Introduction to
AFNI+SUMA+FATCAT,
Part |

 Tl+tractography for data exploration and
complementing functional connectivity



Outline

+ Why Function+Structure

+ DWI and DTl (— local structures)
- Brief diffusion imaging basics and parameters
- Role of noise — DTI parameter uncertainty

+ Using tractography (— estimate extended structures)
- goals of tracking.

- algorithms/properties

- final thoughts on interpretation



FMRI: GM Networks
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FMRI: GM Networks

Functional connectivity
networks of distinct GM
regions, from BOLD
time series during task
or rest/no task.

+ Quantify GM properties:
ALFF, fALFF, RSFA, o,
ReHo, GMV, etc.

+ Quantify network props:
seedbased correlation,
ICA, graph theoretical
measures, efc.
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DTIl: WM structure

DTl-based parameters characterize some local structural
properties and also show the presence of spatially-extended
WM structures.

Can quantify structural
(esp. WM) properties
using:

FA, MD, RD, L1, etc.

Can investigate (and
Quantify?) network
relations with:
tractography (x10° mm/s)




Structure + Function

Simple example:

GM ROls
network:
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Structure + Function

Simple example:

GM ROls
network:

Somato- Dorsal Control Default

motor | aftention mode Raichle (2010, TiCS)

Associated WM ROIs

Our goal for tractography->
estimate likely/probable locations of WM associated with GM,
and relate ROI quantities with functional/GM properties



Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional and
(e.g., correlation, network parameters)
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Combining FC and SC

+ How to combine quantitatively’?
- FMRI has measures of functional connectivity and 'strength’
(e.g., correlation, network parameters)

- DTI tracking between GM ROls-- we can have
'structural connectivity' strength, e.g., in terms of # of fibers?
-> will discuss more, but think this is not good road to be on
- how about:
find likely areas where WM is connecting GM regions,
and quantify properties in those regions (FA, MD, proton
density from structural images...)

— FC+SC provides sets of complementary quantities
to describe a network, and can be further combined
with behavioral/other measures (statistical modeling).




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROls;
+ estimating stats on WM ROls...




Tools for combining FC and SC:

Combining functional and tractographic connectivity will require:
+ determining networks from FMRI (or other) data;
+ finding correlations and local properties of functional networks;
+ turning GM ROls into targets for tractography;
+ doing reasonable tractography to find WM ROQOIs;
+ estimating stats on WM ROls...

FATCAT: Functional And Tractographic Connectivity Analysis Toolbox
(Taylor & Saad, 2013), available in AFNI with demo data+scripts.

*picture from google search, not from/of either author
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Modeling results: 1) Network-level ANOVA

and 2) ROI-level post hoc GLMs (Taylor, Chen, Cox & Saad, 2015?)
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Sidenote:

Mention of a few of the FMRI tools



Functional processing, 3

For {RS- | TB-}FMRI: correlation matrices

+ calculated post-processing, input time series data + network maps
- can be multi-brick maps, 1 network per brick
- calculate average time series per ROI, correlation among network ROls
- outputs correlation matrix/matrices, (can also do Fisher-Z transform output)




Diffusion tensor and parameters:
measure of structure
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+ one direction:
DTI (Diffusion Tensor Imaging)




Local Structure via Diffusion MRI

(In brief)

1) Random motion of molecules affected by local structures

2) Statistical motion measured using diffusion weighted MRI

3) Bulk features of local structure approximated with various reconstruction
models, mainly grouped by number of major structure directions/voxel:

+ one direction:
DTI (Diffusion Tensor Imaging)

+ >=1 direction:
HARDI (High Angular Resolution Diffusion Imaging)
Qball, DSI, ODFs, ball-and-stick, multi-tensor, CSD, ...




Diffusion in MRI

Mathematical properties
of the matrix/tensor:

(D11 D, D19
D=| D,; Dy, D,
\_D31 D35 Ds3)

Having: 3 eigenvectors: e,
3 eigenvalues: A

- Real-valued
- Positive definite (r'Dr > 0)
De, =\e;, A\>0
- Symmetric (D4, = D,,, etc),
6 independent values



Diffusion in MRI

Mathematical properties Geometrically, this describes
of the matrix/tensor: I an ellipsoid surface:
\
/D11 Dy3 Dss C =Dy x? + D,y,y? + Dys7% +
D =| Dy Dy Dy 2(D4oxy + Dy3xz + D,,yz)

\_D31 D3, D33,
isotropic case
Having: 3 eigenvectors: e, MEA=A;

3 eigenvalues: A

- Real-valued
- Positive definite (r"Dr > 0) _ |
anisotropic case _
De; =Ae, 4>0 A>A,> A, 3]
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- Symmetric (D4, = D,,, etc),
6 independent values



DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model:
tensor D — ellipsoid surface

eigenvectors — orientation in space \
eigenvalues — 'pointiness’ + 'size’ -
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DTI: ellipsoids

Important mathematical properties of the diffusion tensor:

+ Help to picture diffusion model: ’
tensor D — ellipsoid surface ‘
eigenvectors — orientation in space \
eigenvalues — 'pointiness’ + 'size' -
+ Determine the minimum number of \Q., D, D))
DWIs measures needed (6 + baseline) D,N\D,, D,,
\D31 D53 D33/

+ Determine much of the processing and
noise minimization steps



“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface
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“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface

first eigenvalue, L1 first eigenvector, €,
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“Big 5" DTI ellipsoid parameters

Main quantities of diffusion (motion) surface

first eigenvalue, L1 first eigenvector, €,

_(E Al' Darallel/axial diffusivity, ADl (DT orientation In space)

© <

< ¢

L1, < L1,
Fractional anisotropy, FA Mean diffusivity, MD Radial diffusivity, RD
(stdev of eigenvalues) (mean of eigenvalues) (=_(A,+A,)/2)

@A’Q ? (e)
MD, > MD, RD, > RD

FA=O FA=1

1 2




Cartoon examples: white matter < FA
GM vs WM
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Cartoon examples: white matter < FA

:GM VS

WM bundle organization

WM
¥ FA

i £ Ay

WM bundle density




Cartoon examples: white matter < FA

:GI\/I vs WM WM bundle organization
y £ ¥ FA

AT

WM bundle density WM maturation (myelination)

///




Interpreting D T1 parameters

General literature:
FA: measure of fiber bundle coherence and myelination
- In adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
: orientation of major bundles




Interpreting D T1 parameters

General literature:
FA: measure of fiber bundle coherence and myelination
- In adults, FA>0.2 is proxy for WM
MD, L1, RD: local density of structure
: orientation of major bundles

Cautionary notes:

e Degeneracies of structural interpretations
e Changes in myelination may have small effects on FA
e \WM bundle diameter << voxel size

- don't know location/multiplicity of underlying structures
e More to diffusion than structure-- e.qg., fluid properties
e Noise, distortions, etc. In measures



Noise in DW signals

MRI signals have additive noise
S=S,e?9'Po +¢g

where ¢ is (Rician) noise.
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— Leads to errors in surface fit, equivalent to
rotations and rescalings of ellipsoids:

'Un-noisy' vs perturbed/noisy fit



Noise in DW signals

MRI signals have additive noise
S=S,e?9'Po +¢g
where ¢ is (Rician) noise.

— Leads to errors in surface fit, equivalent to
rotations and rescalings of ellipsoids:

Leads to standard:
+ 30 DWs (~12 clinical)
+ repetitions of b=0
+ DW b chosen by:
MD * b=0.84
+ nonlinear fitting

'Un-noisy' vs perturbed/noisy fit



Now discuss using local structure information
to generate/estimate nonlocal structures:
WM tractography



Tractography in brief

old, invasive

— new(er), theoretical

stain and preserve brain, get some
Idea of structure... non-ideal:

brain physiology changes postmortem,
also ‘mortem’ aspect

TAPETUM

(images from lowa Virtual Hospital
and Bammer et al. 2003)



Local DTs — extended tracts

Field of local diffusion parameters
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Local DTs — extended tracts

Field of local diffusion parameters
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Local DTs — extended tracts

Field of local diffusion parameters Connect to form extended tracts
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Tractography

Estimate WM structure (fiber tract locations)

estimate spatial
extents of WM ‘tracts’
in Vivo

ellipsoid measures  some kind of algorithm
(~smoothing of for connecting
real structures)

(images from Bammer et al. 2003)



Diversity In tractography

Series of (mostly) logical, simple rules for estimating tracts

— many methods/algorithms and kinds of parameters to choose:
(Mori et al., 1999; Conturo et al. 1999; Weinstein et al. 1999;
Basser et al. 2000; Poupon et al. 2001; Mangin et al. 2002;
Lazar et al. 2003; Taylor et al. 2012; ....)

Propagation via, e.g.:
smoothing diffusion vectors and solving differential equations;
deflecting propagating tracts; allowing tracts themselves to
‘diffuse’; solving for global minimum energy of connections...

To date, no single 'best' algorithm, work continues:
- histology can’t give perfect answers.
- some test models (phantoms) exist, but not brain-complex



So, first question for using tractography in a study:

Which algorithm to choose?



Popular technique: FACT

« FACT = Fiber Assessment by Continuous Tracking (Mori
et al. 1999) [used more than 200 times in past 1.5 yrs]
— Start in voxel with FA>0.2 (proxy definition for WM)
— Follow 1st eigenvector/greatest diffusion direction to next voxel
— Continue if FA stays>0.2 and angle between e,s is <45 deg

Ex.: FACT (in 2D) FACT (in 3D)

Very simple, but actually, gives some decent results, e.g.many known
tracts
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et al. 1999) [used more than 200 times in past 1.5 yrs]
— Start in voxel with FA>0.2 (proxy definition for WM)
— Follow 1st eigenvector/greatest diffusion direction to next voxel
— Continue if FA stays>0.2 and angle between e,s is <45 deg

Ex.: FACT (in 2D) FACT (in 3D)

Very simple, but actually, gives some decent results, e.g.many known
fracts *however... e..g bias? noise dependence?



Improving FACT->

Start by thinking: what properties a ‘good’ algorithm should
have?

1)
2)

3)
i)

Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

Should improve with spatial resolution (convergence in resolution)

e.g., like in calculus, diagonals are better approximated with small grid steps
Should improve with SNR (converge in SNR)
Should not have strong instability with or dependence on noise



Improving FACT->

« Start by thinking: what properties a ‘good’ algorithm should

have?

1) Should be independent of coordinate axes (i.e., results invariant to
rotation of data set)

2) Should improve with spatial resolution (convergence in resolution)

e.g., like in calculus, diagonals are better approximated with small grid steps
3) Should improve with SNR (converge in SNR)
4) Should not have strong instability with or dependence on noise

FACTID (in 2D

Posit: including diagonal (I1D) g
propagation helps 1 and 4,
check about other props.




FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:

Propagate Test project  Accept diagonals

(Taylor, Cho, Lin & Biswal, 2012)



FACTID (FACT Including Diagonals):

+ Utilize simple check for diagonals.

(2D) Schematic:

Propagate Test project  Accept diagonals

NB that in (3D) FACT, a single voxel has 6 neighbors for propagation,
while in FACTID, a voxel has 26 neighbors propagation.

(Taylor, Cho, Lin & Biswal, 2012)



Test 1: Rotational invariance

A test for consistency of results when axes of data have been rotated;
here, using data from a real subject (scan axes rotated)

FACTID

(0,0,0) (0,0,10) (0,0,20)

(0,0,20) (0,0,40)

“ (% (0,0,10)

- - = LY

(Taylor, Cho, Lin & Biswal, 2012)



Test 3: Noise sensitivity

Original

Original

SNR =10
FACTID DTI Query- RK4
(Taylor, Cho, Lin & Biswal, 2012)




Test 5: Phantom Set

Fillard et al.
(2011, NI)
test phantom

A

‘ANSWER”

(Taylor, Cho, Lin
& Biswal, 2012)

e.qg. compare




Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come

out?” ... I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher




Importance of being processed (in earnest)

NB words of wisdom from wikipedia GIGO entry:

On two occasions | have been asked, "Pray, Mr. Babbage, if you
put into the machine wrong figures, will the right answers come
out?” ... I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

—Charles Babbage, Passages from the Life of a Philosopher

— |n addition to the tracking algorithm, the quality of data

acquisition and preparation matter quite a bit (as seen in morning
TORTOISE session).



Importance of being processed (in earnest)

8 \
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Data from the morning session, same target ROI in brainstem.
Consider reach of tracts, symmetry, physiology, etc.



Cinematic side note:

La Belle et la Béte of tractography




Known Challenges for Tracking

+ Axon diameters are of order a few micrometers
+ MRI voxel size is of order millimeters

e .rg,‘

(UERES of Eyewire data via NPR WebSIte)




Known Challenges for Tracking

+ Axon diameters are of order a few micrometers
+ MRI voxel size is of order millimeters
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(images of Eyewire data via NPR website)

+ WM regions are tightly packed, with many connections and
potentially complicated sub-voxel scale structure

Crossing/kissing fibers can:
- Lower FA (stop tracking)
- Redirect (or not) tracking
iIncorrectly.




Achievements of Tracking

+ Reproduction of many known pathways
+ In vivo vs post-mortem information

l  alic

TNy \ﬁ (stricbt): |08

+ plic
R E T

(Bammer et al., 2003) S
(Wakana et al., 2004)



Light at the end of the tunnel?

Tractography seems useful and logically consistent as follows:

1) GM ROQls are connected by WM skeleton.

2) We can use tracking to estimate and highlight WM likely to be
associated with GM ROls.

3) One can then use DTI parameters in the tracked 'WM ROIs' for
guantitative comparisons (or use ROIs as masks for other data).

4) Tractography can parcellate the WM skeleton based on the
subject's own data.

5) Avoid interpreting reconstructed tracks to represent literal,
underlying fibers.
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