Connectivity Analysis in AFNI

File: Connectivity.pdf

Gang Chen SSCC/NIMH/NIH/HHS

Structure of this lecture

- Two categories of connectivity analysis
 - Seed-based (vs. functional connectivity)
 - □ Network-based (vs. effective connectivity)
- Seed-based analysis
 - Simple correlation
 - □ Context-dependent correlation (PPI)
 - Seed-based bivariate autoregression
- Network-based analysis
 - □ Structural equation modeling (SEM)
 - □ Vector autoregression (VAR) (aka Granger causality)
 - □ Structural vector autogression (SVAR)

Overview: Connectivity analysis

- Typical FMRI data analysis
 - Massively univariate (voxel-wise) regression: $y = X\beta + \varepsilon$
 - Relatively robust and reliable
 - May infer regions involved in a task/state, but can't say much about the details of a network

Network analysis

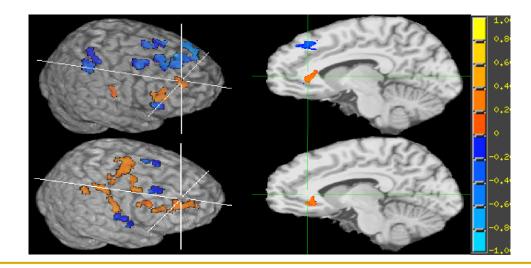
- Information
 - Seed region, some or all regions in a network
 - Neuroimaging data (FMRI, MEG, EEG): regional time series
- Inferring interregional communications
 - Inverse problem: infer neural processes from BOLD signal
 - Based on response similarity (and sequence)
 - Difficult and usually unreliable

Overview: Connectivity analysis

- Two types of network analysis
 - Not sure about ALL the regions involved
 - Seed-based: use a seed region to search for other ROIs
 - □ If all regions in a network known
 - Prior knowledge
 - Network-based: A network with all relevant regions known
 - Everything is relative: No network is fully self-contained
- Data types
 - □ Mainly FMRI
 - □ Some methodologies may work for MEG, EEG
 - □ Not for DTI

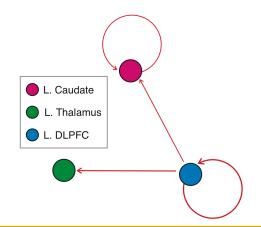
Seed-based analysis: ROI search

- Regions involved in a network are unknown
 - □ Bi-regional (seed vs. whole brain) (**3d***): brain volume as input
 - □ Mainly for ROI search
 - Popular name: functional connectivity
 - □ Basic, coarse, exploratory with weak assumptions
 - □ Methodologies: simple correlation, PPI, bivariate autoregression
 - Weak interpretation: may or may not indicate directionality/causality



Network-based analysis

- Regions in a network are known
 - Multi-regional (1d*): ROI data as input
 - Model validation, connectivity strength testing
 - Popular name: effective or structural connectivity
 - Strong assumptions: specific, but with high risk
 - □ Methodologies: SEM, VAR, SVAR, DCM
 - Directionality, causality (?)



Common Preparatory Steps

- Warp brain to standard space
 - adwarp, @auto-tlrc, align_epi_anat.py
- Create ROI
 - Peak voxel
 - □ Sphere around a peak activation voxel: **3dUndump** —master ... —srad ...
 - Activation cluster-based (biased unless from independent data?)
 - Anatomical database
 - Manual drawing
- Extract ROI time series
 - Average over ROI: 3dmaskave —quiet —mask, or 3dROIstats -quiet —mask
 - Principal component among voxels within ROI: 3dmaskdump, then 1dsvd
 - □ Seed voxel with peak activation: 3dmaskdump -noijk -dbox
- Remove effects of no interest
 - 3dSynthesize and 3dcalc
 - 3dDetrend -polort
 - RETROICORR/RetroTS.m
 - 3dBandpass

Simple Correlation Analysis

- Seed vs. rest of brain
- ROI search based on response similarity
 - Looking for regions with similar signal to seed
- **Correlation** at individual subject level
 - Usually have to control for effects of no interest: drift, head motion, physiological variables, censored time points, tasks of no interest, *etc*.
- Applying to experiment types
 - □ Straightforward for resting state experiment: default mode network (DMN)
 - With tasks: correlation under a specific condition or resting state?
- Program: 3dfim+ or 3dDeconvolve
 - Original regression: $y = X \beta + \varepsilon(t)$
 - New model: $y = [X S(t)] \beta + \varepsilon(t)$
 - r: linear correlation; slope for standardized Y and X
 - \square β : slope, amount of **linear** change in Y when X increases by 1 unit

Simple Correlation Analysis

Group analysis

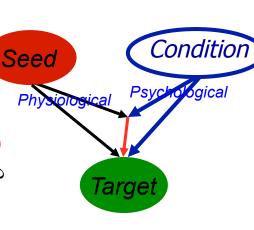
- **\Box** Run Fisher-transformation of *r* to *Z*-score and *t*-test: **3dttest**
- **u** Take β and run *t*-test (pseudo random-effects analysis): **3dttest**
- **Take** β + *t*-statistic and run random-effects model: **3dMEMA**

Caveats: don't over-interpret

- Correlation does not necessarily mean causation: no proof for anatomical connectivity (e.g., more than two regions in a network)
- □ No golden standard procedure and so many versions in analysis: seed region selection, covariates, $r(Z)/\beta$, bandpass filtering, ...
- Measurement error problem: underestimation, attenuated bias
- Website: http://afni.nimh.nih.gov/sscc/gangc/SimCorrAna.html
- Interactive tools in AFNI and SUMA: InstaCor, GroupInstaCor

Context-Dependent Correlation

- Popular name: Psycho-Physiological Interaction (PPI)
- 3 explanatory variables
 - Condition (or contrast) effect: C(t)
 - Seed effect on rest of brain: S(t)
 - □ Interaction between seed and condition (or contrast): I(C(t), S(t))
 - **Directionality** here!
- Model for each subject
 - Original regression: $y(t) = [C(t) \text{ Others}]\beta + \varepsilon(t)$
 - New model: $y(t) = [C(t) S(t) I(C(t), S(t)) Others]\beta + \varepsilon(t)$
 - 2 more regressors than original model: S(t), I(C(t), S(t))
 - □ Should effects of no interest be included in the model?
 - Others NOT included in SPM
 - What we care for: $r \text{ or } \boldsymbol{\beta}$ for I(C(t), S(t))
 - $\Box \quad I(C(t), S(t)): \text{ the variability in addition to } C(t) \text{ and } S(t)$
 - Symmetrical modulation

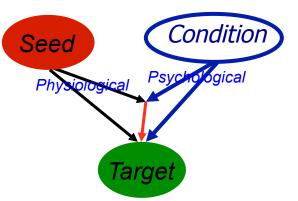


Context-Dependent Correlation

- How to formulate I(C(t), S(t))?
 - □ Interaction occurs at neuronal, not BOLD (an indirect measure) level
 - **Deconvolution**: derive "neuronal response" at seed based on BOLD response
 - **3dTfitter**: Impulse \otimes Neuronal events = BOLD response; Gamma \otimes NE(*t*) = S(t)
 - Deconvolution matters more for event-related than block experiments
 - □ Interaction at neuronal level **3dcalc**: $NE(t) \times C(t) = NI(t)$
 - Useful tool for *C*(*t*): **timing_tool.py** converts stimulus timing into 0s and 1s
 - □ Interaction at BOLD level convolution **waver**: Gamma \otimes NI(*t*) = I(C(*t*), S(*t*))
 - □ If stimuli were presented in a resolution finer than TR not TR-locked
 - **1dUpsample n**: interpolate S(t) $n \times$ finer before deconvolution **3dTffiter**
 - Downsample interaction I(C(t), S(t)) back to original TR: **1dcat** with selector ' $\{0.., \$(n)\}$ '
 - □ Solving $y(t) = [C(t) S(t) I(C(t), S(t)) \text{ Others}]\beta + \varepsilon(t) 3dDeconvolve$
- Group analysis
 - □ Run Fisher-transformation of *r* to *Z*-score and *t*-test: **3dttest**
 - $\Box \quad \text{Take } \boldsymbol{\beta} (+t): \textbf{3dttest} (\textbf{3dMEMA})$

PPI Caveats

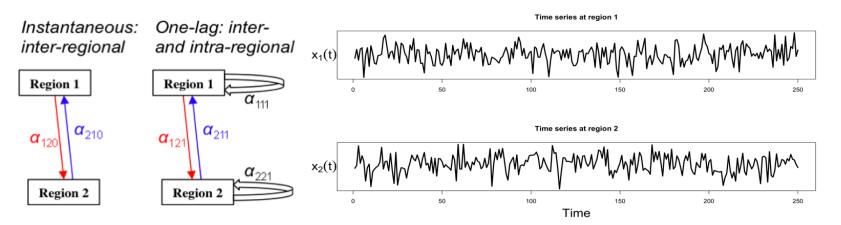
- No proof for anatomical connectivity
 - Correlation does not necessarily mean causation
 - □ If other regions involved in the network
- Measurement error in regression
 - Noisy seed time series



- □ Neuronal response hard to decode: Deconvolution is very far from reliable, and we have to assume a shape-fixed HRF, same shape across conditions/regions/subjects
- □ The errors lead to attenuation or regression dilution
- Doesn't say anything about interaction between condition and target on seed
- Doesn't differentiate whether modulation is
 - Condition on neuronal connectivity from seed to target, or
 - □ Neuronal connectivity from seed to target on condition effect
- Website: <u>http://afni.nimh.nih.gov/sscc/gangc/CD-CorrAna.html</u>

Network-Based Modeling: a toy example

• A network with two regions: both contemporaneous and delayed



- Within-region effects: lagged correlation
- Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120} x_2(t) + \alpha_{111} x_1(t-1) + \alpha_{121} x_2(t-1) + \varepsilon_1(t)$$

$$x_{2}(t) = c_{2} + \alpha_{210}x_{1}(t) + \alpha_{211}x_{1}(t-1) + \alpha_{221}x_{2}(t-1) + \varepsilon_{2}(t)$$

- If we have time series data from the two regions
 - Can we evaluate the above model?
 - \Box Estimate and make inferences about the α values?

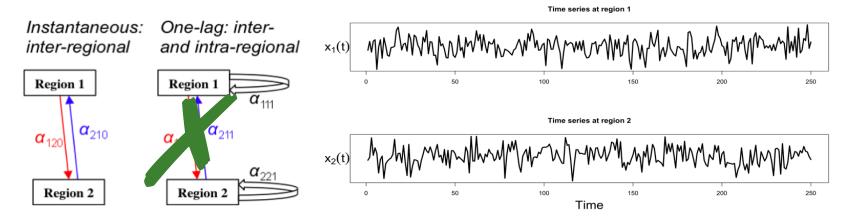
Structure Equation Modeling (SEM): a toy example

- A network with two regions: no delayed effects
 - □ No within-region effects: no lagged effects no temporal correlation!
 - Cross-region effects: instantaneous correlation only; no lagged effects

$$x_{1}(t) = c_{1} + \alpha_{120} x_{2}(t) + \varepsilon_{1}(t)$$

$$x_{2}(t) = c_{2} + \alpha_{210} x_{1}(t) + \varepsilon_{2}(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the α values?



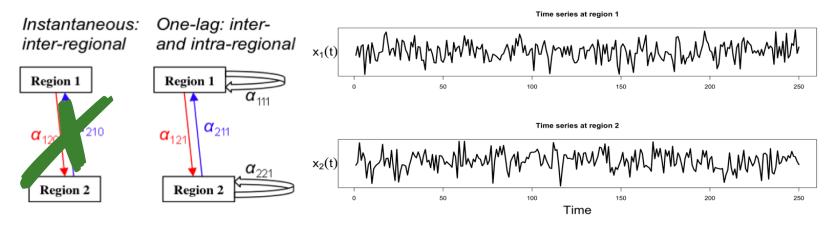
Vector Autoregressive (VAR) Modeling: a toy example

- A network with two regions: no contemporaneous effects
 - Within-region effects: lagged effects
 - Cross-regions effects: lagged effects only; no instantaneous effects

$$x_1(t) = c_1 + \alpha_{111}x_1(t-1) + \alpha_{121}x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{211} x_1(t-1) + \alpha_{221} x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the α values?

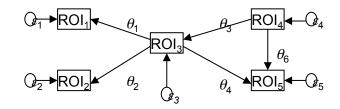


Structure Equation Modeling (SEM) or Path Analysis

- General model for a network of *n* regions $X^*(t) = A_0 X^*(t) + \varepsilon(t)$
 - Only consider instantaneous effects; assumes no delayed effects
 - Data centered around mean; if possible, remove all confounding effects
 - □ Parameters in A_0 code for cross-region path strength; zero diagonals
 - $\Box \quad \boldsymbol{\mathcal{E}}(t) \sim N(0, \Psi), \Psi: \text{ diagonal matrix (interregional correlations: } A_0)$
- Solving SEM
 - Compare covariance matrix from data with the one from the model

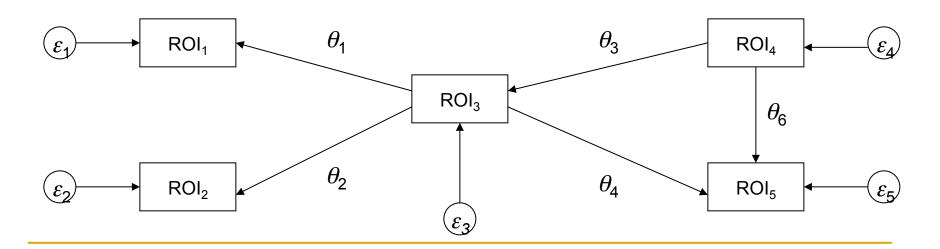
$$\Sigma = (I - A_0)^{-1} \varepsilon \varepsilon^T (I - A_0)^{-T} = (I - A_0)^{-1} \Psi (I - A_0)^{-T}$$

- One problem: we can't solve SEM if all parameters in A_0 are unknown!
 - Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths, half of the off-diagonals
 - Have to fix the rest paths (at least n(n-1)/2) to 0 or known values



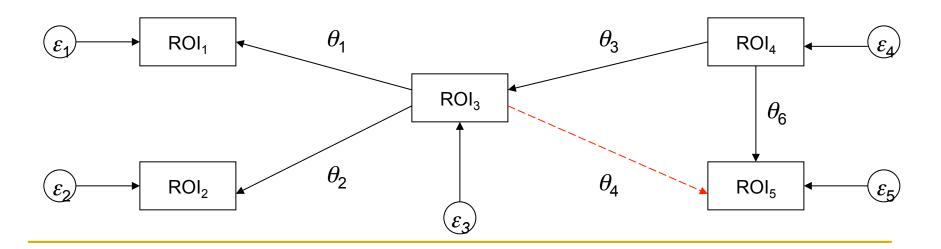
SEM: Model Validation

- Null hypothesis H_0 : It's a good model about instantaneous network
 - □ Knowing directional connectivity btw ROIs, does data support model?
 - Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - □ Input: model specification, covariance/correlation matrix, *etc.*
 - If H_0 is **not** rejected, what are the path strengths?



SEM: Model Comparison and Search

- Comparing two nested models through $\chi^2(1)$ -test
 - □ For example, not sure about a pth
- Search all possible models
 - □ Sounds appealing: often seen in literature
 - Dependence of the organization of the organiza
 - □ Learn from data, and don't let data be your master!



SEM: More Serious Problems

- Correlations as input in SEM: popular practice
 - Usually practiced in social science studies for scaling issues
 - Save DFs in FMRI data analysis
 - Path coefficients not interpretable
 - □ Can't make statistical inferences: *t*-stat and CI, if provided, are incorrect
- Assumptions
 - Within-region temporal correlations ignored
 - Cross-regions: delayed interactions ignored
- Data preprocessing
 - Have to remove all confounding effects
- Individual subjects vs. group
 - How to combine multiple multiple subjects
 - Fixed vs. random-effects analysis

Vector Autoregression (VAR)

- General model for a network of *n* regions VAR(*p*)
 - $\square \quad X(t) = A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \ldots + \mathbf{c}_q z_q(t) + \varepsilon(t)$
 - Only focus on lagged effects: Current state depends linearly on history
 - Instantaneous effects modeled, but left in residuals as effects of no interest
 - Confounding (exogenous) effects can be incorporated as part of the model
 - Slow drift, head motion, physiological confounds, time breaks, conditions of no interest
 - Unlike SEM, only minimal pre-processing needed (slice timing + motion correction)
 - Parameters in A_i code for cross-region path strength
 - Meaning of path coefficients
 - Assumptions
 - Linearity; Stationarity/invariance: mean, variance, and auto-covariance
 - $\boldsymbol{\varepsilon}(t) \sim N(0, \Psi), \Psi$: not diagonal matrix (positive definite contemporaneous covariance); no serial correlation in individual residual time series
- Rationale for VAR(p)
 - Response to stimuli does not occur simultaneously across brain: latency
 - However, is data time resolution fine enough with TR = 1-2 sec???

Solving VAR

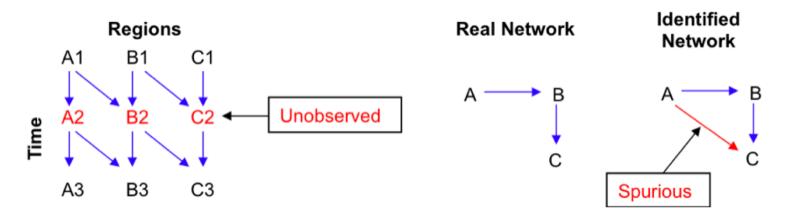
- Model $X(t) = A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \ldots + \mathbf{c}_q z_q(t) + \varepsilon(t)$
- Order selection with 4 criteria (1st two tend to overestimate)
 - AIC: Akaike Information Criterion
 - FPE: Final Prediction Error
 - HQ: Hannan-Quinn
 - SC: Schwartz Criterion
- Solve VAR with OLS
- No need to specify connections as in SEM
- Obtain estimates of all elements in A_i , and make statistical inferences based on *t*-statistic for each path
- **Data driven** instead of model validation?
- Model tuning when some covariates are not significant
- VAR as a seed-based analysis
- Bivariate autogression: use seed to search for regions that may form a network with the seed
- **3dGC** (vs. 1dGC)

VAR Model Quality Check

- Stationarity: VAR(p) $Y(t) = \mathbf{\alpha} + A_1 Y(t-1) + \ldots + A_p Y(t-p) + \mathbf{\varepsilon}(t)$
 - Check characteristic polynomial $\det(I_n A_1 z \dots A_p z^p) \neq 0$ for $|z| \leq 1$
- Residuals normality test
 - Gaussian process: Jarque-Bera test (dependent on variable order)
 - Skewness (symmetric or tilted?)
 - □ Kurtosis (leptokurtic or spread-out?)
- Residual autocorrelation
 - Portmanteau test (asymptotic and adjusted)
 - Breusch-Godfrey LM test
 - \Box Edgerton-Shukur F test
- Autoregressive conditional heteroskedasticity (ARCH)
 - Time-varying volatility
- Structural stability/stationarity detection
 - □ Is there any structural change in the data?
 - Based on residuals or path coefficients

VAR: Serious Problems

- Data sampling rate: time resolution
 - Cross-region interactions occur probably at ms level, but usually $TR = 1 \sim 2$ seconds in FMRI time series (TR could be 100-200 ms with single-slice scanning)
 - □ Will VAR(1) catch the real lagged effects across regions???



- With coarse sampling, the instantaneous effects will more likely reveal the real network than the lagged effects
- Over-fitting: data driven

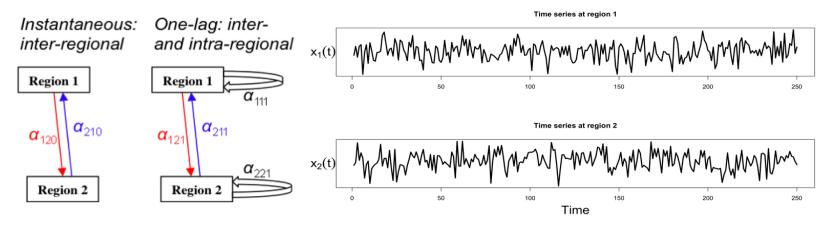
Network-Based Modeling: a toy example

- A network with two regions: both **contemporaneous** and **delayed**
 - □ Within-region effects: lagged correlation
 - Cross-regions effects: both instantaneous and lagged

$$x_1(t) = c_1 + \alpha_{120} x_2(t) + \alpha_{111} x_1(t-1) + \alpha_{121} x_2(t-1) + \varepsilon_1(t)$$

$$x_2(t) = c_2 + \alpha_{210} x_1(t) + \alpha_{211} x_1(t-1) + \alpha_{221} x_2(t-1) + \varepsilon_2(t)$$

- If we have time series data from the two regions
 - □ Can we evaluate the above model?
 - Estimate and make inferences about the α values?



One World United Under One Flag!

- Why don't we just combine SEM and VAR?
 - □ No reason we shouldn't or cannot
 - □ Called Structural Vector Autoregression (SVAR)!
 - Accounts for variability from both instantaneous and lagged effects
 - Improves model quality and statistical power
 - Incorporates covariates, and involves minimum pre-processing
- General SVAR(p) model
 - $X(t) = A_0 X(t) + A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \ldots + \mathbf{c}_q z_q(t) + B \mathbf{\epsilon}(t)$
 - A_0 represents the cross-region instantaneous effects
 - \circ Diagonals are 0
 - \Box A_i represents both within-region and cross-region lagged effects
 - □ *B* is a diagonal matrix so that $\mathbf{\varepsilon}(t) \sim \mathbf{N}(0, I)$
 - All the cross-region instantaneous effects are contained in A_0

Solving SVAR

$$X(t) = A_0 X(t) + A_1 X(t-1) + \ldots + A_p X(t-p) + \mathbf{c}_1 z_1(t) + \ldots + \mathbf{c}_q z_q(t) + B \mathbf{\epsilon}(t)$$

• Equivalence to a reduced VAR(*p*) model

 $X(t) = A_1^* X(t-1) + \dots + A_p^* X(t-p) + \mathbf{c}_1^* z_1(t) + \dots + \mathbf{c}_q^* z_q(t) + \varepsilon^*(t)$

 $A_{i}^{*} = (I - A_{0})^{-1}A_{i}, \mathbf{c}_{j}^{*} = (I - A_{0})^{-1}\mathbf{c}_{j}, \varepsilon^{*}(t) = (I - A_{0})^{-1}B\varepsilon(t)$

- Solve the reduced VAR(p), obtain estimates of A_i^* , \mathbf{c}_j^* , and residual covariance Σ_{ε^*}
- □ Solve $(I-A_0)^{-1}BB(I-A_0)^{-T} = \Sigma_{\varepsilon^*}$ through ML. Similar to SEM:
 - Totally n(n+1)/2 simultaneous equations; $n(n-1)+n=n^2$ unknowns!
 - Can only allow at most n(n-1)/2 paths in A_0 , half of the off-diagonals
 - Have to fix the rest paths (at least n(n-1)/2) to 0 or known values
 - Model validation, comparison, and search for the instantaneous network A_0
- Finally update A_i (and \mathbf{c}_i) for the lagged effects

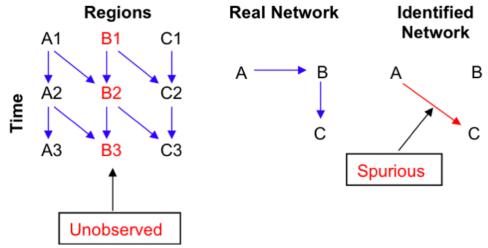
AFNI program 1dSVAR

What can we do with 1dSVAR

- If time resolution is too coarse (*e.g.*, FMRI): Model validation/ comparison/search of the instantaneous network while accounting for the lagged effects
 - □ Knowing directional connectivity btw ROIs, does data support model?
 - Want to see model (H_0) not rejected
 - $\chi^2(n(n-1)/2-k)$ -test: badness-of-fit
 - Fit indices (AIC, CFI, GFI,): balance between optimization and model complexity
 - If H_0 is **not** rejected, what are the path strengths?
- If time resolution is good (*e.g.*, MEG/EEG)
 - Both instantaneous and lagged effects are of interest?
- SEM+VAR
 - Lagged effects: data-driven; safe but inefficient (over-fitting)
 - □ Instantaneous effects: theory/hypothesis-based; powerful but risky
 - Various possibilities: *e.g.*, borrow DFs for instantaneous effects from lagged effects?
- Group analysis: MEMA

SVAR: caveats

- Assumptions (stationarity, linearity, Gaussian residuals, no serial correlations in residuals, etc.)
- Accurate ROI selection: If an essential region is missing



- Sensitive to lags
- Confounding latency due to HDR variability and vascular confounds
- Overfitting
- Model comparison/search
 - Learn from data, but don't let data be your teacher!

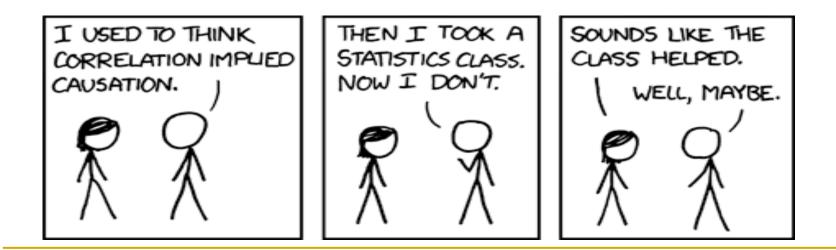
SVAR applied to FMRI

Resting state

- □ Ideal situation: no cut and paste involved
- Physiological data maybe essential?
- Block experiments
 - Duration \geq 5 seconds?
 - Extraction via cut and paste
 - Important especially when handling confounding effects
 - Tricky: where to cut especially when blocks not well-separated?
- Event-related design
 - With rapid event-related, might not need to cut and paste (at least impractical)
 - Other tasks/conditions as confounding effects

SVAR: Why not Granger Causality

- Causality: philosophical and physiological/anatomical; effective?
- Granger causality: A Granger causes B if time series at A provides statistically significant information about time series at B at some time delays (order)
 - Causes must temporally precede effects
 - Causality can be inferred from an *F* or χ^2 -test that shows the amount of variability of overall lagged effects each connection accounts for
- Both instantaneous and lagged effects are modeled in SVAR



Network-based Analysis in AFNI

- Exploratory: ROI searching with **3dGC**
 - Seed vs. rest of brain
 - Bivariate model
 - □ 3 paths: seed to target, target to seed, and self-effect
 - Group analysis with **3dMEMA** or **3dttest**
- Path strength significance testing in network: 1dSVAR
 - Pre-selected ROIs
 - SVAR model
 - Multiple comparisons issue
 - Group analysis
 - path coefficients only
 - path coefficients + standard error
 - *F*-statistic (BrainVoyager)