indicates how many true negatives are hidden amongst in the low *p*-value region



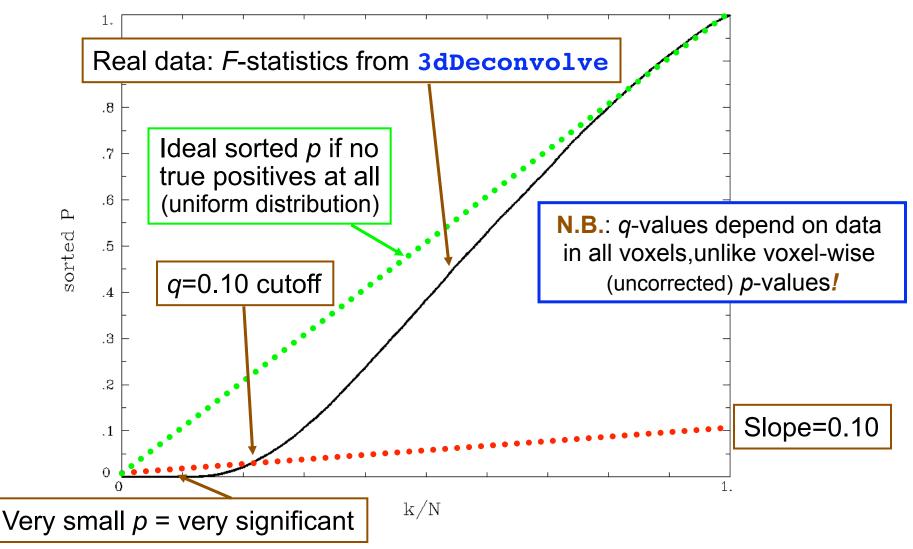
How q is Calculated from Data

- Compute *p*-values of each statistic: $P_1, P_2, P_3, \dots, P_N$
- Sort these: $P_{(1)} \leq P_{(2)} \leq P_{(3)} \leq \ldots \leq P_{(N)}$ {subscript₍₎ \Rightarrow sorted}
- For k = 1..N, $q_{(k)} = \min_{m \ge k} [N \cdot P_{(m)}/m]$
 - Easily computed from sorted *p*-values by looping downwards from *k* = *N* to *k* = 1
- By keeping track of voxel each P_(k) came from: can put *q*-values (or *z*(*q*) values) back into image
 - This is exactly how program 3dFDR works
- By keeping track of statistic value (*t* or *F*) each *P*_(k) came from: can create curve of threshold *h* vs. *z*(*q*)
- N.B.: q-values depend on the data in all voxels, unlike these voxel-wise (uncorrected) p-values!
 - Which is why it's important to mask brain properly

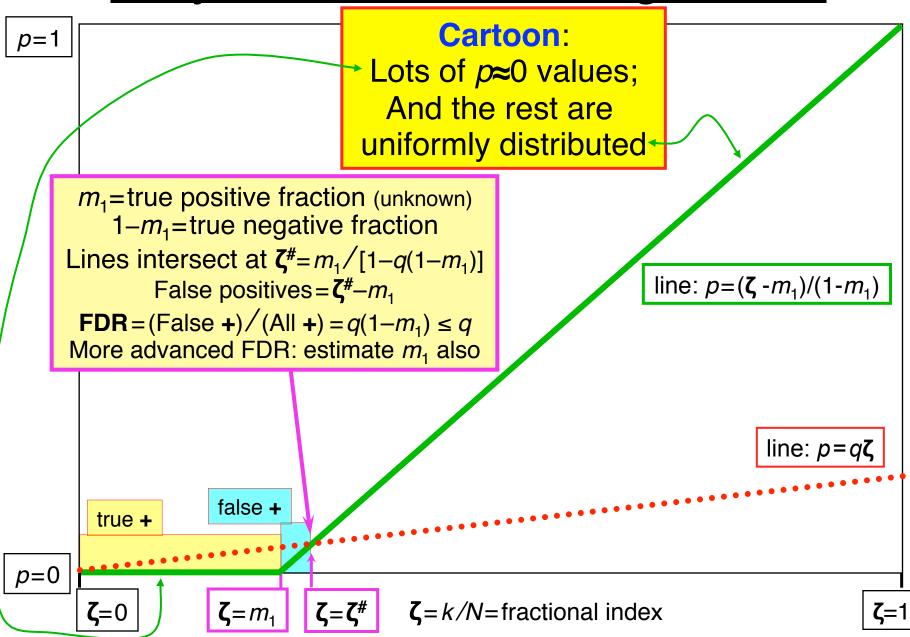
-47-

Graphical Calculation of q

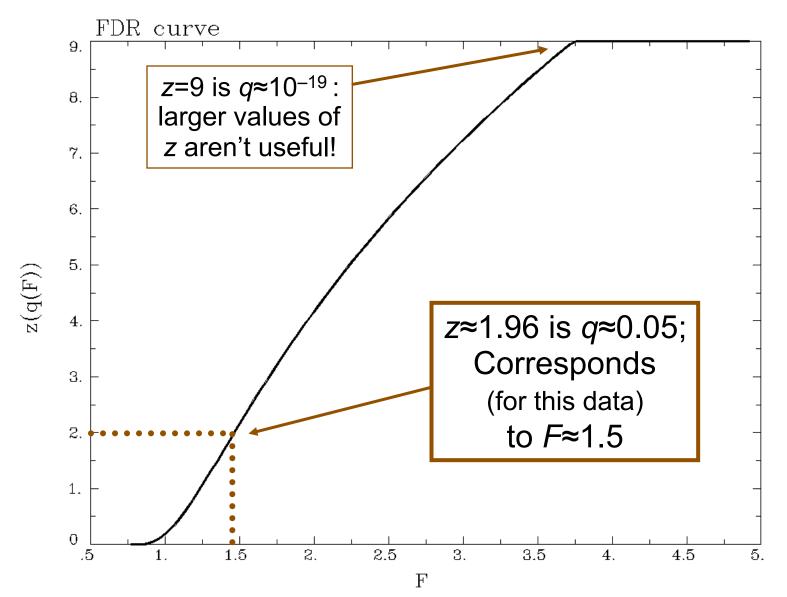
• Graph sorted *p*-values of voxel #k vs. $\zeta = k/N$ (the cumulative histogram of *p*, flipped sideways) and draw some lines from origin



Why This Line-Drawing Works



Same Data: threshold F vs. z(q)



-50-

Recent Changes to 3dFDR

- Don't include voxels with p=1 (e.g., F=0), even if they are in the -mask supplied on the command line
 - This changes decreases N, which will decrease q and so increase z(q): recall that q_(k) = min_{m≥k} [N•P_(m) / m]
- Sort with Quicksort algorithm
 - Faster than the bin-based sorting in the original code
 - Makes a big speed difference on large 1 mm³ datasets

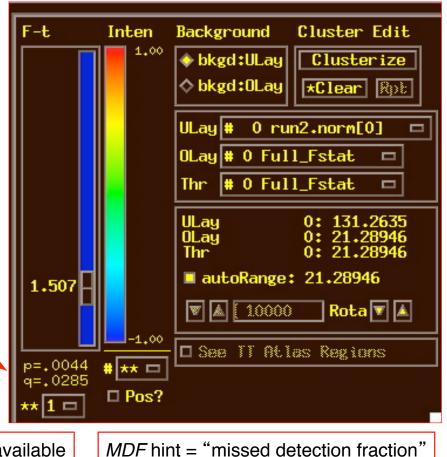
 Not much speed difference on small 3 mm³ grids, since there
 aren't so many voxels to sort
- Default mode of operation is '-new' method
 - Prints a warning message to let user know things have changed from the olden days
 - User can use '-old' method if desired

FDR curves: h vs. z(q)

- 3dDeconvolve, 3dANOVAx, 3dttest, and 3dNLfim now compute FDR curves for all statistical sub-bricks and store them in output header
- **3drefit** -addFDR does same for other datasets
 - 3drefit -unFDR can be used to delete such info
- **AFNI** now shows *p* **and** *q* values below the threshold slider bar
 - Interpolates FDR curve from header (threshold $\rightarrow z \rightarrow q$)
 - Can be used to adjust threshold

by "eyeball"

q = N/A means it's not available



FDR Statistical Issues

- FDR is conservative (q-values are too large) when voxels are positively correlated (e.g., from spatially smoothing)
 - Correcting for this is not so easy, since q depends on data (including true positives), so a simulation like <u>3dClustSim</u> is hard to conceptualize
 - At present, FDR is an alternative way of controlling false positives, vs. 3dClustSim (clustering)
 Thinking about how to combine FDR and clustering
- Accuracy of FDR calculation depends on *p*-values being uniformly distributed under the null hypothesis
 - Statistic-to-p conversion should be accurate, which means that null F-distribution (say) should be correctly estimated
 - Serial correlation in FMRI time series means that
 3dDeconvolve denominator DOF is too large
 - *p*-values will be too small, so *q*-values will be too small
 o 3dREMLfit rides to the rescue!

-53-

FWE or FDR?

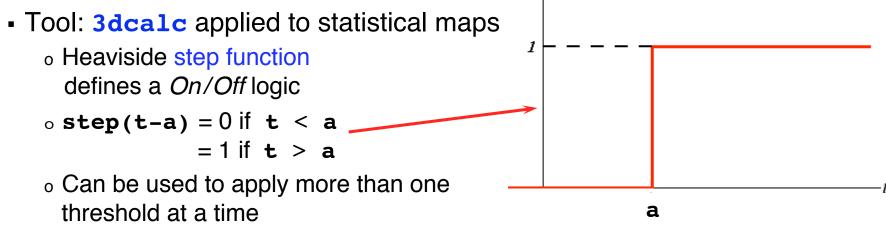
- These 2 methods control Type I error in different senses
 - <u>FWE</u>: α_{FW} = Prob (\geq one false positive voxel/cluster in the whole brain)
 - Frequentist's perspective: Probability among many hypothetical activation maps gathered under identical conditions
 - Advantage: can directly incorporate smoothness into estimate of a_{FW}
 - <u>FDR</u> = expected fraction of false positive voxels among all detected voxels
 - Focus: controlling false positives among detected voxels in one activation map, as given by the experiment at hand
 - Advantage: not afraid of making a few Type I errors in a large field of true positives
 - Concrete example
 - Individual voxel p = 0.001 for a brain of 50,000 EPI voxels
 - Uncorrected $\rightarrow \approx 50$ false positive voxels in the brain
 - FWE: corrected p = 0.05 → ≈5% of the time would expect one or more purely false positive clusters in the entire volume of interest
 - FDR: $q = 0.05 \rightarrow \approx 5\%$ of voxels among those positively labeled ones are false positive
- What if your favorite blob (activation area) fails to survive correction?
 - Tricks (don't tell anyone we told you about these)
 - One-tail *t*-test? NN=3 clustering?
 - ROI-based statistics e.g., grey matter mask, or whatever regions you focus on
 - Analysis on surface; <u>or</u>, <u>Use better group analysis tool</u> (**3dLME**, **3dMEMA**, etc.)

-54-

Conjunction Analysis

Conjunction

- Dictionary: "a compound proposition that is true if and only if all of its component propositions are true"
- FMRI: areas that are active under 2 or more conditions (AND logic)
 o e.g, in a visual language task and in an auditory language task
- In FMRI papers: Is also be used to mean analysis to find areas that are exclusively activated in one task but not another (xor logic) or areas that are active in either task (non-exclusive or logic)
- If have n different tasks, have 2ⁿ possible combinations of activation overlaps in each voxel (ranging from nothing there to complete overlap)



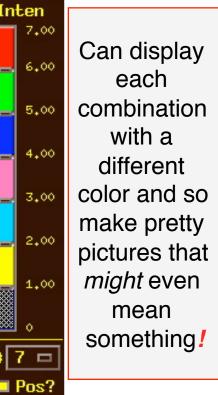
-55-

• Example of forming all possible conjunctions

- 3 contrasts/tasks A, B, and C, each with a t-stat from 3dDeconvolve
- Assign each a number, based on binary positional notation:

A:
$$001_2 = 2^0 = 1$$
; B: $010_2 = 2^1 = 2$; C: $100_2 = 2^2 = 4$

- Create a mask using 3 sub-bricks of t (e.g., threshold = 4.2)
 3dcalc -a ContrA+tlrc -b ContrB+tlrc -c ContrC+tlrc \
 -expr '1*step(a-4.2)+2*step(b-4.2)+4*step(c-4.2)' \
 -prefix ConjAna
- Interpret output, which has 8 possible (= 2^3) scenarios: $000_2 = 0$: none are active at this voxel $001_2 = 1$: A is active, but no others $010_2 = 2$: B, but no others $011_2 = 3$: A and B, but not C $100_2 = 4$: C but no others $101_2 = 5$: A and C, but not B $110_2 = 6$: B and C, but not A $111_2 = 7$: A, B, and C are all active at this voxel



• Multiple testing correction issue

- How to calculate the *p*-value for the conjunction map?
- No problem, *if* each entity was corrected (e.g., cluster-size thresholded at *t*=4.2) before conjunction analysis, via
 3dClustSim
- But that may be too stringent (conservative) and overcorrected
- With 2 or 3 entities, analytical calculation of conjunction $p_{\rm conj}$ is possible
 - Each individual test can have different uncorrected (per-voxel) p
 - Double or triple integral of tails of non-spherical (correlated) Gaussian distributions — not available in simple analytical formulae
- With more than 3 entities, may have to resort to simulations
 - Monte Carlo simulations? (AKA: Buy a fast computer)
 - Will Gang Chen write such a program? Only time will tell!

-57-