Group Analysis

File: GroupAna.pdf

Gang Chen

SSCC/NIMH/NIH/HHS

3/28/12

Overview

- Why do we need to do group analysis?
 - Summarizing results from multiple subjects
- Various group analysis approaches
 - * t-tests: uber_ttest.py/3dttest++/3dttest, 3dMEMA
 - ANOVA-style: 3dANOVA/2/3, GroupAna
 - Advanced approaches: 3dLME
- Covariate modeling and complications
 - One group: uber_ttest.py/3dttest++, 3dMEMA, 3dLME
- Nonparametric approach
- Fixed-effects analysis
- Miscellaneous

Summary: Individual Subject Analysis

- Basics of linear model
- FMRI experiment types
 - > Block design; Event related experiment; Mixed
- FMRI data decomposition: three components
 - Baseline + slow drift + effects of no interest; Effects of interest; Unknown
 - Effects of interest: understanding BOLD vs. stimulus: IRF
- Modeling with fixed-shape IRF: GAM(*p*,*q*), BLOCK(*d*,*p*)
- Modeling with no assumption re: IRF (model free or data driven)
 - \rightarrow TENT(b,c,n), CSPLIN(b,c,n)
- Modeling with one major IRF plus shape adjustment
 - > SPMG1/2/3
- Other issues
 - > Multicollinearity
 - > Catenation
 - > Percent signal change

Individual Subject Analysis Comparison

			AFNI	Others	
Baseline condition			Constant in linear model	Usually same as other conditions	
Slow drift			Legendre polynomials (additive)	High-pass filtering and/or global mean scaling (multiplicative)	
	nparison acro gnal change	ss subjects:	Voxel-wise scaling by temporal mean	 Grand mean scaling Special tools for % signal change 	
Serial corr	relation in res	iduals	Voxel-wise ARMA(1, 1)	Global AR(1) (SPM), Spatially regularized AR(1) (FSL)	
	No catenation: analyze each run separately		Yes	FSL	
Dealing with multiple runs	Catenation	Differentiate conditions across runs	Yes	SPM	
		No differentiation for conditions across runs	Yes		

Why Group Analysis?

- Summarizing individual subject results
- Why not one analysis with a mega model for all subjects?
 - Computationally unmanageable
 - Heterogeneity in data or experiment design across subjects
- What is a valid summarizing method?
 - Figure Effect of subject i = group effect + deviation of subject i
 - o A simple (one-sample *t*-test) model $\beta_i = b + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$
 - If individual effects are consistent across most or all subjects, the deviations would be relatively small
 - How small do we consider deviations comfortable?
 - o Cross-subject variability measure: standard error
 - Significance measure = group effect relative to variability
 - Student t-test

Terminology: Fixed factor/effect - discrete variable

- Treated as a fixed variable (constant) in the model
 - Categorization of conditions/tasks (modality: visual/auditory)
 - Within-subject (repeated-measures) factor
 - Subject-grouping: Group of subjects (gender, normal/patients)
 - Between-subject factor
- All levels of a factor are of interest (house vs. face)
 - > main effect, contrasts among levels
- Fixed in the sense of statistical inferences
 - > apply only to the specific levels of the factor
 - > don't extend to other potential levels that might have been included
- Fixed effects may also include continuous variables (covariates)
 - > Of direct interest
 - > Improving statistical power by controlling for data variability

• **Terminology:** Random factor/effect

- Random variable in the model: exclusively subject in FMRI
 - > average + effects uniquely attributable to each subject: e.g. $N(\mu, \tau^2)$
 - > Requires enough number of subjects
- Each individual subject effect is of NO interest
- Random in the sense
 - > subjects serve as a random sample (representation) from a population
 - > inferences can be generalized to a hypothetical population
- Fixed vs. random effects
 - P Conventional model $\beta_i = b + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$
 - P Linear mixed-effects model $\beta_i = b + \delta_i + \epsilon_i$, $\delta_i \sim N(0, \tau^2)$, $\epsilon_i \sim N(0, \sigma^2)$
 - ∠ *b*: universal constant
 - $\vee \delta_i$: each subject's unique and consistent personality
 - ν ε_i : random fluctuations in life

Terminology: Covariate

- Historically a continuous variable: extension from *t*-test and ANOVAs
 - Factor (categorical) vs. covariate (continuous)
 - Examples: age, IQ, brain volume, personality measures, etc.
 - Modeling perspective
- Some people use it as effect of no interest
 - Effect of interest vs. effect of no interest
 - Could be discrete (gender, scanner, handedness) or continuous
 - User perspective
- First usage adopted here
 - Clarity, modeling consideration (more later)
 - In the end of the day it's the same model
 - A few caveats

Models at Group Level

- Conventional approach: taking β (or linear combination of multiple β 's) only for group analysis
 - Assumption: all subjects have same precision (reliability, standard error, confidence interval) about β
 - All subjects are treated equally
- Alternative: taking both β (or linear combination of multiple β 's) and t-statistic
 - ho *t*-statistic contains precision information about $oldsymbol{eta}$
 - Each subject is weighted based on precision
 - P Chen *et al.*, FMRI Group Analysis Combining Effect Estimates and Their Variances. NeuroImage. 10.1016/j.neuroimage.2011.12.060
- All models are some sorts of linear model

 - Partition each subject's effect into multiple components

One-Sample Case

- One group of subjects $(n \ge 10)$
 - P One condition (visual or auditory) effect
 - Linear combination of effects (visual auditory)
- Null hypothesis H_0 : average effect = 0
 - Rejecting H_0 is of interest!
- Results
 - Average effect at group level
 - ∘ Looks like nobody really cares about it 🖰
 - Significance: t-statistic
 - Two-tailed by default (one-tailed: divide the sliderbar p by 2)
- Approaches
 - uber_ttest.py, 3dttest++ (3dttest), 3dMEMA

One-Sample Case: Example

• 3dttest++: taking β only for group analysis

• 3dMEMA: taking β and t-statistic for group analysis

```
3dMEMA -prefix VisGroupMEMA
-mask mask+tlrc
-setA Vis
FP 'REML.FP.b+tlrc[Vrel#0_Coef]' 'REML.FP.b+tlrc[Vrel#0_Tstat]' \
FR 'REML.FR.b+tlrc[Vrel#0_Coef]' 'REML.FR.b+tlrc[Vrel#0_Tstat]' \
......
GM 'REML.GM.b+tlrc[Vrel#0_Coef]' 'REML.GM.b+tlrc[Vrel#0_Tstat]' \
-missing_data 0
```

Two-Sample Case

- Two groups of subjects ($n \ge 10$)
 - One condition (visual or auditory) effect
 - Linear combination of multiple effects (visual auditory)
 - Example: Gender difference in emotion effect?
- Null hypothesis H_0 : Group 1 = Group 2
 - Results
 - Group difference in average effect
 - Significance: t-statistic Two-tailed by default
- Approaches
 - P uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - P One-way between-subjects ANOVA
 - o 3dANOVA: can also obtain individual group test

Paired Case

- One groups of subjects $(n \ge 10)$
 - Two conditions (visual or auditory): no missing data allowed
 - Example: House vs. Face; Visual vs. Auditory
- Null hypothesis H_0 : Condition1 = Condition2
 - Results
 - Average effect at group level
 - Significance: t-statistic (Two-tailed by default)
- Approaches
 - uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - P One-way within-subject (repeated-meaures) ANOVA
 - o 3dANOVA2 –type 3: can also obtain individual condition test
- Essentially equivalent to one-sample case
 - P Use contrast instead of individual effects as input

Paired Case: Example

• 3dttest++: comparing two conditions

Paired Case: Example

• 3dMEMA: comparing two conditions

```
3dMEMA -prefix Vis Aud MEMA
-mask mask+tlrc
-setA Vis
FP 'REML.FP.b+tlrc[Vrel#0_Coef]' 'REML.FP.b+tlrc[Vrel#0 Tstat]'
FR 'REML.FR.b+tlrc[Vrel#0_Coef]' 'REML.FR.b+tlrc[Vrel#0_Tstat]'
GM 'REML.GM.b+tlrc[Vrel#0 Coef]' 'REML.GM.b+tlrc[Vrel#0 Tstat]'
-setB Aud
FP 'REML.FP.b+tlrc[Arel#0_Coef]' 'REML.FP.b+tlrc[Arel#0 Tstat]'
FR 'REML.FR.b+tlrc[Arel#0_Coef]' 'REML.FR.b+tlrc[Arel#0 Tstat]'
GM 'REML.GM.b+tlrc[Arel#0_Coef]' 'REML.GM.b+tlrc[Arel#0 Tstat]'
-missing data 0
```

One-Way Between-Subjects ANOVA

- Two or more groups of subjects $(n \ge 10)$
 - P One condition or linear combination of multiple conditions
 - Example: House, face, or house vs. face
- Null hypothesis H_0 : Group 1 = Group 2
 - Results
 - Average group difference
 - Significance: t- and F-statistic (two-tailed by default)
- Approaches
 - ₽ 3dANOVA
 - With more than two groups, can break into pairwise group comparisons with 3dttest++ (3dttest), 3dMEMA

Multiple-Way Between-Subjects ANOVA

- Two or more subject-grouping factors: factorial
 - One condition or linear combination of multiple conditions
 - Example: gender, control/patient, genotype, handedness, ...
- Testing main effects, interactions, single group, group comparisons
 - Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - Factorial design (imbalance not allowed): two-way (3dANOVA2 –type 1), three-way (3dANOVA3 –type 1)
 - Up to four-way ANOVA: GroupAna (imbalance allowed)
 - All factors have two levels: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - Using group coding with 3dttest++ (3dttest), 3dMEMA: imbalance allowed

One-Way Within-Subject ANOVA

- Also called one-way repeated-measures: one group of subject $(n \ge 10)$
 - Two or more conditions
 - Example: happy, sad, neutral
- Main effect, simple effects, contrasts and general linear tests
- Approaches
 - 3dANOVA2 -type 3 (two-way ANOVA with one random factor)
 - With two conditions, equivalent to paired case with 3dttest++ (3dttest), 3dMEMA
 - With more than two conditions, can break into pairwise comparisons with 3dttest++ (3dttest), 3dMEMA

One-Way Within-Subject ANOVA

• Example: visual vs. auditory condition

```
3dANOVA2 -type 3 -alevels 2 -blevels 10
-prefix Vis Aud -mask mask+tlrc
 -dset 1 1 'OLSQ.FP.b+tlrc[Vrel#0 Coef]'
 -dset 1 2 'OLSQ.FR.b+tlrc[Vrel#0 Coef]'
 -dset 1 10 'OLSQ.GM.b+tlrc[Vrel#0 Coef]'
 -dset 2 1 'OLSQ.FP.b+tlrc[Arel#0 Coef]'
 -dset 2 2 'OLSQ.FR.b+tlrc[Arel#0 Coef]'
 -dset 2 10 'OLSQ.GM.b+tlrc[Arel#0 Coef]'
 -amean 1 V
 -amean 2 A
 -adiff 1 2 VvsA
 -fa FullEffect
 -bucket anova.VA
```

Two-Way Within-Subject ANOVA

- Factorial design; also known as two-way repeated-measures
 - Two within-subject factors
 - Example: emotion and category (visual/auditory)
- Testing main effects, interactions, simple effects, contrasts
 - ₱ Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - 3dANOVA3 –type 4 (three-way ANOVA with one random factor)
 - All factors have two levels: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - Missing data?
 - o Break into t-tests: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - 3dLME (work in progress)

Two-Way Mixed ANOVA

- Factorial design
 - One between-subjects and one within-subject factor
 - Example: gender (male and female) and emotion (happy, sad, neutral)
- Testing main effects, interactions, simple effects, contrasts
 - ₱ Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - 3dANOVA4 –type 5 (three-way ANOVA with one random factor)
 - If all factors have two levels, can run 3dttest++ (3dttest), 3dMEMA
 - Missing data?
 - o Unequal number of subjects across groups: GroupAna
 - Break into t-test: uber_ttest.py, 3dttest++ (3dttest), 3dMEMA
 - 3dLME (work in progress)

Group analysis with multiple basis functions

- Basis functions: TENT, CSPLIN
 - Area under the curve (AUC) approach
 - ∠ Forget about the subtle shape difference
 - ∠ Focus on the response magnitude measured by AUC
 - ∠ Issues: Shape information lost; Undershoot may cause trouble
 - Maintaining shape information
 - u Null hypothesis H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$ (NOT $\beta_1 = \beta_2 = ... = \beta_k$)
 - ∠3dLME: can only handle simple cases, not sohisticated ANOVA
 - Result: F-statistic for H_0 and t-statistic for each basis function
 - ∠ Limitation: only works for simple cases and is difficult to handle ANOVA-style analysis
- Basis functions of SPMG2/3: Only take SPMG1 to group

A few cases where 3dLME shines

- Maintaining shape information with TENT/CSPLIN
- Multiple effect estimates (runs/sessions) per conditions
 - Number of effect estimates may vary across conditions and subjects
- Covariate modeling at the presence of within-subject (or repeated-measures) variable
- Subject-specific random effect in covariate modeling
- Missing data in longitudinal studies
 - Missing at random (MAR)
- Group studies involving family members or twins
 - Subjects are genetically related within each family
 - Specify variance-covariance structure for genetic relatedness

If your case hasn't been covered so far

- GroupAna (up to four-way ANOVA)
- If all factors have two levels, run 3dttest++ (3dttest), 3dMEMA
- Try to break into multiple t-tests: uber_ttest.py, 3dttest++
 (3dttest), 3dMEMA
- 3dLME (work in progress)
- Still can't find a solution?
 - Blame YOURSELF! Should have thought of the situation in experiment design
 - Let me know

Covariates

- Confusing usage in literature
 - May or may not be of direct interest
 - Direct interest: relation between response and the covariate
 - Is response proportional to response time?
 - Of no interest: confounding, nuisance, or interacting variables
 - □ Controlling for or covarying or partialling out: what does it mean?
 - Subtle issue in this case: centering
 - Continuous or discrete
 - Continuous: historically originated from ANCOVA
 - I solely use it as a continuous variable to avoid confusion
 - Very careful when treating a discrete (categorical) variable as covariate
 - Dummy coding
 - □ Interaction

Covariate: Modeling framework

- Most people learned covariate modeling with ANCOVA
 - Historical extension to ANOVA
 - Quite limited and not flexible
 - Not a good approach in general
- GLM or LME: broader context
 - All explanatory variables are treated equally in the model
 - Doesn't matter: variable of interest or not, discrete or continuous
 - Discrimination or categorization occurs only at human (not model) level

What variables can serve as covariate?

- Considerations
 - □ Subject-level (vs. trial-level: handled via amplitude modulation)
 - Usually one value per subject, but maybe more than one with withinsubject factor
 - Tons of potential candidates: Overfitting
 - Prior information
 - Outlier information from 3dMEMA
- Examples
 - Age, IQ, brain volume, cortex thickness
 - Behavioral data: reaction time
 - Amplitude modulation deals with cross-trial variability at individual level
 - Covariate modeling at group level handles variability across subjects

Handling covariates: one group

- □ Model $y_i = \alpha_0 + \alpha_1 x_i + \varepsilon_i$, for *i*th subject: no other variables
 - α_1 slope (change rate, marginal effect): effect per unit of x
 - Simple and straightforward: no manipulation needed
 - α_0 intercept (x=0): group effect while controlling x
 - Controlling is NOT good enough
 - Interpretability α_0 at what x value: mean or any other value?
 - Centering is crucial for interpretability
 - Center does not have to be mean

Covariates: two or more groups

- Slope
 - Same or different across groups?
 - Usually we don't know in advance
 - Start with different slopes interaction between group and covariate
 - If same, then model tuning
- □ Intercept: centering again
 - Same or different center across groups?
 - How to decide? Plot out covariate distribution
 - If about the same, nice and easy!
 - If dramatically different, now what?
 - If possible, this issue should have been though of when designing the experiment
 - You may balance covariate values (e.g. age) across groups
 - How about if it is not under your control (e.g., response time)?

Covariates: different center across groups

- Most statisticians (including in FMRI) consider it horrible
 - For example, Miller GM and Chapman JP. 'Misunderstanding analysis of covariance', J Abnormal Psych 110: 40-48 (2001)
 - SPM and FSL communities
 - □ It may well be the case
 - Groups were not balanced in experiment design: design failure!
 - E.g., males and females have different age distribution, and we can't resolve: in the end the group difference is due to sex or age difference?
 - But I beg to differ under other scenarios
 - Now stop and think!
 - What is the point of considering the covariate? Using RT as example, we can account for within-group variability of RT, not variability across all subjects in both groups
 - Strategy: Centering differently across groups!
 - Do NOT center around a common point: overall mean, for example
 - ☐ Age: adolescents vs. seniors: what would it happen when centering around

Slope and intercept with two groups

Treating Categorical Variable as Covariate

- Popular coding methods
 - Dummy coding: 0s and 1s with a reference (or base) level (group) $x_{ij} = \begin{cases} 1, & \text{ith subject at } j \text{th level, and } j \neq k \\ 0, & \text{otherwise} \end{cases}$
 - Convenient for group difference
 - □ Cell mean coding: 0s and 1s without intercept

$$x_{ij} = \begin{cases} 1, & i \text{th subject is at } j \text{th level} \\ 0, & \text{otherwise} \end{cases}$$

- Good for individual group effect
- □ Effect (or deviation) coding: 1, 0, and -1 with a reference (or base) level (group)

$$x_{ij} = \begin{cases} 1, & i \text{th subject at } j \text{th level, and } j \neq k \\ 0, & i \text{th subject not at } j \text{th level, and } j \neq k \\ -1, & i \text{th subject at } k \text{th level} \end{cases}$$

Nice for main effect across groups

Caveats: Categorical Variable as Covariate

- Most people simply add a categorical variable in the model as an additive explanatory variable
 - □ For example, male/female, scanners, ...
 - Most people don't even look into group difference, but it might be
 of scientific interest in the first place; even if not so, such difference
 warrants discussion instead of sweeping under the carpet
 - Centering? Depending on specific coding strategy! Effect coding is preferable with two groups, and centering is not needed especially the 2 groups have unequal number of subjects
 - With other variables present, it could be problematic without considering interactions between grouping and other variables
- Coding is usually done internally in 3dttest++/3dMEMA
 - Option available for interaction
 - With > 1 grouping variable, coding may be needed

Covariate Modeling: Sophisticated Cases

- With presence of within-subject factor
 - Most statisticians think (including in FMRI) should NOT be done: cross-level difference may be correlated with the covariate, thus invalidating the purpose of incorporating the covariate
 - I tend to disagree again: same as cross-group scenario
 - Check covariate distribution across levels
 - Similar mean: overall centering
 - Different mean: disparate centering allows for accounting for within-level variability
 - Program: 3dLME (work in progress)
- Cross-subject adjustment in covariate modeling
 - Each subject may have different slope
 - Program: 3dLME

• Group Analysis: Non-Parametric Approach

Parametric approach

- > Enough number of subjects> n ≥ 10
- > Random effects of subjects: usually Gaussian distribution
- > Individual and group analyses: separate

Non-parametric approach

- > Moderate number of subjects: 4 < n < 10
- > No assumption of data distribution (e.g., normality)
- > Statistics based on ranking or permutation
- > Individual and group analyses: separate

• Group Analysis: Fixed-Effects Analysis

- When to consider?
 - >Group level: a few subjects: n < 6
 - >Individual level: combining multiple runs/sessions
- P Case study: difficult to generalize to whole population
- Model $\beta_i = b + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma_i^2)$, σ_i^2 : within-subject variability
 - Fixed in the sense that cross-subject variability is not considered
- Direct fixed-effects analysis (3dDeconvolve/3dREMLfit)
 - > Combine data from all subjects and then run regression
- Fixed-effects meta-analysis (3dcalc): weighted least squares

$$\Rightarrow \beta = \sum w_i \beta_i / \sum w_i$$
, $w_i = t_i / \beta_i$ = weight for *i*th subject

$$> t = \beta \sqrt{\sum w_i}$$

Non-Parametric Analysis

- Programs: roughly equivalent to permutation tests
 - > **3dWilcoxon** (~ paired *t*-test)
 - > 3dFriedman (~ one-way within-subject with 3dANOVA2)
 - > **3dMannWhitney** (~ two-sample *t*-test)
 - > 3dKruskalWallis (~ between-subjects with 3dANOVA)
- Pros: Less sensitive to outliers (more robust)
- Cons
 - > Multiple testing correction **limited** to FDR (**3dFDR**)
 - > Less flexible than parametric tests
 - Can't handle complicated designs with more than one fixed-effects factor
 - o Can't handle covariates

Miscellaneous

- Missing data: missing at random (MAR)
 - ∠Remove subjects from analysis
 - ∠Can't afford to exclude subjects: 3dLME
- Voxelwise covariate: 3dttest++
- Compare to a constant
 - ∨ Null hypothesis H_0 : response = 1%; 3dttest -base1 bval
- P Compare to a voxelwise constant (e.g., one patient)
 - **∠**3dttest -base1_dset DSET
- © Correlation between two sets of 3D data: two conditions, one correlates with the other?
 - > 3ddot -demean
 - > 3dttest++: 3dMean -> mean, 3dMean -sd -> SD, and then 3dcalc to standardize
- Post hoc ROI analysis
 - ∠ May not be consistent with voxelwise results

Group Analysis Program List

- 3dttest++ (one-sample, two-sample and paired t) + covariates (voxel-wise)
 - > 3dttest is almost obsolete except for two special cases
- 3dMEMA (R package for mixed-effects analysis, t-tests plus covariates)
- 3dttest (mostly obsolete: one-sample, two-sample and paired t)
- 3ddot (correlation between two sets)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (Matlab package for up to 5-way ANOVA)
- 3dLME (R package for various kinds of group analysis)

Two perspectives: batch vs. piecemeal

- ANOVA: factors/levels, balancedness
 - > Main effects, interactions, simple effects, contrasts, ...
 - Syntactic sugar for a special subgroup of LME
 - > Almost everybody trained in the conventional paradigm
 - Institutionalized; stuck in a rut
 - Pros: get almost everything you want in one batch model
 - ➤ Cons: *F*-stat for main effect or interaction is difficult to comprehend sometimes: a condensed/summarized test with vague information when levels/factors greater than 2 (I don't like *F*-test personally!!! Sorry, Ronald A. Fisher...), and with assumptions: homogeneity with multiple groups, and compound symmetry when a within-subject factor has more than 2 levels

Tests of interest

- > Simple/straightforward/piecemeal: focus on each test & handle one at a time
- ➤ Mainly *t*-stat: one-sample, paired, two-sample
- > All main effects and interactions can be teased apart into multiple *t*-tests
- No stringent assumptions such as compound symmetry

• Teasing apart F-statistic

- *F* for the main effect of a factor with two levels is essentially *t*
 - > *F* carries less information than *t*: directionality
- \bullet *F* for interactions of all factors with two levels are essentially t
 - > F-test for interaction between A and B: equivalent to t-test for (A1B1-A1B2)-(A2B1-A2B2) or (A1B1-A2B1)-(A1B2-A2B2), but t is better than F: a positive t shows A1B1-A1B2 > A2B1-A2B2 and A1B1-A2B1 > A1B2-A2B2
 - > Again *F* carries less information than *t*: directionality
- With > 2 levels, F-statistic corresponds to multiple t-tests Interaction and individual T-tests in a 2x2 ANOVA
 - > *F* not significant, but some individual *t*-tests significant; or the other way around

FMRI Group Analysis Comparison

		AFNI	SPM	FSL
t-test (one-, two-sample, paired)		3dttest++, 3dMEMA	Yes	FLAME1, FLAME1+2
One categorica one-way ANO		3dANOVA/2/3, GroupAna	Only one categorical variable: flexible and full factorial design	Only one categorical variable: FLAME1, FLAME1+2
More than one categorical variables: multi-way ANOVA		3dANOVA2/3, GroupAna, 3dLME		
Subject-specific covariate + one or more subject-grouping variables		3dttest++ (voxel- wise covariate possible), 3dMEMA	Yes	FLAME1, FLAME1+2
	Covariate + within-subject factor			
Sophisticated situations	Subject adjustment in trend analysis	3dLME		
	Basis functions			
	Missing data			

Summary

- Why do we need to do group analysis?
 - Summarizing results from multiple subjects
- Various group analysis approaches
 - * t-tests: uber_ttest.py/3dttest++/3dttest, 3dMEMA
 - ANOVA-style: 3dANOVA/2/3, GroupAna
 - Advanced approaches: 3dLME
- Covariate modeling and complications
 - One group: uber_ttest.py/3dttest++, 3dMEMA, 3dLME
 - P Two or more groups: : 3dttest++, 3dMEMA, 3dLME
- Nonparametric approach
- Fixed-effects analysis
- Miscellaneous