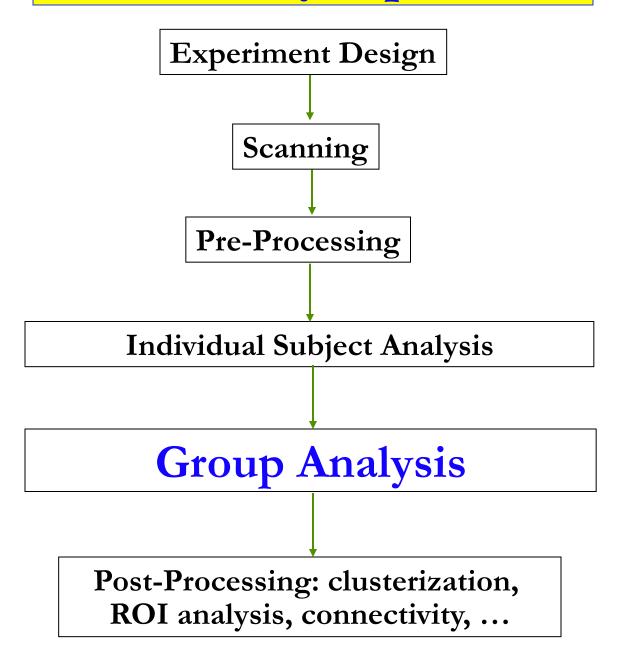
Group Analysis

File: GroupAna.pdf

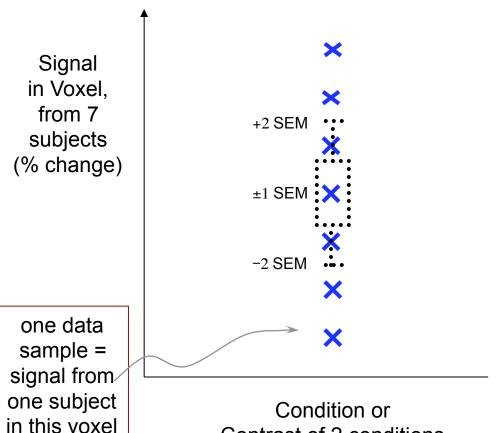
Gang Chen

SSCC/NIMH/NIH/HHS



3/19/16

FMRI Study Pipeline

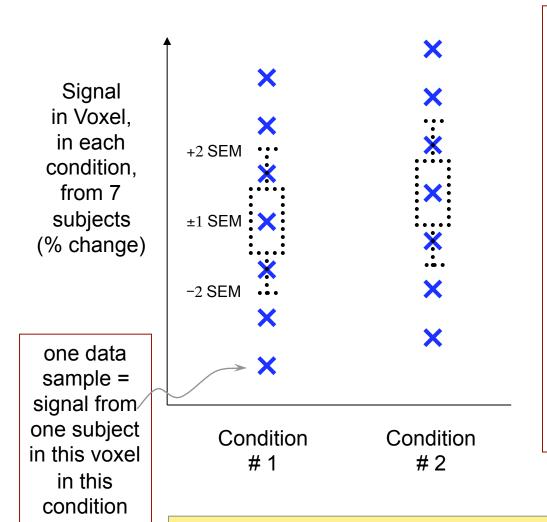

Preview

- Introduction: basic concepts
 - Why do we need to do group analysis?
 - Factor, quantitative covariates, main effect, interaction, ...
- Group analysis approaches
 - *t*-test: 3dttest++ (3dttest), 3dMEMA
 - o Regression: 3dttest++, 3dMEMA, 3RegAna
 - o ANOVA: 3dANOVAx, 3dMVM, GroupAna
 - o ANCOVA or GLM: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - Impact & consequence of FSM, ASM, and ESM
- Miscellaneous
 - Centering for covariates
 - Intra-Class Correlation (ICC)
 - Nonparametric approach and fixed-effects analysis
 - Inter-Subject Correlation (ISC) analysis

Why Group Analysis?

- Evolution of FMRI studies
 - Early days [1992-1994]: no need for group analysis
 - Seed-based correlation for one subject was revolutionary
 - Now: torture brain/data enough, and hope nature will confess!
 - Many ways to manipulate the brain (and data)
- Reproducibility and generalization
 - Science strives for generality: summarizing subject results
 - Typically 10 or more subjects per group
 - o Exceptions: pre-surgical planning, lie detection, ...
- Why not one analysis with a giant model for all subjects?
 - Computationally unmanageable and very hard to set up
 - Heterogeneity in data or experiment design across subjects
 - Model and data quality check at individual subject level

Simplest Group Analysis: One-Sample t-Test


in this condition

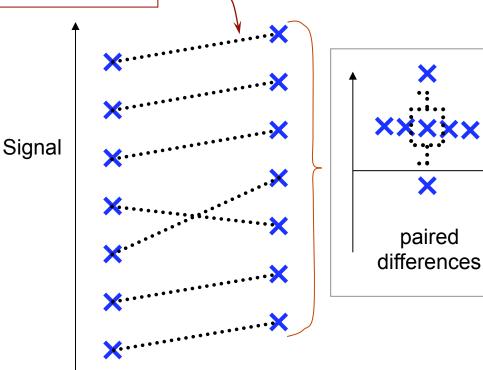
- <u>SEM</u> = Standard Error of the Mean = standard deviation of sample, divided by square root of number of samples
- = estimate of uncertainty in sample mean
- One-sample *t*-test determines if sample mean is large enough relative to SEM

Contrast of 2 conditions

• statistically significantly different from 0!

Simplest Group Analysis: Two-Sample t-Test

- <u>Condition</u> = some way to categorize data (*e.g.*, stimulus type, drug treatment, day of scanning, subject type, ...)
- <u>SEM</u> = Standard Error of the Mean = standard deviation of sample divided by square root of number of samples
- = estimate of uncertainty in sample mean
- Two-sample *t*-test determines if sample means are "far apart" compared to size of SEM


Not statistically significantly different!

paired data samples: same numbers as before

Condition

1

Simplest Group Analysis: Paired (~1-sample) t-Test

- Significantly different!
- Condition #2 > #1, per subject

Condition

#2

- <u>Paired</u> means that samples in different conditions should be linked together (*e.g.*, from same subjects)
- Test determines if differences between conditions in each pair are "large" compared to SEM of the differences
- Paired test can detect systematic *intra*-subject differences that can be hidden in *inter*-subject variations
- <u>Lesson</u>: properly separating *inter*subject and *intra*-subject signal variations can be very important!
- Essentially equivalent to onesample *t*-test

Toy example of group analysis

- Responses from a group of subjects under one condition
 - o What we have: $(\beta_1, \beta_2, ..., \beta_{10}) = (1.13, 0.87, ..., 0.72)$ [% signal change]
- Centroid: average $(\beta_1 + \beta_2 + ... + \beta_{10})/10 = 0.92$ is not enough
 - Variation/reliability measure: diversity, spread, deviation
 - o How different is 0.92 from 0.00 compared to its deviation?
- Model building
 - Subject i's response = group average + deviation of subject i: simple model GLM (one-sample t-test)

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- $_{\circ}$ If individual responses are consistent, ϵ_i should be small
- ∘ How small (*p*-value)?
 - *t*-test: significance measure = $\hat{b}/(\hat{\sigma}/n)$
- 2 measures: **b** (dimensional) and **t** (dimensionless)

Group Analysis Caveats

- Conventional: voxel-wise (brain) or node-wise (surface)
 - Proper model to account for cross-and within-subject variability
- Results: two components (in afni GUI: OLay + Thr)
 - Effect estimates: have unit and physical meaning
 - Their significance (response to house significantly > face)
 - Very unfortunately p-values solely focused in FMRI!
- Statistical significance (*p*-value) becomes obsession
 - Published papers: Big and tall parents (violent men, engineers)
 have more sons, beautiful parents (nurses) have more daughters
 - Statistical significance is not the same as practical importance
- Statistically insignificant but the effect magnitude is suggestive
 - Sample size
 - Alignment of different subjects' brain images

Group Analysis Caveats

- Conventional: voxel-wise (brain) or node-wise (surface)
 - Prerequisite: reasonable alignment to some template
 - Limitations: alignment could be suboptimal or even poor
 - Different folding patterns across subjects: better alignment could help (perhaps to 5 mm accuracy?)
 - Different cytoarchitectonic (or functional) locations across subjects: structural alignment of images won't help!
 - Impact on conjunction vs. selectivity
- Alternative (won't discuss): ROI-based approach
 - Half data for functional localizers, and half for ROI analysis
 - Easier: whole brain reduced to a few numbers per subject
 - Model building and tuning possible
 - Most AFNI 3d analysis programs also handle ROI input (1D files)

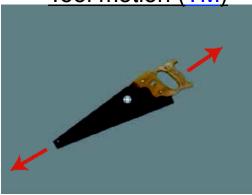
Group Analysis in Neurolmaging: why big models?

- Various group analysis approaches
 - Student's t-test: one-, two-sample, and paired
 - ANOVA: one or more categorical explanatory variables (factors)
 - GLM: AN(C)OVA
 - LME: linear mixed-effects modeling
- \diamond Easy to understand t-tests not always practical or feasible
 - Tedious when layout (structure of data) is too complex
 - Main effects and interactions: desirable
 - When quantitative covariates are involved
- → Advantages of big models: AN(C)OVA, GLM, LME
 - All tests in one analysis (vs. piecemeal t-tests)
 - Omnibus F-statistics
 - Power gain: combining subjects across groups for estimates of signal and noise parameters (i.e., variances and correlations)

Terminology: Explanatory variables

- Response/Outcome variable (HDR): regression β coefficients
- Factor: categorical, qualitative, nominal or discrete variable
 - Categorization of conditions/tasks
 - Within-subject (repeated-measures) factor
 - Subject-grouping: Group of subjects (sex, normal/patients)
 - Between-subjects factor
 - Gender, patients/controls, genotypes, ...
 - Subject: random factor measuring deviations
 - Of no interest, but served as random samples from a population
- Quantitative (numeric or continuous) covariate
 - Three usages of 'covariate'
 - Quantitative value (rather than strict separation into groups)
 - Variable of no interest: qualitative (scanner, sex, handedness) or quantitative
 - Explanatory variable (regressor, independent variable, or predictor)
 - Examples: age, IQ, reaction time, etc.

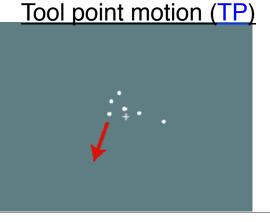
Terminology: Fixed effects


- Fixed-effects factor: categorical (qualitative or discrete) variable
 - o Treated as a fixed variable (constant to be estimated) in the model
 - Categorization of conditions/tasks (modality: visual/auditory)
 - o Within-subject (repeated-measures) factor: 3 emotions
 - Subject-grouping: Group of subjects (gender, normal/patients)
 - Between-subject factor
 - All levels of a factor are of interest
 - main effect, contrasts among levels
 - Fixed in the sense of statistical inferences
 - Apply only to the specific levels of the factor
 - o Categories: human, tool
 - Don't extend to other potential levels that might have been included (but were not)
 - o Inferences from viewing human and tool categories can't be generated to animals or clouds or Martians
- Fixed-effects variable: quantitative covariate

Remember This Study?

Human whole-body motion (HM)

Tool motion (TM)



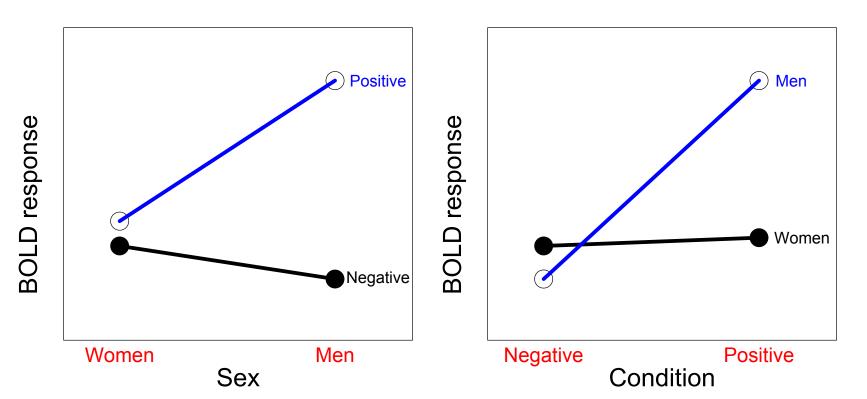
Human point motion (HP)

From Figure 1

Beauchamp et al. 2003

2 Factors, Each with 2 Levels

- Factor A = type of object being viewed
 - Levels = Human or Tool
- Factor B = type of display seen by subject
 - Levels = Whole or Points
- This is <u>repeated measures</u> (4 β s per subject), 2 × 2 <u>factorial</u>

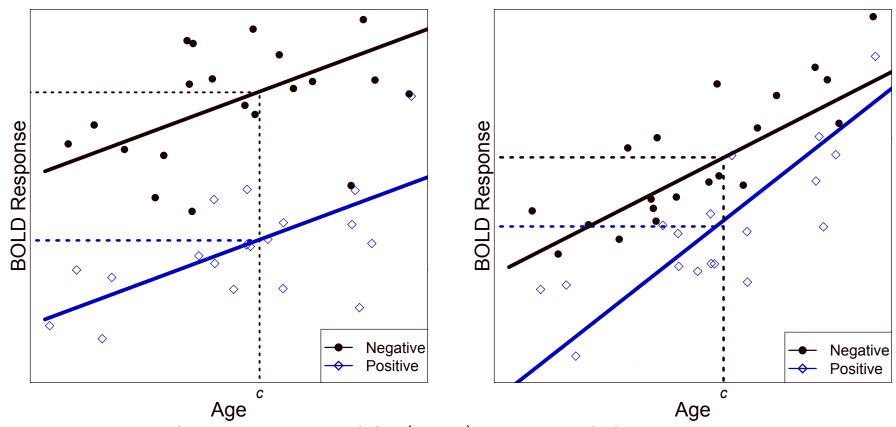

Terminology: Random effects

- Random factor/effect
 - Random variable in the model: exclusively used for subject in FMRI
 - average + effects attributable to each subject: e.g. $N(\mu, \tau^2)$
 - Requires enough subjects to estimate properly
 - Each individual subject effect is of NO interest
 - Group response = 0.92%, subject 1 = 1.13%, random effect = 0.21%
 - Random in the sense
 - Subjects as random samples (representations) from a population
 - Inferences can be generalized to a hypothetical population
- A generic model: decomposing each subject's response
 - \circ Fixed (population) effects: universal constants (immutable): $m{eta}$ $m{y}_i = X_i m{eta} + Z_i m{b}_i + m{\epsilon}_i$
 - \circ Random effects: individual subject's deviation from the population (personality: durable for that subject *i*): b_i
 - ο Residuals: noise (evanescent): ε_i

Terminology: Omnibus tests - main effect and interaction

- Main effect: any difference across levels of a factor?
- Interactions: with ≥ 2 factors, interaction may exist
 - \circ 2 × 2 design: *F*-test for interaction between A and B = *t*-test of (A1B1 A1B2) (A2B1 A2B2) or (A1B1 A2B1) (A1B2 A2B2)
 - t stastistic is better than F: a positive t shows

A1B1 - A1B2 > A2B1 - A2B2 and A1B1 - A2B1 > A1B2 - A2B2



Terminology: Interaction

- Interactions: ≥ 2 factors
 - o May become very difficult to sort out or understand!
 - \geq 3 levels in a factor
 - $\bullet \ge 3$ factors
 - Solutions: reduction (in complexity)
 - Pairwise comparison
 - Plotting: ROI averages
 - Requires sophisticated modeling
 - AN(C)OVA: 3dANOVAx, 3dMVM, 3dLME
- Interactions: quantitative covariates
 - o In addition to linear effects, may have nonlinearity: y might depend on products of covariates: $x_1^*x_2$, or x^2

Terminology: Interaction

• Interaction: between a factor and a quantitative covariate

- Using explanatory variable (Age) in a model as a nuisance regressor (additive effect) may not be enough
 - Model building/tuning: Potential interactions with other explanatory variables? (as in graph on the right)
 - Of scientific interest (*e.g.*, gender differences)

Models at Group Level

- Conventional approach: taking β (or linear combination of multiple β s) only for group analysis
 - \circ Assumption: all subjects have same precision (reliability, standard error, confidence interval) about β
 - All subjects are treated equally
 - Student *t*-test: paired, 1- and 2-sample: *not* random-effects models in strict sense (said to be random effects in Some other PrograM)
 - ∘ AN(C)OVA, GLM, LME
- Alternative: taking both effect estimates and *t*-statistics
 - o *t*-statistic contains precision information about effect estimates
 - $_{\circ}$ Each subject's β is weighted based on precision of effect estimate (more precise β s get more weight)
- All models in common use are some type of linear model
 - ∘ *t*-test, AN(C)OVA, LME, MEMA
 - o Partition each subject's effect into multiple components

Piecemeal t-tests: 2 × 3 Mixed ANCOVA example

- Explanatory variables
 - Factor A (Group): 2 levels (patient and control)
 - Factor B (Condition): 3 levels (pos, neg, neu)
 - Factor S (Subject): 15 ASD children and 15 healthy controls
 - Quantitative covariate: Age
- ♦ Using Multiple t-tests for this study
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Cannot control for age effect
 - Effects that cannot be analyzed as t-tests
 - Main effect of Condition (3 levels is beyond t-test method)
 - Interaction between Group and Condition (6 levels total)
 - Age effect across three conditions (just too complicated)

Classical ANOVA: 2 × 3 Mixed ANOVA

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE}$$

where

$$MSA = \frac{SSA}{a-1} = \frac{1}{a-1} \left(\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2} \right),$$

$$MSB = \frac{SSB}{b-1} = \frac{1}{b-1} \left(\frac{1}{an} \sum_{k=1}^{b} Y_{..k}^2 - \frac{1}{abn} Y_{...}^2 \right),$$

$$MSAB = \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} \left(\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{..k}^{2} + \frac{1}{abn} Y_{...}^{2}\right),$$

$$MSS(A) = \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} \left(\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2}\right),$$

$$MSE = \frac{1}{a(b-1)(n-1)} \left(\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2} \right)$$

Univariate GLM: 2 x 3 mixed ANOVA

Group: 2 levels (patient and control)

Condition: 3 levels (pos, neg, neu)

Difficult to incorporate covariates

Broken orthogonality of matrix
 No correction for sphericity violation

Subject: 3 ASD children and 3 healthy controls

Subj			X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9		
1	β_{11}		/ 1	1	1	0	1	0	1	0	0	0		δ_{11}
1	β_{12}		1 1 1 1	1		$ \begin{array}{ccc} 1 & 0 \\ -1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array} $	0	1 -1	1 1 0 0 1 0 1	0 0 1 1	$egin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	0 0		δ_{12}
1	β_{13}			1			-1							δ_{13}
2	β_{21}			1	1		1	0						δ_{21}
2	β_{22}			1	0		0	1					$\left(\alpha_0\right)$	δ_{22}
2	β_{23}		1	1	-1	-1	-1	-1		1		α_1	δ_{23}	
3	β_{31}		1 1	1	1	0	1	0	-1	-1	0	0	α_2	δ_{31}
3	β_{32}			1	0	1	0	1	-1	$\cdot 1$ -1	0	0	α_3	δ_{32}
3	£ 32	_	1	1	-1	-1	-1	77	-1	-1	0	0	α_4	\tilde{j}_3 .
4	341	_	1	-1	1	0	-1	0	0	0	1	0	+	S_{41}
4	β_{42}		1 1	-1	$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$	1	0	-1	0 0	1 (0	α_6	δ_{42}	
4	β_{43}			-1		-1	$\begin{array}{cc} 1 \\ -1 \end{array}$	1	0	$\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}$	1	$0 \\ 1 \\ 1 \\ 1 \\ -1$	α_7	δ_{43}
5	β_{51}		1	-1		0		0	$\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}$		0		$\begin{pmatrix} \alpha_8 \\ \alpha_9 \end{pmatrix}$	δ_{51}
5	β_{52}		1	-1		1	0	-1		0	0			δ_{52}
5	β_{53}		1	-1		-1	1	1			$0 \\ -1$, ,	δ_{53}
6	β_{61}		1	-1		0	-1	0						δ_{61}
6	β_{62}		1	-1	0	1	0	-1	0	0	-1	-1		δ_{62}
6	$\setminus \beta_{63}$		\ 1	-1	-1	-1	1	1	0	0	-1	-1		$\left(\delta_{63}\right)$

Univariate GLM: popular in neuroimaging

- ♦ Advantages: more flexible than the method of sums of squares
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates easily modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - Intricate dummy coding (to allow for different factors and levels)
 - Tedious pairing for numerator and denominator of F-stat
 - Choosing proper denominator SS is not obvious (errors in some software)
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - Cannot handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- → Problematic: When overall residual SS is adopted for all tests
 - F-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate with this denominator

Our Approach: Multivariate GLM

- Group: 2 levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quanţitative covariate

$$\boldsymbol{B}_{n\times m} = \boldsymbol{X}_{n\times q} \, \boldsymbol{A}_{q\times m} + \boldsymbol{D}_{n\times m}$$

Why use β values for group analysis?

- \diamond Why not use individual level statistics (t, F)?
 - Dimensionless
 - No physical meaning
 - Sensitive to sample size (number of trials) and to signal-to-noise ratio (might vary per subject)
 - Are t-values of 4 and 100 (or p-values of 0.05 and 10⁻⁸) really informative? The HDR of the latter is not 25 times larger than the former?
 - Distributional considerations not very Gaussian (normal)
- $\Leftrightarrow \beta$ values
 - Have physical meaning: measure HDR magnitude = % signal change (i.e., how much BOLD effect)
- \diamond Using β values <u>and</u> their t-statistics at the group level
 - More accurate (we hope) approach: 3dMEMA
 - \circ Mostly about the same as the conventional (β only) approach
 - Not always practical

Road Map: Choosing a program for Group Analysis?

- ♦ Starting with HDR estimated via shape-fixed method (SFM)
 - One ß per condition per subject
 - It might be significantly underpowered (more later)
- ♦ Two perspectives
 - Data structure
 - Ultimate goal: list all the tests you want to perform
 - Possible to avoid a big model this way
 - Use a piecemeal approach with 3dttest++ or 3dMEMA
 - That is, do each test on your list separately
 - Difficulty: there can be many tests you might want
- ♦ Most analyses can be done with 3dMVM and 3dLME
 - Computationally inefficient
 - Last resort: not recommended if simpler alternatives (e.g., t-tests) are available

Road Map: Student's t-tests

- ♦ 3dttest++ (new version of 3dttest) and 3dMEMA
- ♦ Not for F-tests except for ones with 1 DoF for numerator
 - All factors are of two levels (at most), e.g., 2 x 2, or 2 x 2 x 2

♦ Scenarios

- One-, two-sample, paired
- Multiple regression: one group + one or more quantitative variables
- ANCOVA: two groups + one or more quantitative variables
- ANOVA through dummy coding: all factors (between- or withinsubject) are of two levels
- AN(C)OVA: multiple between-subjects factors + one or more quantitative variables
- One group against a constant: 3dttest -singletonA
 - The "constant" can depend on voxel, or be fixed

Road Map: Between-subjects ANOVA

- ♦ One-way between-subjects ANOVA
 - 3dANOVA
 - 2 groups of subjects: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ Two-way between-subjects ANOVA
 - Equal #subjects across groups: 3dANOVA2 -type 1
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ Three-way between-subjects ANOVA
 - 3dANOVA3 -type 1
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- ♦ N-way between-subjects ANOVA
 - o 3dMVM

Road Map: Within-subject ANOVA

- ♦ Only one group of subjects
- ♦ One-way within-subject ANOVA
 - 3dANOVA2 -type 3
 - Two conditions: 3dttest++, 3dMEMA
- ♦ Two-way within-subject ANOVA
 - 3dANOVA3 -type 4
 - (2 or more factors, 2 or more levels each)
 - 2 x 2 design: 3dttest++, 3dMEMA
- ♦ N-way within-subject ANOVA
 - 。 3dMVM

Road Map: Mixed-type ANOVA and others

- One between- and one within-subject factor
 - Equal #subjects across groups: 3dANOVA3 -type 5
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA
- ♦ More complicated scenarios
 - Multi-way ANOVA: 3dMVM
 - Multi-way ANCOVA (between-subjects covariates only): 3dMVM
 - HDR estimated with multiple basis functions: 3dLME, 3dMVM
 - Missing data: 3dLME
 - Within-subject covariates: 3dLME
 - Subjects genetically related: 3dLME
 - Trend analysis: 3dLME

One-Sample Case

- One group of subjects $(n \ge 10)$
 - o One condition (visual or auditory) effect
 - o Linear combination of multiple effects (visual vs. auditory)
- Null hypothesis H_0 : average effect = 0
 - \circ Rejecting H_0 is of interest!
- Results
 - Average effect at group level (OLay)
 - Significance: t-statistic (Thr Two-tailed by default in AFNI)
- Approaches
 - o **uber_ttest.py** (gen_group_command.py) graphical interface
 - o 3dttest++
 - o 3dMEMA

One-Sample Case: Example

• 3dttest++: taking β only for group analysis

```
3dttest++ -prefix VisGroup -mask mask+tlrc \
  -setA 'FP+tlrc[Vrel#0_Coef]' \
    'FR+tlrc[Vrel#0_Coef]' \
    ......
    'GM+tlrc[Vrel#0_Coef]'
```

• **3dMEMA**: taking β and t-statistic for group analysis

```
3dMEMA -prefix VisGroupMEMA -mask mask+tlrc -setA Vis \
FP 'FP+tlrc[Vrel#0_Coef]' 'FP+tlrc[Vrel#0_Tstat]' \
FR 'FR+tlrc[Vrel#0_Coef]' 'FR+tlrc[Vrel#0_Tstat]' \
......

GM 'GM+tlrc[Vrel#0_Coef]' 'GM+tlrc[Vrel#0_Tstat]' \
-missing_data 0 ← Dataset value = 0 → treat it as missing
```

Two-Sample Case

- Two groups of subjects ($n \ge 10$ each); for example: males and females
 - o One condition (e.g., visual or auditory) effect
 - o Linear combination of multiple effects (e.g., visual minus auditory)
 - o Example: Gender difference in emotional effect of stimulus?
- Null hypothesis H_0 : Group1 = Group2
 - o Results
 - o Group difference in average effect
 - Significance: t-statistic Two-tailed by default in AFNI
- Approaches
 - uber_ttest.py, 3dttest++, 3dMEMA
 - o One-way between-subjects ANOVA
 - 3dANOVA: can also obtain individual group *t*-tests

Paired Case

- One groups of subjects $(n \ge 10)$
 - 2 conditions (visual or auditory): no missing data allowed
 (3dLME)
- Null hypothesis H_0 : Condition1 = Condition2
 - o Results
 - Average difference at group level
 - Significance: t-statistic (two-tailed by default)
- Approaches
 - o uber_ttest.py, 3dttest++, 3dMEMA
 - o One-way within-subject (repeated-measures) ANOVA
 - 3dANOVA2 —type 3: can also get individual condition test
 - o Missing data (3dLME): only 10 of 20 subjects have both β s
- Essentially same as one-sample case using contrast as input

Paired Case: Example

• 3dttest++: comparing two conditions

```
3dttest++ -prefix Vis Aud
 -mask mask+tlrc -paired
 -setA 'FP+tlrc[Vrel#0 Coef]'
       'FR+tlrc[Vrel#0 Coef]'
        'GM+tlrc[Vrel#0 Coef]'
 -setB 'FP+tlrc[Arel#0 Coef]'
       'FR+tlrc[Arel#0 Coef]'
       • • • • • •
        'GM+tlrc[Arel#0 Coef]'
```

Paired Case: Example

- 3dMEMA: comparing two conditions using subject-level response magnitudes and estimates of error levels
 - Contrast should come from each subject
 - Instead of doing contrast inside 3dMEMA itself

```
3dMEMA -prefix Vis_Aud_MEMA
-mask mask+tlrc -missing_data 0
-setA Vis-Aud

FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \
FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \
......

GM 'GM+tlrc[Vrel-Arel#0_Coef]''GM+tlrc[Vrel-Arel#0_Tstat]'
```

One-Way Between-Subjects ANOVA

- Two **or more** groups of subjects $(n \ge 10)$
 - o One condition or linear combination of multiple conditions
 - o Example: visual, auditory, or visual vs. auditory
- Null hypothesis H_0 : Group1 = Group2
 - o Results
 - Average group difference
 - Significance: t- and F-statistic (two-tailed by default)
- Approaches
 - o **3dANOVA** (for more than 2 groups)
 - ∘ > 2 groups: pair-group contrasts: 3dttest++, 3dMEMA
 - o Dummy coding: 3dttest++, 3dMEMA (hard work)
 - o 3dMVM (also somewhat hard work)

Multiple-Way Between-Subjects ANOVA

- Two or more subject-grouping factors: factorial designs
 - One condition or linear combination of multiple conditions
 - o Examples: gender, control/patient, genotype, handedness
- Testing main effects, interactions, single group, group comparisons
 - Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - Factorial design (imbalance not allowed): two-way
 (3dANOVA2 -type 1), three-way (3dANOVA3 -type 1)
 - o **3dMVM**: no limit on number of factors (imbalance OK)
 - o All factors have two levels: 3dttest++, 3dMEMA
 - Using group coding (via covariates) with 3dttest++,
 3dMEMA: imbalance possible

One-Way Within-Subject ANOVA

- Also called **one-way repeated-measures**: one group of subjects ($n \ge 10$)
 - o Two or more conditions: extension to paired t-test
 - Example: happy, sad, neutral conditions
- Main effect, simple effects, contrasts, general linear tests,
 - Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - 3dANOVA2 -type 3 (two-way ANOVA with one random factor)
 - With two conditions, equivalent to paired case with 3dttest++, 3dMEMA
 - With more than two conditions, can break into pairwise comparisons with 3dttest++, 3dMEMA

One-Way Within-Subject ANOVA

• Example: visual vs. auditory condition

```
3dANOVA2 -type 3 -alevels 2 -blevels 10
-prefix Vis Aud -mask mask+tlrc
 -amean 1 Vis -amean 2 Aud -adiff 1 2 V-A \
  -dset 1 1 'FP+tlrc[Vrel#0 Coef]'
  -dset 1 2 'FR+tlrc[Vrel#0 Coef]'
  -dset 1 10 'GM+tlrc[Vrel#0 Coef]'
  -dset 2 1 'FP+tlrc[Arel#0 Coef]'
  -dset 2 2 'FR+tlrc[Arel#0 Coef]'
  -dset 2 10 'GM+tlrc[Arel#0 Coef]'
```

Two-Way Within-Subject ANOVA

- Factorial design; also known as two-way repeated-measures
 - o 2 within-subject factors
 - Example: emotion (happy/sad) and category (visual/auditory)
- Testing main effects, interactions, simple effects, contrasts
 - Significance: t- (two-tailed by default) and F-statistic
- Approaches
 - 3dANOVA3 -type 4 (three-way ANOVA with one random factor)
 - o All factors have 2 levels (2x2): **3dttest++, 3dMEMA**
 - o Missing data?
 - Break into t-tests: 3dttest++, 3dMEMA
 - 3dLME

Two-Way Mixed ANOVA

- Factorial design
 - One between-subjects and one within-subject factor
 - Example: between-subject factor = gender (male and female) and within-subject factor = emotion (happy, sad, neutral)
- Testing main effects, interactions, simple effects, contrasts
 - ∘ Significance: *t* (two-tailed by default) and *F*-statistic
- Approaches
 - o **3dANOVA3 type 5** (three-way ANOVA with one random factor)
 - ∘ If all factors have 2 levels (2x2): **3dttest++**, **3dMEMA**
 - o Missing data?
 - Unequal number of subjects across groups: 3dMVM, GroupAna
 - Break into *t*-tests: uber_ttest.py, 3dttest++, 3dMEMA
 - 3dLME

Univariate GLM: popular in neuroimaging

- ♦ Advantages: more *flexible* than the method of Sums of Squares (SS)
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates can be modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - \circ Intricate dummy coding using covariates to partition β s into subsets
 - Tedious pairing for numerator and denominator of F-stat
 - Can be hard to select proper denominator SS
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - Cannot handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- → Problematic: When residual SS is adopted for all tests
 - F-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate/invalid

MVM Implementation in AFNI

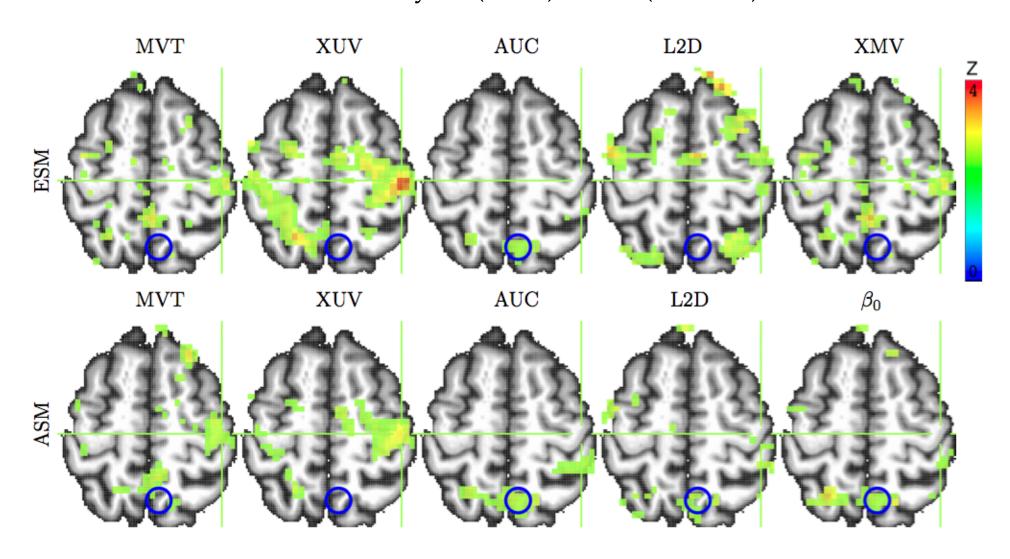
- ♦ Program 3dMVM [written in R programming language]
 - No tedious and error-prone dummy coding needed!
 - Symbolic coding for variables and post hoc testing

Variable types

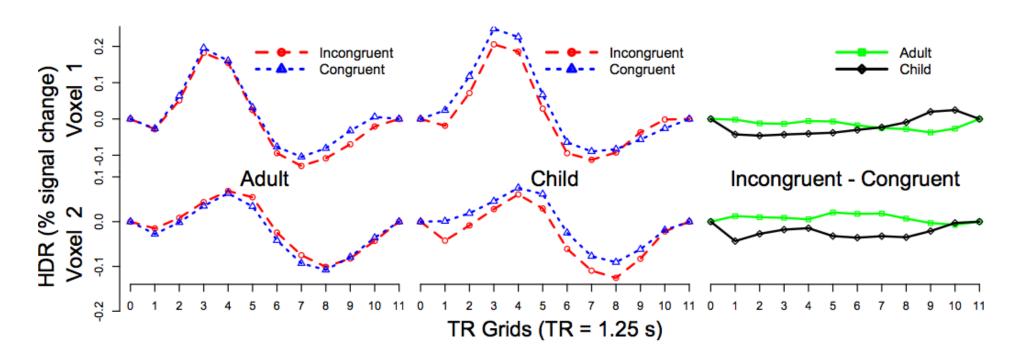
Post hoc tests

3dMVM	-prefix	OutputFile	-jobs 8	-SC		
	-bsVars	'Grp*Age'	-wsVars	'Cond'	-qVars 'Age	,
	$-num_glt 4$					Ì
	-gltLabel 1	Pat_Pos	-gltCode 1		$^{\prime}\mathrm{Grp}:$	1*Pat Cond: 1*Pos'
	-gltLabel 2	Ctl_Pos-Neg	-gltCode 2		'Grp: 1*Ctl (Cond: 1*Pos -1*Neg'
	-gltLabel 3	GrpD_Pos-Neg	-gltCode 3	$^{\prime}\mathrm{Grp}:$	1*Ctl -1*Pat (Cond: 1*Pos -1*Neg'
	-gltLabel 4	$\mathtt{Pat}_{\mathtt{A}}\mathtt{Age}$	-gltCode 4			'Grp: 1*Pat Age:'
	-dataTable					
	Subj	${ t Grp}$	Age	Cond	${ t InputFile}$	
	S1	Ctl	23	Pos	S1_Pos.nii	
	S1	Ctl	23	Neg	S1_Neg.nii	Data lavout
	S1	Ctl	23	Neu	S1_Neu.nii	Data layout
	S50	Pat	19	Pos	S50_Pos.nii	
	S50	Pat	19	Neg	S50_Neg.nii	
	S50	Pat	19	Neu	S50_Neu.nii	

- Fixed-Shape method (FSM)
- Estimead-Shape method (ESM) via basis functions: TENTzero, TENT, CSPLINzero, CSPLIN
 - Area under the curve (AUC) approach
 - Ignore **shape** differences between groups or conditions
 - Focus on the response magnitude measured by AUC
 - Potential issues: Shape information lost; Undershoot may cause trouble (canceling out some of the positive signal)
 - Better approach: maintaining shape information
 - Take individual β values to group analysis (MVM)
- Adjusted-Shape method (ASM) via SPMG2/3
 - \circ Only take the major component β to group level
 - or, Reconstruct HRF, and take the effect estimates (e.g., AUC)


- Analysis with effect estimates at consecutive time grids (from TENT or CSPLIN or reconstructed HRF)
 - Used to be considered very hard to set up (in GLM)
 - \circ Extra variable in analysis: Time = t_0 , t_1 , ..., t_k
 - One group of subjects under one condition
 - Accurate null hypothesis is

$$H_0: \beta_1=0, \beta_2=0, ..., \beta_k=0 \text{ (NOT } \beta_1=\beta_2=...=\beta_k)$$


- Testing the centroid (multivariate testing)
- 3dLME
- ∘ Approximate hypothesis H_0 : β_1 = β_2 =...= β_k (main effect)
 - 3dMVM
- \circ Result: *F*-statistic for H_0 and *t*-statistic for each Time point

- Multiple groups (or conditions) under one condition (or group)
 - Accurate hypothesis: $\beta_1^{(1)} \beta_1^{(2)} = 0, \beta_2^{(1)} \beta_2^{(2)} = 0, ..., \beta_k^{(1)} \beta_k^{(2)} = 0$
 - 2 conditions: **3dLME**
 - \circ Approximate hypothesis: $\beta_1^{(1)} = \beta_1^{(2)}, \beta_2^{(1)} = \beta_2^{(2)}, ..., \beta_k^{(1)} = \beta_k^{(2)}$
 - Interaction
 - Multiple groups: 3dANOVA3 –type 5 (two-way mixed ANOVA: equal #subjects), or 3dMVM
 - Multiple conditions: 3dANOVA3 –type 4
 - o Focus: do these groups/conditions have different response shape?
 - *F*-statistic for the interaction between Time and Group/Condition
 - *F*-statistic for main effect of Group: group/condition difference of AUC
 - *F*-statistic for main effect of Time: HDR effect across groups/conditions
- Other scenarios: factor, quantitative variables
 - o 3dMVM

- 2 groups (children, adults), 2 conditions (congruent, incongruent), 1 quantitative covariate (age)
- 2 methods: HRF modeled by 10 (tents) and 3 (SPMG3) bases

- Advantages of ESM over FSM
 - More likely to detect HDR shape subtleties
 - Visual verification of HDR signature shape (vs. relying significance testing: *p*-values)
- Study: Adults/Children with Congruent/Incongruent stimuli (2×2)

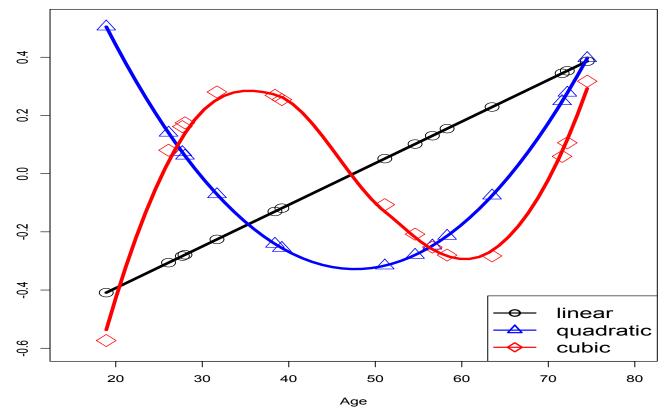
Correlation analysis

Correlation between brain response and behavioral measures

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_i + \epsilon_i$$

- P Difference between correlation and regression?
 - Essentially the same
 - o When explanatory (x_i) and response variable ($β_i$) are standardized (variance=1), then regression coefficient = correlation coefficient
- P Two approaches to get correlation from statistics software
 - Standardization
 - Convert *t*-statistic to *r* (or determination coefficient)

$$R^2 = t^2/(t^2 + DF)$$


o Programs: 3dttest++, 3dMEMA, 3dMVM, 3dRegAna

Trend analysis

- Correlation between brain response and some gradation
 - Linear, quadratic, or higher-order effects
 - Habituation or attenuation effect across time (trials)
 - o Between-subjects: Age, IQ
 - Fixed effect
 - Within-subject measures (covariates): morphed images
 - Random effects (trends in different subjects): 3dLME
 - Modeling: weights based on gradation
 - Equally-spaced: coefficients from orthogonal polynomials
 - o With 6 equally-spaced levels, e.g., 0, 20, 40, 60, 80, 100%,
 - Linear: -5 -3 -1 1 3 5
 - Quadratic: 5 -1 -4 -4 -1 5
 - Cubic: -5 7 4 -4 -7 5

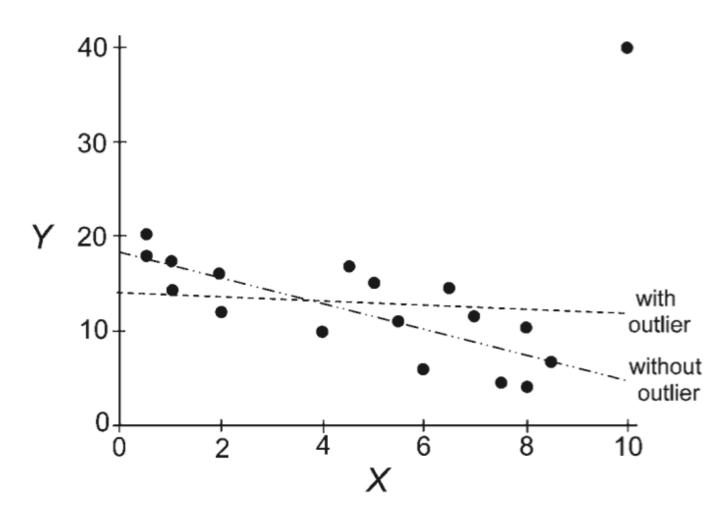
Trend analysis

- Correlation between brain response and some gradation
 - Modeling: weights based on gradation
 - o Not equally-spaced: constructed from, e.g., poly() in R
 - Ages of 15 subjects: 31.7 38.4 51.1 72.2 27.7 71.6 74.5 56.6
 54.6 18.9 28.0 26.1 58.3 39.2 63.5

Trend analysis: summary

- Cross-trials trend: AM2 single subject analysis with weights
- Modeling with within-subject trend (group level)
 - Run GLT with appropriate weights at individual levels
- Modeling with within-subject trend: 3 approaches
 - Set up GLT weights among factor levels at group level (not directly using covariate values) 3dANOVA2/3, 3dMVM, 3dLME: best with equally-spaced with even number of levels
 - Set up the covariates as the values of a variable
 - Needs to account for deviation of each subject (random trends)
 - 3dLME
 - Run trend analysis at individual level (*i.e.*, -gltsym), and then take the trend effect coefficient estimates to group level
 - Simpler than the other two approaches of doing trend analysis at the group level

Group analysis with quantitative variables


- Covariate: 3 usages
 - Quantitative (vs. categorical) variable of interest
 - o Age, IQ, behavioral measures, ...
 - Of no interest to the investigator (trying to remove variance)
 - Age, IQ, sex, handedness, scanner,...
 - Any explanatory variables in a model
- Variable selection
 - Infinite candidates for covariates: relying on prior information
 - P Typical choices: age, IQ, RT (reaction time), ...
 - RT: individual vs. group level
 - Amplitude Modulation regression: cross-trial variability at individual level (cf. Advanced Regression talk)
 - Group level: variability across subjects

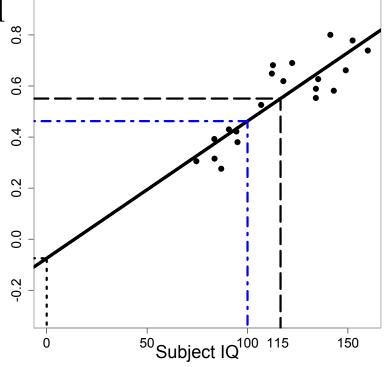
Group analysis with quantitative variables

- Conventional framework
 - ANCOVA: one between-subjects factor (e.g., sex) + one quantitative variable (e.g., age)
 - Extension to ANOVA: GLM
 - Homogeneity of slopes
- Broader framework
 - Any modeling approaches involving quantitative variables
 - o Regression, GLM, MVM, LME
 - Trend analysis, correlation analysis
- Interpretations
 - "Controlling x at ...", "holding x constant": centering
 - Regressing out dependence on *x*?

Caveats with covariate modeling

• Linear regression with few data points: Sensitive to outliers

Caveats with covariate modeling

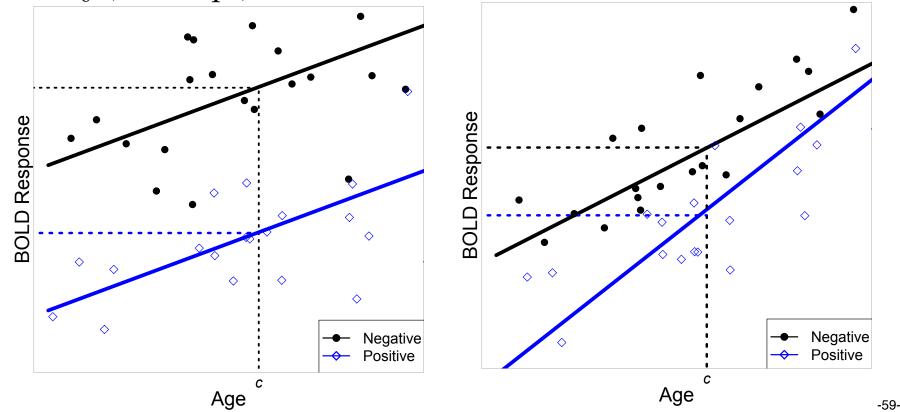

- Specification error: excluding a crucial explanatory variable may lead to incorrect or distorted interpretations (spuriousness)
 - $_{\circ}$ Toddler's vocabulary $\sim \alpha$ * shoe size: α = .50
 - $_{\circ}$ Toddler's vocabulary $\sim \alpha$ * shoe size + β * age: α = .04, β = .6
 - Explanatory variables (shoe size, age) are highly correlated: r = 0.8!
 - Excluding one may lead to overestimated effect for the other, but not *always* the case

• Suppression:

- \circ y (# suicide attempts) ~ 0.49 * x_1 (depression)
- \circ y ~ 0.19 * x₂ (amount of psychotherapy)
- $y \sim 0.70 * x_1 0.30 * x_2 (r_{12} = 0.7)$
- \circ Imagine that x_1 is head motion in FMRI!

Quantitative variables: subtleties

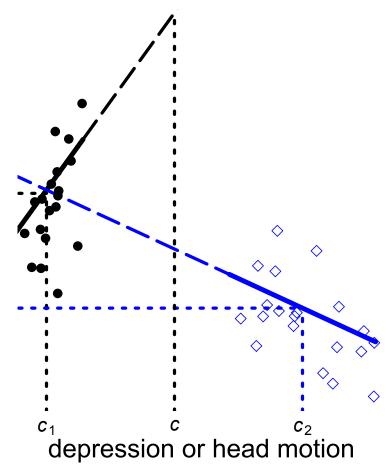
- Regression: one group of subjects + quantitative variables $\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$
 - Interpretation of effects (results of regression)
 - $\circ \alpha_1$ slope (change rate, marginal effect): effect per unit of x
 - $\circ \alpha_0$ intercept: group effect when x=0
 - Not necessarily meaningful _∞
 - Linearity may not hold
 - Solution: centering crucial for interpretability
 - Mean centering?or Median centering?



Quantitative variables: subtleties + confusion

Trickier scenarios with two or more groups

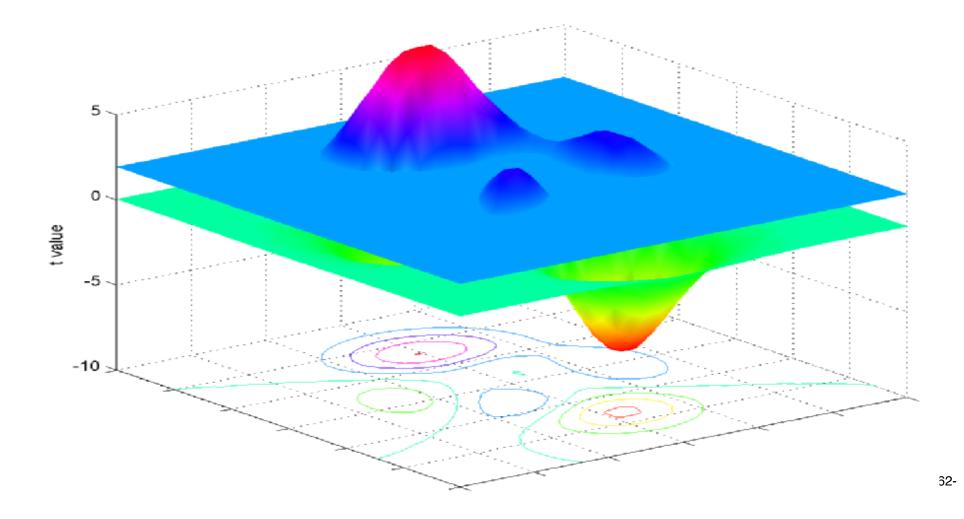
$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$


- Interpretation of effects
 - Slope: Interaction! Same or different slope?
 - $\circ \alpha_0$ (intercept) same or different center?

Quantitative variables: subtleties

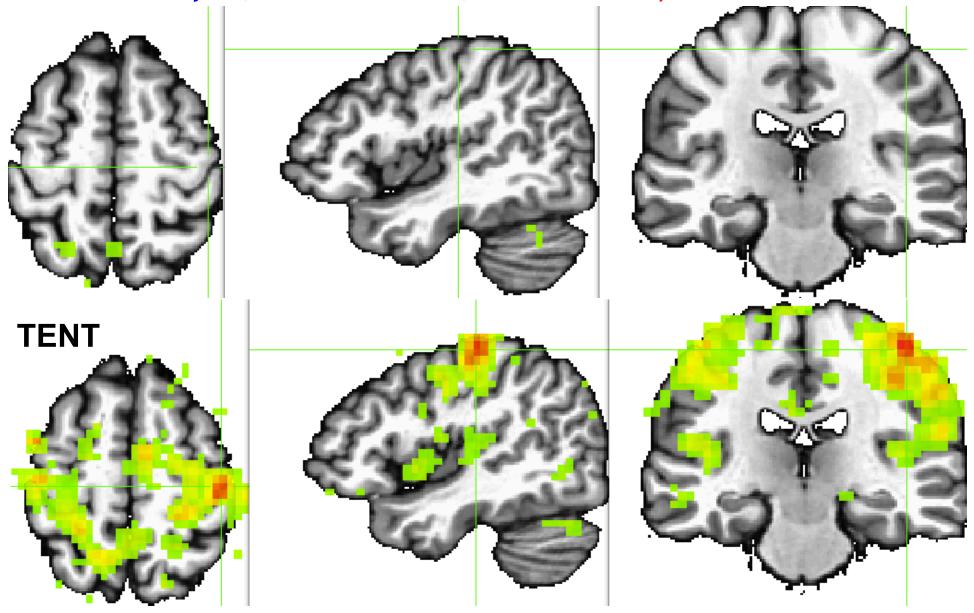
Trickiest scenario with two or more groups

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$

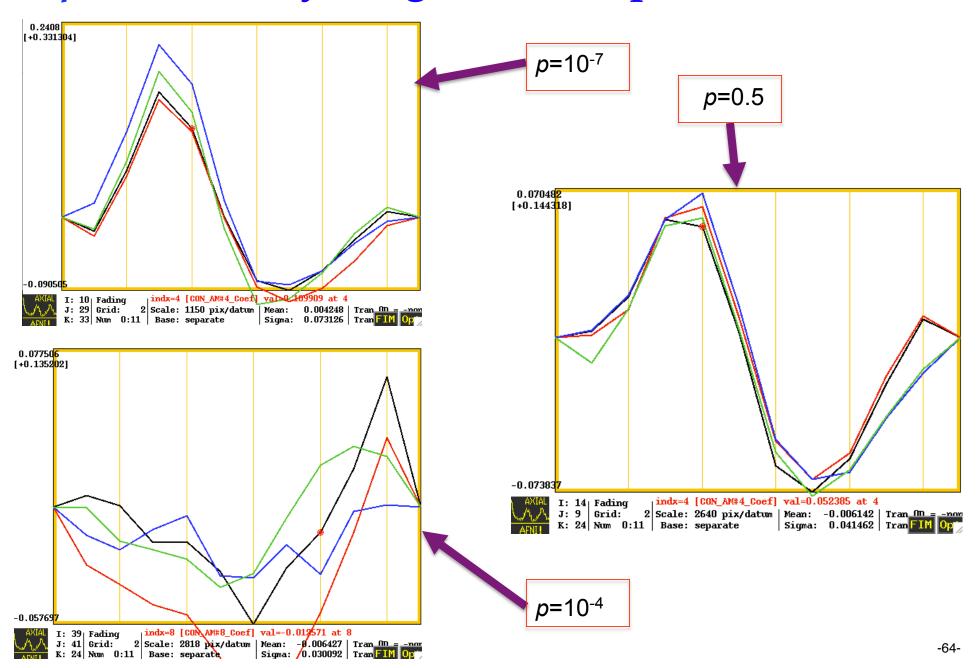

• More at http://afni.nimh.nih.gov/sscc/gangc/centering.html

Why should we report response magnitudes?

- Unacceptable in some fields to report only significance (peak t and smallest p)
- Neuroimaging is an exception currently!
- Obsession in FMRI about p-value!
 - Colored blobs of t-values
 - Peak voxel selected based on peak t-value
- Science is about reproducibility
 - Response amplitude should be of primacy focus
 - Statistics are only for thresholding
 - No physical dimension, and are a mix of response size and noise magnitude
 - Once surviving threshold, specific values are not informative


Basics: Null hypothesis significance testing (NHST)

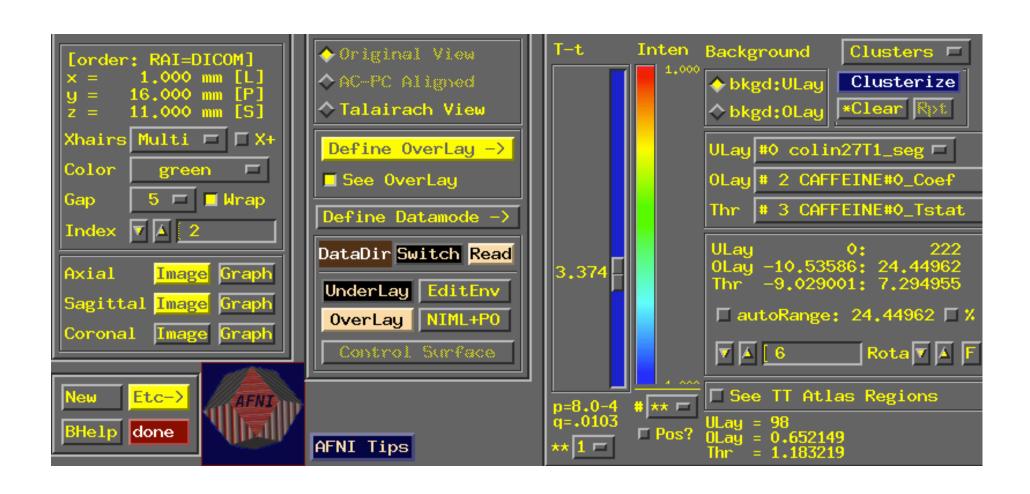
- Should science be based on a binary (Yes/No) inference?
 - o If a cluster fails to survive thresholding, it has no value?
 - Small Volume Correction (SVC): Band-Aid solution



Modeling strategy & results: an example

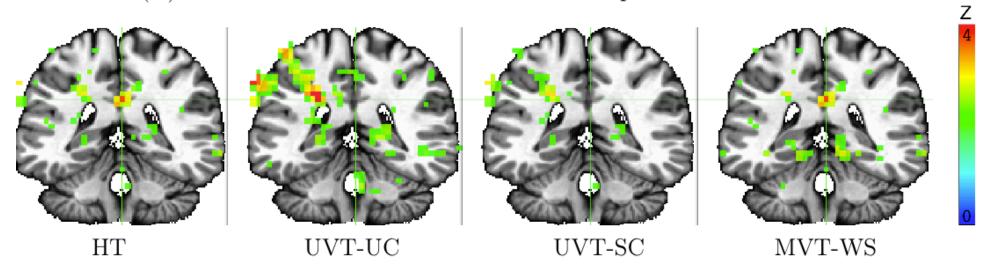
SPMG3: 1st β (canonical HDR) [voxel-wise p=0.01]

Is *p*-value everything? An example


Advantages of ESM

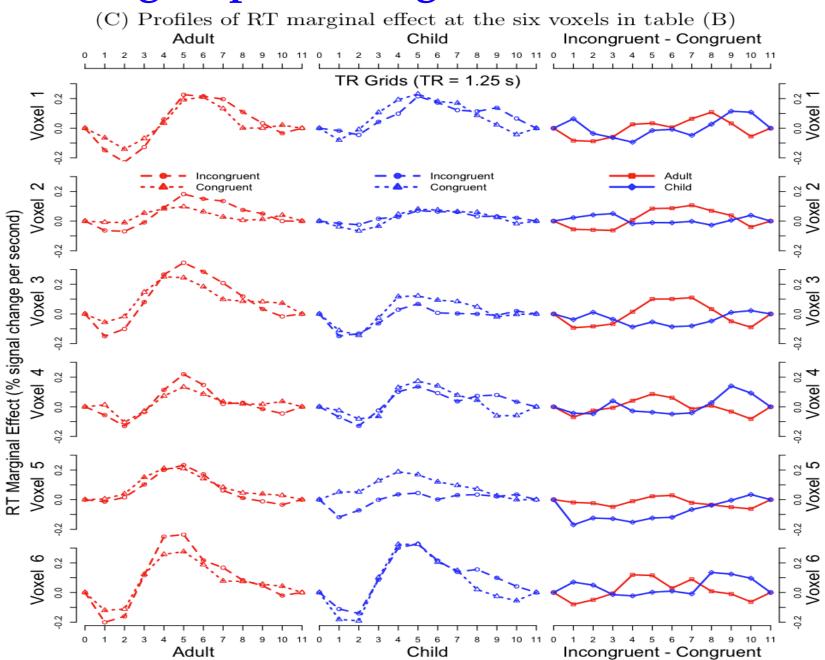
- Multiple basis functions
 - o TENTzero, TENT, CSPLINzero, CSPLIN
 - Similar to FIR in SPM, but FIR does not allow non-TRsynchronized modeling
- Higher statistical power than FSM and ASM
 - More likely to identify activations
- Extra support for true positives (TP) with HRF signature shape
 - Unavailable from FFM and ASM
- Crucial evidence if significance is marginal: false negatives (FP)
- Avoiding false positives (FP)
- Works best for event-related experiments
 - Useful for block designs if concerned about habituation, attenuation,...

How rigorous about corrections?


- Two types of correction
 - Multiple testing correction n(MTC): same test across brain
 - ∘ FWE, FDR, SVC(?)
 - o People (esp. reviewers) worship this!
 - Multiple comparisons correction (MCC): different tests
 - Happy vs. Sad, Happy vs. Neutral, Sad vs. Neutral
 - ∘ Two one-sided *t*-tests: *p*-value is ½ of two-sided test!
 - o How far do you want to go?
 - Tests in one study
 - o Tests in all FMRI or all scientific studies?
 - Nobody cares about this issue in FMRI (for unknown reasons)
- Many reasons for correction failure (loss of statistical significance)
 - Region size, number of subjects, alignment quality, substantial cross-subject variability (anxiety disorder, depression, ...)

Presenting response magnitudes

Presenting response magnitudes


(A) Coronal view of interaction effect of Group:Condition:Time

(B) Sphericity scenarios at six representative voxels

Voxel		Sphericity			UVT-UC	UVT-SC	MVT-WS	HT
No.	coordinates	Mauchly p-value	ϵ_{GG}	ϵ_{HF}	p-value	p-value	p-value	taking
1	-2 36 27	0	0.32	0.35	0.28	0.31	0.00021	MVT-WS
2	-33 -5 42	0	0.42	0.46	3.8×10^{-6}	8.4×10^{-4}	1.6×10^{-4}	MVT-WS
3	-50 -16 24	0	0.45	0.50	1.6×10^{-4}	0.0041	0.14	MVT-WS
4	-5 -20 23	8.7×10^{-6}	0.68	0.79	1.8×10^{-5}	0.0001	0.008	UVT-SC
5	37 68 20	0	0.30	0.32	0.012	0.074	0.15	MVT-WS
6	-36 -16 7	0	0.53	0.60	1.8×10^{-5}	5.3×10^{-4}	0.0019	UVT-SC

Presenting response magnitudes

IntraClass Correlation (ICC)

- Reliability (consistency, reproducibility) of signal: extent to which the levels of a factor are related to each other
 - Example 3 sources of variability: conditions, sites, subjects
 - Traditional approach: random-effects ANOVAs
 - LME approach

$$\hat{\beta}_{ijk} = \alpha_0 + \alpha_1 * x_k + b_i + c_j + d_k + \epsilon_{ijk}, b_i \sim N(0, \tau_1^2), c_j \sim N(0, \tau_2^2), d_k \sim N(0, \tau_3^2), \epsilon_{ijk} \sim N(0, \sigma^2)$$

$$ICC_l = \frac{\tau_l^2}{\tau_l^2 + \tau_2^2 + \tau_3^2 + \sigma^2}, l = 1, 2, 3$$

o 3dLME

Group Analysis: Non-Parametric Approach

- Parametric approach
 - $_{\circ}$ When have enough number subjects: n > 10
 - Random effects of subjects: usually Gaussian distribution
 - Individual and group analyses: separate
- Non-parametric approach
 - $_{\circ}$ Moderate number of subjects: 4 < n < 10
 - No assumption of data distribution (e.g., normality)
 - Statistics based on ranking or permutation
 - Individual and group analyses: separate

Non-Parametric Analysis

- Ranking-based: roughly equivalent to permutation tests
 - 3dWilcoxon (~ paired *t*-test)
 - 3dFriedman (~ one-way within-subject with 3dANOVA2)
 - 3dMannWhitney (~ two-sample *t*-test)
 - 3dKruskalWallis (~ between-subjects with 3dANOVA)
- Pros: Less sensitive to outliers (more robust)
- Cons
 - > Multiple testing correction **limited** to FDR (**3dFDR**)
 - > Less flexible than parametric tests
 - Can't handle complicated designs with more than one fixedeffects factor
 - Can't handle covariates
- Direct permutation approach?

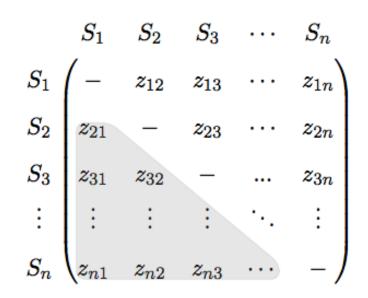
Group Analysis: Fixed-Effects Analysis (very old)

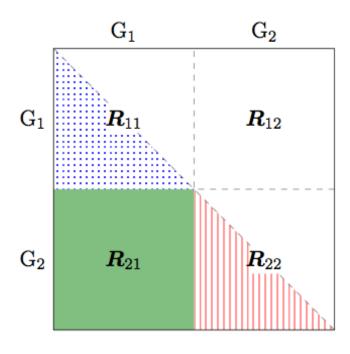
- When to consider?
 - LME approach
 - o Group level: a few subjects: n < 6
 - o Individual level: combining multiple runs/sessions
- Case study: difficult to generalize to whole population
- Model $\beta_i = b + \varepsilon_i$, $\varepsilon_i \sim N(0, \sigma_i^2)$, σ_i^2 : within-subject variability
 - o Fixed in the sense that cross-subject variability is not considered
- Direct fixed-effects analysis (3dDeconvolve/3dREMLfit)
 - o Combine data from all subjects and then run regression
- Fixed-effects meta-analysis (**3dcalc**): weighted least squares

$$\circ \beta = \sum w_i \beta_i / \sum w_i, w_i = t_i / \beta_i = \text{weight for } i \text{th subject}$$

$$\circ t = \beta \sqrt{\sum w_i}$$

Group Analysis Program List

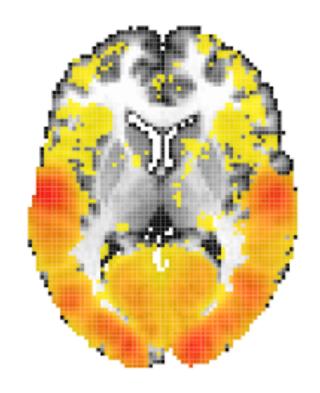

- **3dttest++** (<u>one-sample</u>, <u>two-sample</u> and <u>paired</u> *t*) + covariates (voxelwise is allowed, *e.g.*, GM fraction)
- **3dMEMA** (R package for mixed-effects analysis, *t*-tests plus covariates)
- 3ddot (correlation between two datasets)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- 3dMVM (AN(C)OVA, and within-subject MAN(C)OVA)
- **3dLME** (R package for sophisticated cases)
- 3dttest (obsolete: one-sample, two-sample and paired t)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (mostly obsolete: Matlab package for up to four-way ANOVA)

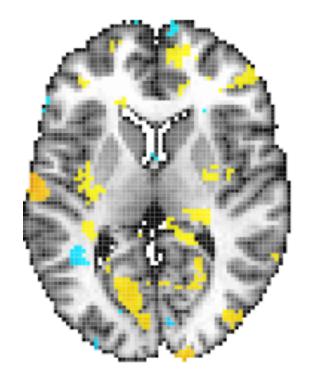

FMRI Group Analysis Comparison

		AFNI	SPM	FSL		
<i>t</i> -test (one-, two	o-sample, paired)	3dttest++, 3dMEMA	Yes	FLAME1, FLAME1+2		
One categorica one-way ANO		3dANOVA/2/3, GroupAna	Only one WS factor: full and flexible factorial design	Only one within- subject factor: GLM in FEAT		
Multi-way AN((C)OVA	3dANOVA2/3, GroupAna, 3dMVM				
Between-subject covariate		3dttest++, 3dMEMA, 3dMVM	Partially	Partially		
	Covariate + within-subject factor					
Sophisticated situations	Subject adjustment in trend analysis	3dLME				
	Basis functions					
	Missing data			,		

- Conventional task-related FMRI experiments
 - Meticulously designed
 - Each trial lasts one or few TRs
 - o Ultimate goal: identify ROIs associated with a task or a contrast
 - Potential issues: sensitivity (underpowered)
- Naturalistic tasks: lasting for a few minutes or more
 - Movie clip, music, speech
 - Minimally manipulated

- Analysis methodology
 - Regression with task-related regressors won't work
 - Voxel-wise correlation between any subject pair with
 3dTcorrelate
 - n = 4 subjects $\rightarrow 6$ ISC; n = 5 subjects $\rightarrow 10$ ISC
 - *n* subjects $\rightarrow n(n-1)/2$ ISC which are not all independent!
 - o How to go about group analysis?




- Analysis methodology
 - o How to go about group analysis?
 - Difficulty: The ISCs are not independent with each other
 - The correlations are correlated themselves!

	Z_{21}	Z_{31}	Z_{41}	Z_{51}	Z_{32}	Z_{42}	Z_{52}	Z_{43}	Z_{53}	Z_{54}
Z_{21}	(1	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0
Z_{31}	ρ	1	ρ	ρ	ρ	0	0	ρ	ρ	0
Z_{41}	ρ	ρ	1	ρ	0	ho	0	ρ	0	ρ
Z_{51}	ρ	ρ	ρ	1	0	0	ρ	0	ρ	ρ
Z_{32}	ρ	ρ	0	0	1	ho	ρ	ρ	ρ	0
Z_{42}	ρ	0	ρ	0	ρ	1	ρ	ρ	0	ρ
Z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
Z_{43}	0	ρ	ρ	0	ρ	ho	0	1	ρ	ρ
Z_{53}	0	ρ	0	ρ	ρ	0	ρ	ρ	1	ρ
Z_{54}	0	0	ρ	ρ	0	$\boldsymbol{\rho}$	ρ	ρ	ρ	1 /

- Analysis methodology
 - o How to go about group analysis?
 - Male group and difference between males and females

Males, p < 0.001

Males vs. Females, p < 0.05

Overview

- Basic concepts
 - Why do we need to do group analysis?
 - o Factor, quantitative covariates, main effect, interaction, ...
- Various group analysis approaches
 - ∘ Regression (*t*-test): 3dttest++, 3dMEMA, 3dttest, 3RegAna
 - AN(C)OVA: 3dANOVAx, 3dMVM, GroupAna
 - o Quantitative covariates: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - Impact & consequence of SFM, SAM, and SEM
- Miscellaneous
 - Issues regarding result reporting
 - Intra-Class Correlation (ICC)
 - Nonparametric approach and fixed-effects analysis
- No routine statistical questions, only questionable routines!