Time Series Analysis in AFNI

Outline: 6+ Hours of Edification

- Philosophy (e.g., theory without equations)
- Sample FMRI data

-1-

- Theory underlying FMRI analyses: the HRF
- "Simple" or "Fixed Shape" regression analysis
 Theory and Hands-on examples
- "Deconvolution" or "Variable Shape" analysis
 Theory and Hands-on examples
- Advanced Topics (followed by brain meltdown)

Goals: Conceptual Understanding + Prepare to Try It Yourself

Data Analysis Philosophy

- <u>Signal</u> = Measurable response to stimulus
- <u>Noise</u> = Components of measurement that interfere with detection of signal
- Statistical detection theory:

-2-

- Understand relationship between stimulus & signal
- Characterize noise statistically
- Can then devise methods to distinguish noise-only measurements from signal+noise measurements, and assess the methods' reliability
- Methods and usefulness depend strongly on the assumptions
 - Some methods are "robust" against erroneous assumptions, and some are not

FMRI Philosopy: Signals and Noise

 FMRI <u>Stimulus→Signal</u> connection and <u>noise</u> <u>statistics</u> are both poorly characterized

-3-

- Result: there is no "best" way to analyze FMRI time series data: there are only "reasonable" analysis methods
- To deal with data, must make some assumptions about the signal and noise
- Assumptions will be wrong, but must do *something*
- Different kinds of experiments require different kinds of analyses
 - Since signal models and questions you ask about the signal will vary
 - It is important to understand what is going on, so you can select and evaluate "reasonable" analyses

Meta-method for creating analysis methods

- Write down a mathematical model connecting stimulus (or "activation") to signal
- Write down a statistical model for the noise

-4-

- Combine them to produce an equation for measurements given signal+noise
 - Equation will have unknown parameters, which are to be estimated from the data
 - N.B.: signal may have zero strength (no "activation")
- Use statistical detection theory to produce an algorithm for processing the measurements to assess signal presence and characteristics
 - e.g., least squares fit of model parameters to data

Time Series Analysis on Voxel Data

- Most common forms of FMRI analysis involve fitting an activation+BOLD model to each voxel's time series separately (AKA "univariate" analysis)
 - Some pre-processing steps may do inter-voxel computations
 - o e.g., spatial smoothing to reduce noise
- Result of model fits is a set of parameters at each voxel, estimated from that voxel's data
 - e.g., activation amplitude, delay, shape
 - "SPM" = statistical parametric map

-5-

- Further analysis steps operate on individual SPMs
 - e.g., combining/contrasting data among subjects

Some Features of FMRI Voxel Time Series

-6-

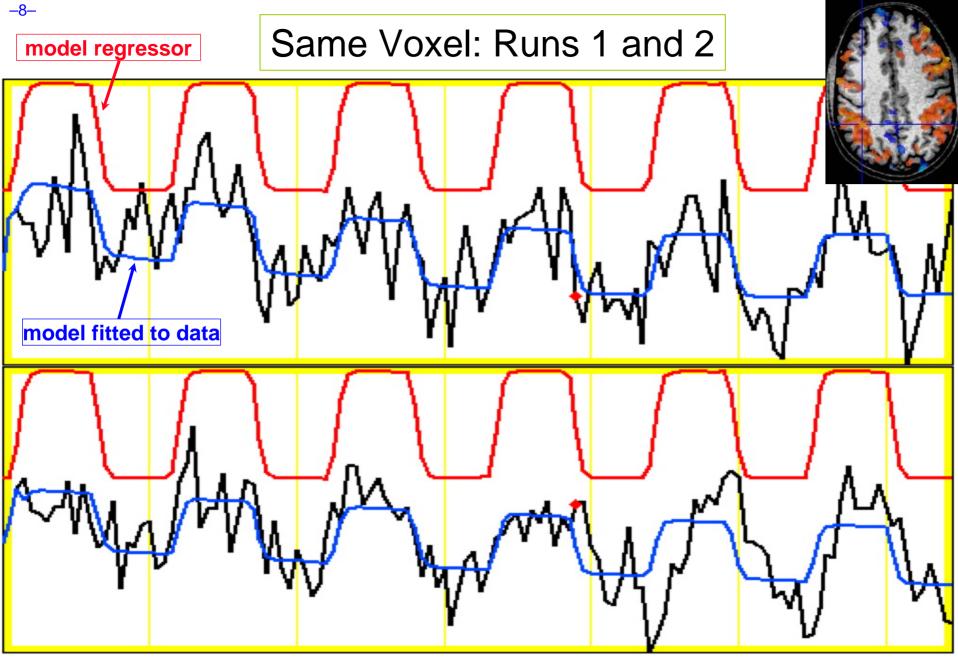
- FMRI only measures <u>changes</u> due to neural "activity"
 - Baseline level of signal in a voxel means little or nothing about neural activity
 - Also, baseline level tends to drift around slowly (100 s time scale or so)
- Therefore, an FMRI experiment must have at least 2 different neural conditions ("tasks" and/or "stimuli")
 - Then statistically test for differences in the MRI signal level between conditions
 - Many experiments: one condition is "rest"
- Baseline is modeled separately from activation signals, and <u>baseline model includes "rest" periods</u>

Some Sample FMRI Data Time Series

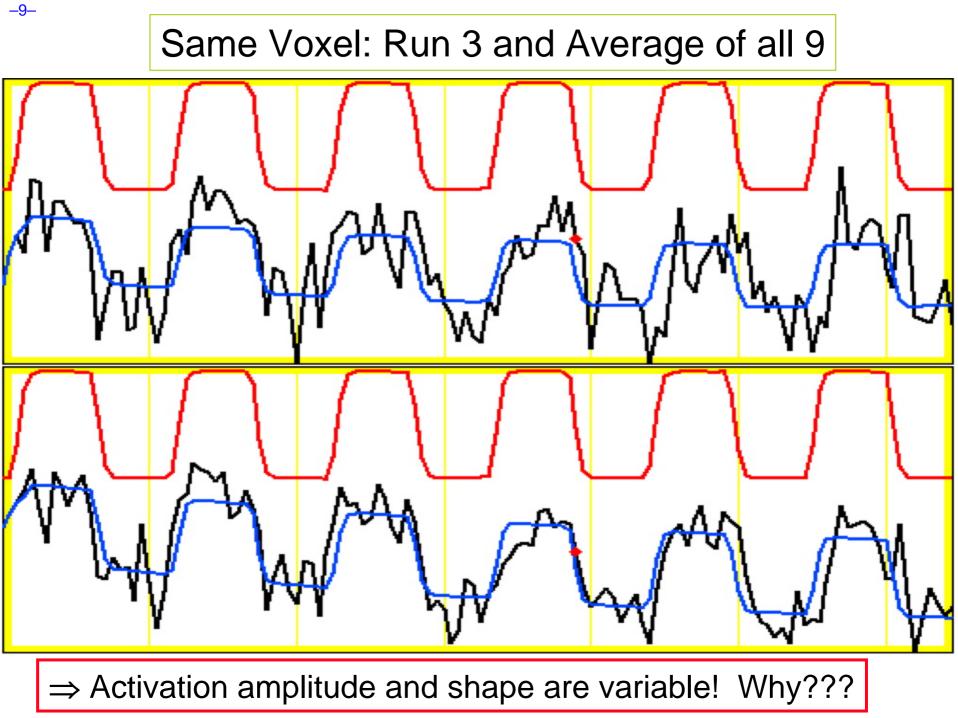
<u>First</u>: Block-trial FMRI data

-7-

- Activation occurs over a sustained period of time (say, 10 s or longer), usually from more than one stimulation event, in rapid succession
- BOLD (hemodynamic) response accumulates from multiple close activations and is large
- BOLD response is often visible in time series
- Next 2 slides: same brain voxel in 3 (of 9) EPI runs
 - black curve (noisy) = data
 - red curve (above data) = ideal model response
 - blue curve (within data) = model fitted to data
 - somatosensory task (finger being rubbed)



Block-trials: 27 s "on" / 27 s "off"; TR=2.5 s; 130 time points/run



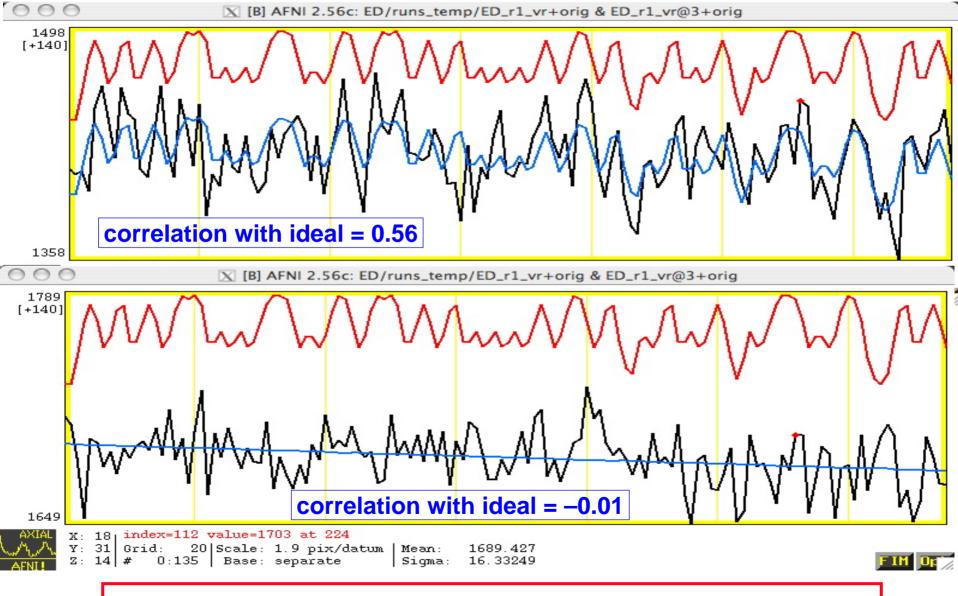
More Sample FMRI Data Time Series

<u>Second</u>: Event-related FMRI

-10-

- Activation occurs in single relatively brief intervals
- "Events" can be randomly or regularly spaced in time
 - If events are randomly spaced in time, signal model itself <u>looks</u> noise-like (to the pitiful human eye)
- BOLD response to stimulus tends to be weaker, since fewer nearby-in-time "activations" have overlapping hemodynamic responses
- Next slide: Visual stimulation experiment

Two Voxel Time Series from Same Run



Lesson: ER-FMRI activation is not obvious via casual inspection

-11-

Hemodynamic Response Function (HRF)

 HRF is the idealization of measurable FMRI signal change responding to a single activation cycle (up and down) from a stimulus in a voxel

Response to brief activation (< 1 s):

- delay of 1-2 s
- rise time of 4-5 s
- fall time of 4-6 s
- model equation:

 $h(t) \propto t^b e^{-t/c}$

h(*t*) is signal
 change *t* seconds
 after activation

1 Brief Activation

QuickTime[™] and a GIF decompressor are needed to see this picture.

-12-

Linearity of HRF

- Multiple activation cycles in a voxel, closer in time than duration of HRF:
 - Assume that overlapping responses add

QuickTime[™] and a GIF decompressor are needed to see this picture.

 Linearity is a pretty good assumption But not apparently perfect — about 90% correct Nevertheless, is widely taken to be true and is the basis for the "general linear model" (GLM) in FMRI analysis

<u>3 Brief Activations</u>

-13-

Linearity and Extended Activation

Extended activation, as in a block-trial experiment:
 P HRF accumulates over its duration (≈ 10 s)

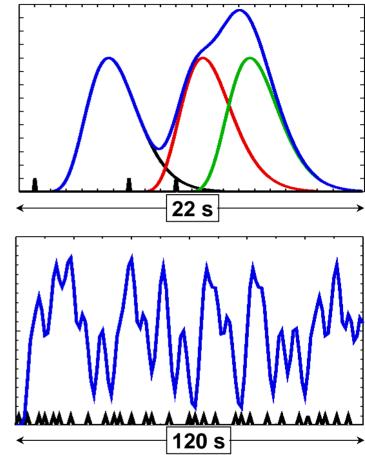
QuickTime[™] and a GIF decompressor are needed to see this picture.

• Black curve = response to a single brief stimulus • **Red** curve = activation intervals • Green curve = summed up HRFs from activations Block-trials have larger BOLD signal changes than eventrelated experiments

2 Extended Activations

Convolution Signal Model

- FMRI signal we look for in each voxel is taken to be sum of the individual trial HRFs
 - Stimulus timing is assumed known (or measured)
 - Resulting time series (blue curves) are called the *convolution* of the HRF with the stimulus timing
- Must also allow for baseline and baseline drifting
 - Convolution models only the FMRI signal changes



 Real data starts at and returns to a nonzero, slowly drifting baseline

Simple Regression Models

• Assume a fixed shape h(t) for the HRF

 $P e.g., h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]

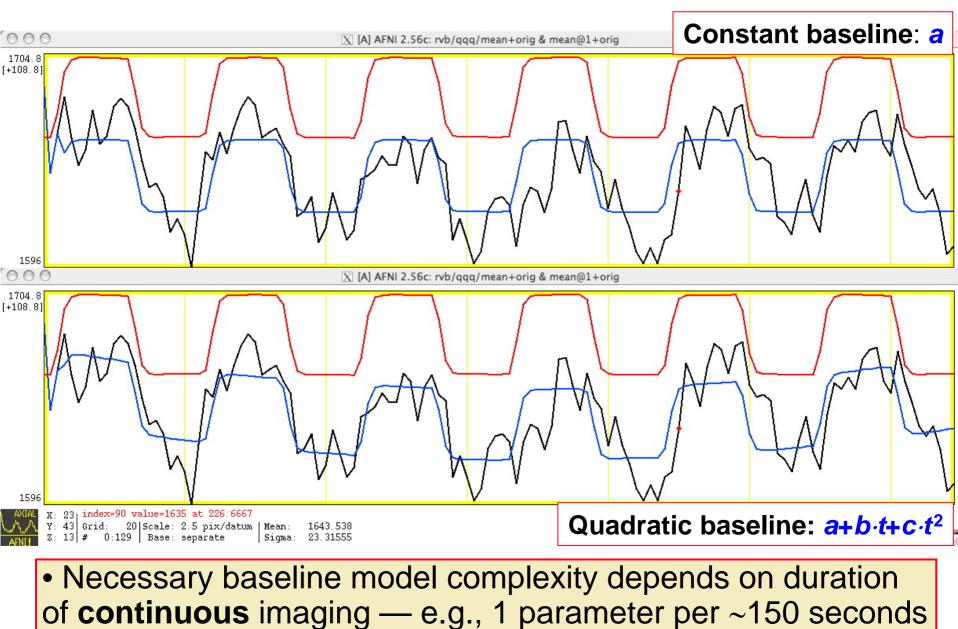
- Convolved with stimulus timing (e.g., AFNI program waver), get ideal response function r(t)
- Assume a form for the baseline

P e.g., $a + b \cdot t$ for a constant plus a linear trend

- In each voxel, fit data Z(t) to a curve of the form $\frac{Z(t) \approx a + b \cdot t + \beta \cdot r(t)}{The signal model!}$
 - a, b, β are unknown parameters to be calculated in each voxel
 - a,b are "nuisance" parameters
 - β is amplitude of r(t) in data = "how much" BOLD

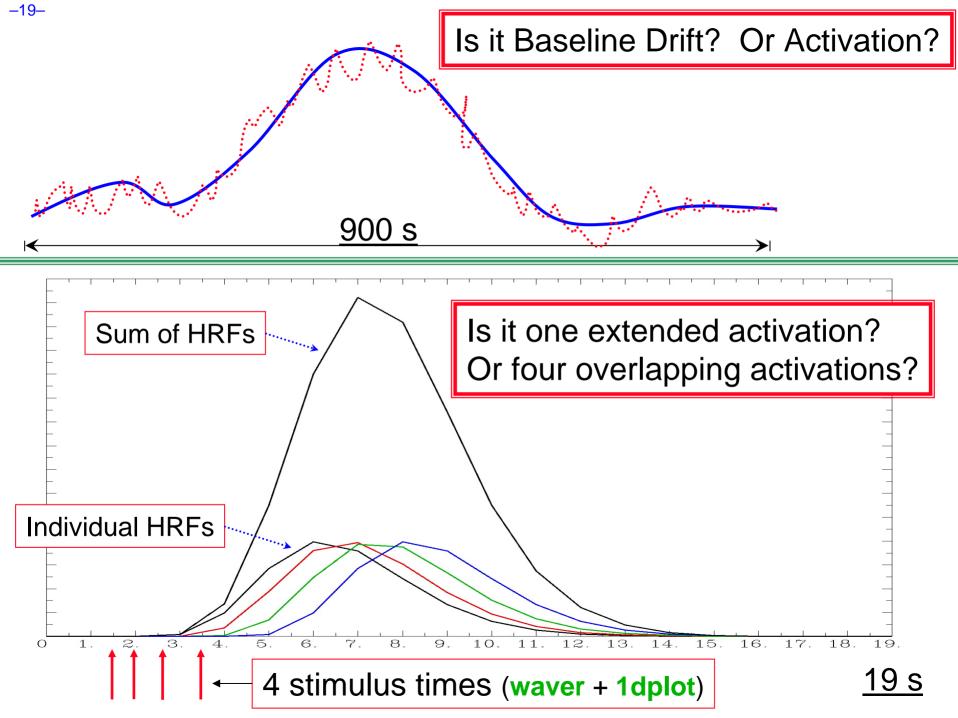
-16-

Simple Regression: Example



Duration of Stimuli - Important Caveats

- Slow baseline drift (time scale 100 s and longer) makes doing FMRI with <u>long duration</u> stimuli difficult
 - Learning experiment, where the task is done continuously for ~15 minutes and the subject is scanned to find parts of the brain that adapt during this time interval
 - Pharmaceutical challenge, where the subject is given some psychoactive drug whose action plays out over 10+ minutes (e.g., cocaine, ethanol)
- Multiple very <u>short duration</u> stimuli that are also very close in time to each other are very hard to tell apart, since their HRFs will have 90-95% overlap
 - Binocular rivalry, where percept switches $\sim 0.5 \ \text{s}$



<u>Multiple Stimuli = Multiple Regressors</u>

- Usually have more than one class of stimulus or activation in an experiment
 - e.g., want to see size of "face activation" vis-à-vis "house activation"; or, "what" vs. "where" activity
- Need to model each separate class of stimulus with a separate response function $r_1(t)$, $r_2(t)$, $r_3(t)$,
 - Each r_j(t) is based on the stimulus timing for activity in class number j
 - Calculate a β_j amplitude = amount of $r_j(t)$ in voxel data time series Z(t)
 - $\ensuremath{\,^{\rho}}$ Contrast $\ensuremath{\beta}$ s to see which voxels have differential activation levels under different stimulus conditions

• e.g., statistical test on the question $\beta_1 - \beta_2 = 0$?

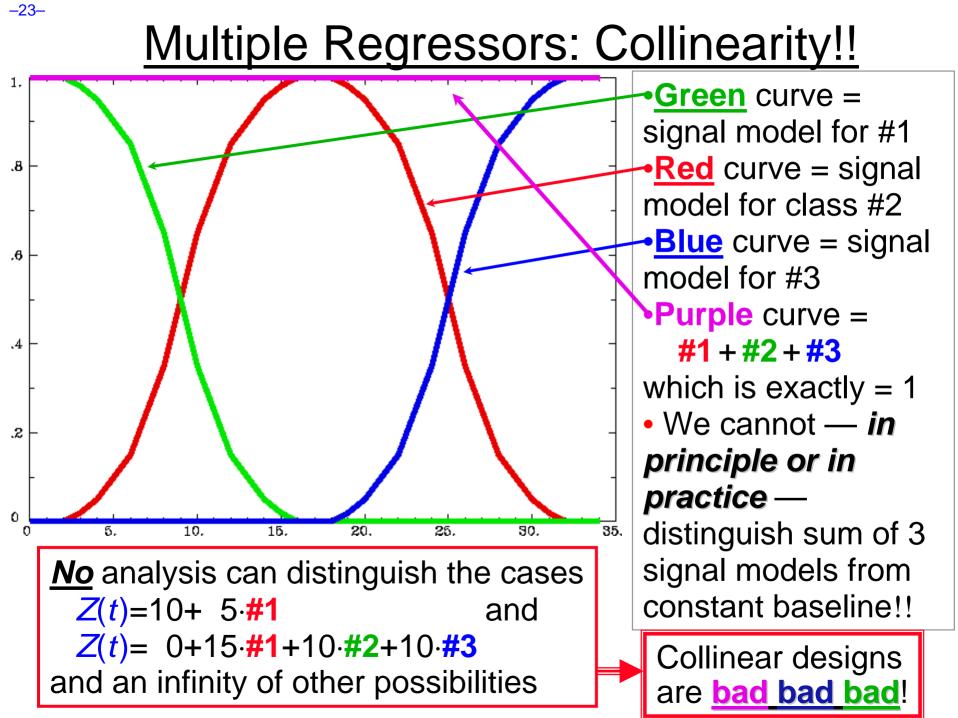
Multiple Stimuli - Important Caveat

- You do <u>not</u> model the baseline condition
 - e.g., "rest", visual fixation, high-low tone discrimination, or some other simple task
- FMRI can only measure <u>changes</u> in MR signal levels between tasks
 - So you need some simple-ish task to serve as a reference point
- The baseline model (e.g., a + b · t) takes care of the signal level to which the MR signal returns when the "active" tasks are turned off
 - Modeling the reference task explicitly would be redundant (or "collinear", to anticipate a forthcoming jargon word)

Multiple Regressors: Cartoon

QuickTime[™] and a GIF decompressor are needed to see this picture.

• **Red** curve = signal model for class #1 • Green curve = signal model for #2 • **Blue** curve = $\beta_1 \cdot \#1 + \beta_2 \cdot \#2$ where β_1 and β_2 vary from 0.1 to 1.7 in the animation Goal of regression is to find β_1 and β_2 that make the blue curve best fit the data time series • Gray curve = 1.5.#1+0.6.#2+noise = simulated data



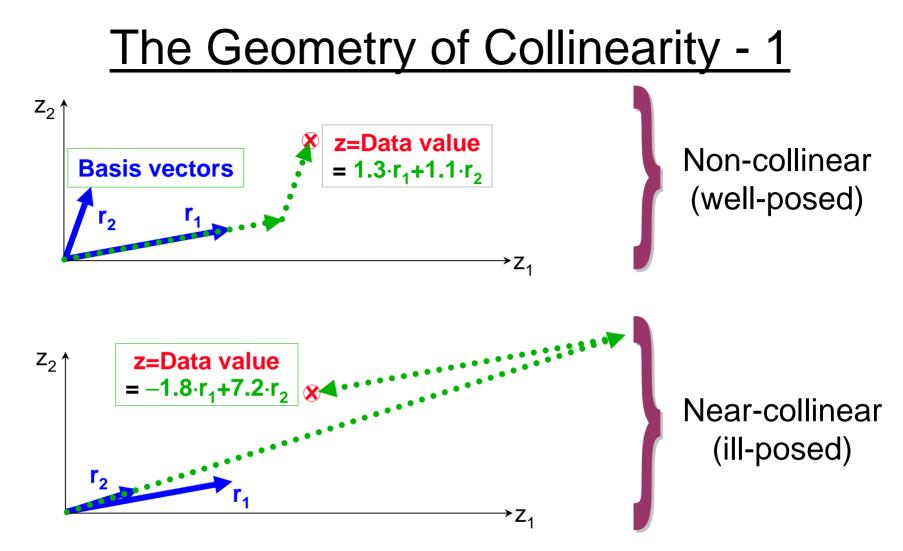
Multiple Regressors: Near Collinearity

Red & Green stimuli average 2 s apart

QuickTime[™] and a GIF decompressor are needed to see this picture.

Stimuli are too close in time to distinguish response **#1** from **#2**, considering noise

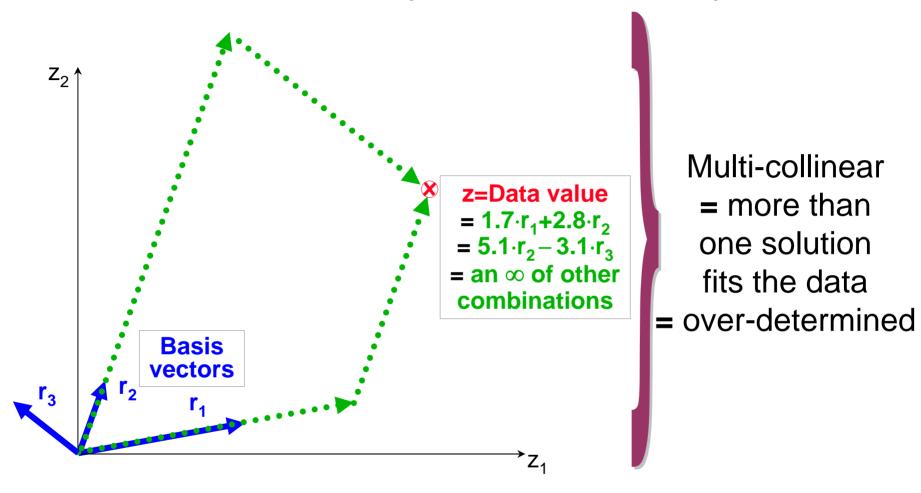
•Red curve = signal model for class #1 •Green curve = signal model for #2 •Blue curve = $\beta_1 \cdot \#1 + (1 - \beta_1) \cdot \#2$ where β_1 varies randomly from 0.0 to 1.0 in animation •Gray curve = $0.66 \cdot \#1 + 0.33 \cdot \#2$ = simulated data with no noise Lots of different combinations of #1 and #2 are decent fits to gray curve



-25-

- Trying to fit data as a sum of basis vectors that are nearly parallel doesn't work well: solutions can be huge
- Exactly parallel basis vectors would be impossible:
 - Determinant of matrix to invert would be zero

The Geometry of Collinearity - 2



 Trying to fit data with too many regressors (basis vectors) doesn't work: no unique solution

Equations: Notation

- Will generally follow notation of Doug Ward's manual for the AFNI program <u>3dDeconvolve</u>
- Time: continuous in reality, but in steps in the data
 - Functions of continuous time are written like f(t)
 - Functions of discrete time expressed like f(n TR)where n=0,1,2,... and TR=time step
 - \sim Usually use subscript notion f_n as shorthand
 - Collection of numbers assembled in a column is a

$$\begin{cases} \operatorname{vector of} \\ \operatorname{length} N \end{cases} = \begin{bmatrix} J_0 \\ f_1 \\ f_2 \\ \bullet \\ f_{N-1} \end{bmatrix} = \mathbf{f} \begin{bmatrix} A_{00} & A_{01} & \textcircled{S} & A_{0,N-1} \\ A_{10} & A_{11} & \textcircled{S} & A_{1,N-1} \\ \bullet \\ \bullet \\ A_{M-1,0} & A_{M-1,1} & \textcircled{S} & A_{M-1,N-1} \end{bmatrix} = \mathbf{A} = \{M \times N \text{ matrix}\}$$

Equations: Single Response Function

- In each voxel, fit data Z_n to a curve of the form $Z_n \approx a + b \cdot t_n + \beta \cdot r_n$ for $n=0,1,\ldots,N-1$ (N=# time pts)
 - a, b, β are unknown parameters to be calculated in each voxel
 - a, b are "nuisance" baseline parameters
 - β is amplitude of r(t) in data = "how much" BOLD
 - Baseline model might be more complicated for long (> 150 s) continuous imaging runs: ≈1 param per 150 s
 - 150 < T < 300 s: $a+b \cdot t+c \cdot t^2$
 - $a+b t+c t^2 + [7/150]$ low frequency components • Longer:
 - Might also include as extra baseline components the estimated subject head movement time series, in order to remove residual contamination from such artifacts

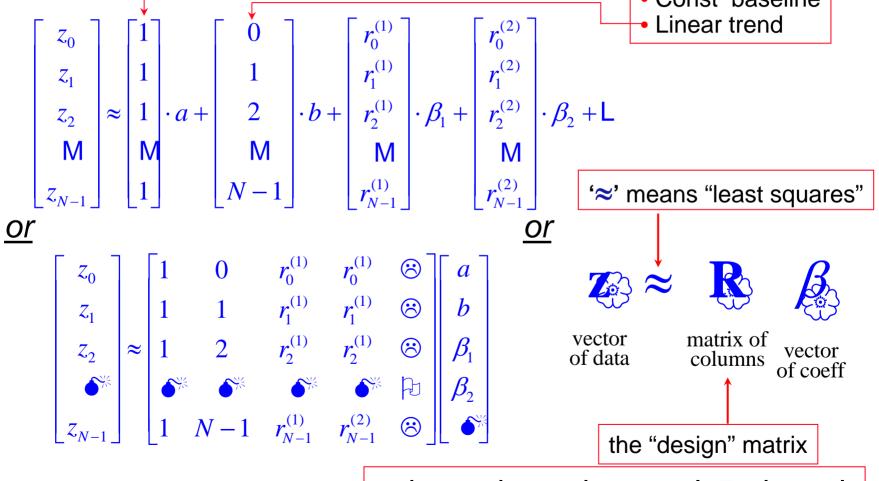
Equations: Multiple Response Functions

- In each voxel, fit data Z_n to a curve of the form $Z_n \approx [\text{baseline}]_n + \beta_1 \cdot r_n^{(1)} + \beta_2 \cdot r_n^{(2)} + \beta_3 \cdot r_n^{(3)} + \bigotimes$
 - β_j is amplitude in data of $r_n^{(j)} = r_j(t_n)$; i.e., "how much" of j^{th} response function in the data time series
 - In simple regression, each r_j(t) is derived directly from stimulus timing and user-chosen HRF model
 - In terms of stimulus times: $r_n^{(j)} = \sum_{k=1}^{K_j} h(t_n \tau_k^{(j)})$
 - If stimulus occurs on the imaging TR time-grid, stimulus can be represented as a 0-1 time series: $\begin{bmatrix} s_0^{(j)} & s_1^{(j)} & s_2^{(j)} & s_3^{(j)} \end{bmatrix}$ where $s_k^{(j)}=1$ if stimulus #j is on at time $t=k \cdot TR$, and $s_k^{(j)}=0$ if #j is off at that time:

$$r_n^{(j)} = h_0 s_n^{(j)} + h_1 s_{n-1}^{(j)} + h_2 s_{n-2}^{(j)} + h_3 s_{n-3}^{(j)} + \bigotimes = \sum_{q=0}^p h_q s_{n-q}^{(j)}$$

Equations: Matrix-Vector Form

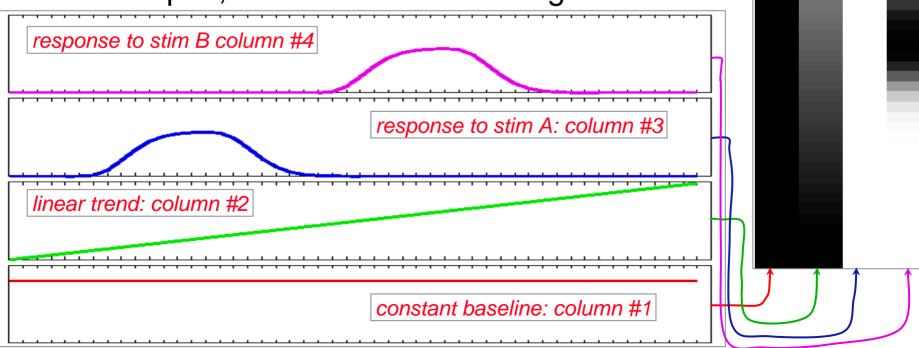
Express *known* data vector as a sum of *known* columns with *unknown* coefficents:
 Const baseline



z depends on the voxel; R doesn't

Visualizing the R Matrix

- Can graph columns, as shown below
 - But might have 20-50 columns
- Can plot columns on a grayscale, as shown at right
 - Easier to show many columns
 - In this plot, darker bars means larger numbers



<u>Solving</u> z≈Rβ for β

- Number of equations = number of time points
 - 100s per run, but perhaps 1000s per subject
- Number of unknowns usually in range 5–50
- Least squares solution: $\hat{\boldsymbol{\beta}} = [\mathbf{R}^T \mathbf{R}]^{-1} \mathbf{R}^T \mathbf{z}$

-32-

From $\hat{\beta}$, calculate $\hat{z} = R\hat{\beta}$ as the fitted model

 $\overline{z} - \hat{z}$ is the *residual time series* = noise (we hope)

Collinearity: when matrix R^TR can't be inverted
 Near collinearity: when inverse exists but is huge

Simple Regression: Recapitulation

- Choose HRF model *h(t)* [AKA fixed-model regression]
- Build model responses r_n(t) to each stimulus class
 Using h(t) and the stimulus timing
- Choose baseline model time series

-33-

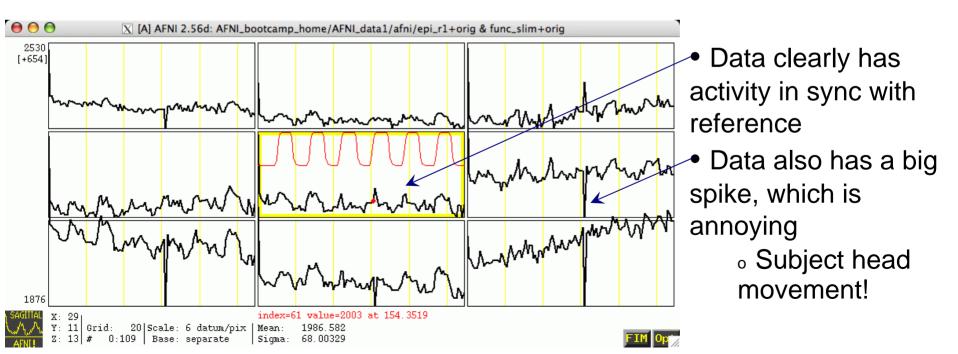
- Constant + linear + quadratic + movement?
- Assemble model and baseline time series into the columns of the R matrix
- For each voxel time series \mathbf{z} , solve $\mathbf{z} \approx \mathbf{R} \boldsymbol{\beta}$ for $\hat{\boldsymbol{\beta}}$
- Individual subject maps: Test the coefficients in $\hat{\beta}$ that you care about for statistical significance
- **Group maps**: Transform the coefficients in $\hat{\beta}$ that you care about to Talairach space, and perform statistics on these $\hat{\beta}$ values

Sample Data Analysis: Simple Regression

- Enough theory (for now: more to come later!)
- To look at the data: type cd AFNI_data1/afni ; then afni
- Switch Underlay to dataset epi_r1
 - Then Sagittal Image and Graph

-34-

- FIM→Pick Ideal; then click afni/ideal_r1.1D; then Set
- Right-click in image, Jump to (ijk), then 29 11 13, then Set



Preparing Data for Analysis

• Six preparatory steps are common:

-35-

- Image registration (realignment): program <u>3dvolreg</u>
- Image smoothing: program <u>3dmerge</u>
- Image masking: program <u>3dClipLevel</u> or <u>3dAutomask</u>
- Conversion to percentile: programs <u>3dTstat</u> and <u>3dcalc</u>
- Censoring out time points that are bad: program
 <u>3dToutcount</u> or <u>3dTqual</u>
- Catenating multiple imaging runs into 1 big dataset: program <u>3dTcat</u>
- Not all steps are necessary or desirable in any given case
- In this first example, will only do registration, since the data obviously needs this correction

Data Analysis Script

\

• In file epi_r1_decon:

```
waver -GAM
    -input epi_r1_stim.1D
    -TR 2.5
    > epi_r1_ideal.1D
3dvolreg -base 2
    -prefix epi_r1_reg
    -1Dfile epi_r1_mot.1D
    -verb
```

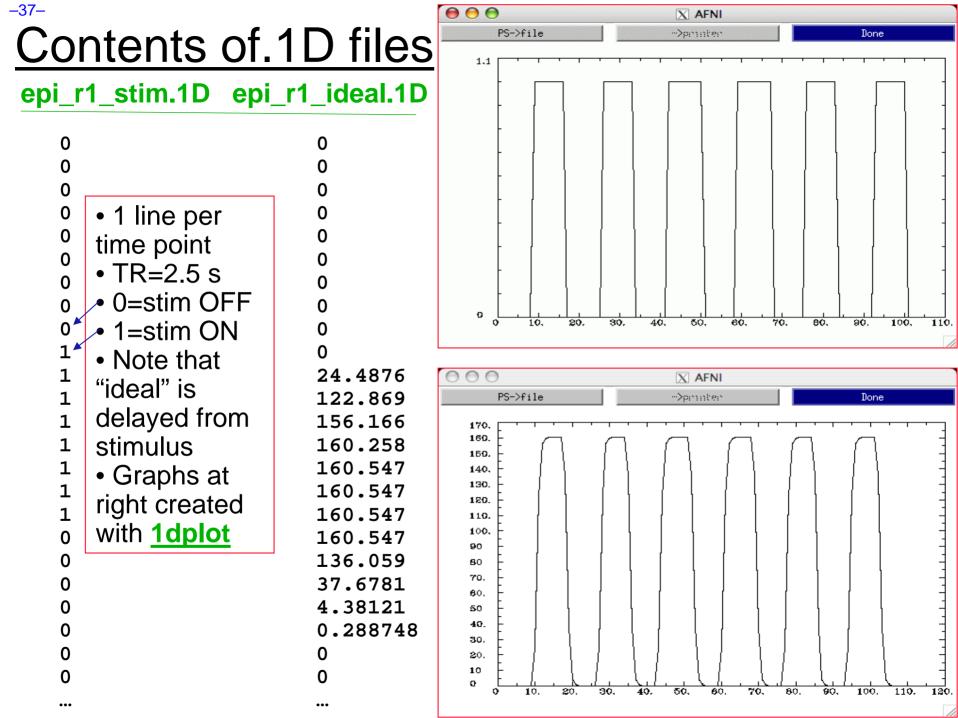
```
epi_r1+orig
```

```
3dDeconvolve
    -input epi_r1_reg+orig
    -nfirst 2
    -num_stimts 1
    -stim_file 1 epi_r1_ideal
    -stim_label 1 AllStim
    -tout
    -bucket epi_r1_func
    -fitts epi_r1_fitts
```

<u>waver</u> creates model time series from input stimulus timing in file epi_r1_stim.1D
Plot a 1D file to screen with 1dplot epi_r1_ideal.1D
<u>3dvolreg</u> (3D image registration) will be covered in a later presentation

- <u>**3dDeconvolve</u>** = regression code</u>
- \ ← Name of input dataset
- \ → Number of input model time series
- -stim_file 1 epi_r1_ideal.1D \ Name of first input model time series file
 - Name for results in AFNI menus
 - $\$ Indicates to output *t*-statistic for β weights
 - - Name of output model fit dataset

-36-



To Run Script and View Results

- type source epi_r1_decon ; then wait for programs to run
- type afni to view what we've got
 - Switch Underlay to epi_r1_reg (output from 3dvolreg)
 - Switch Overlay to epi_r1_func (output from 3dDeconvolve)
 - Sagittal Image and Graph viewers
 - \blacktriangleright **FIM** \rightarrow **Ignore** \rightarrow **2** to have graph viewer not plot 1st 2 time pts
 - FIM -> Pick Ideal ; pick epi_r1_ideal.1D (output from waver)
- Define Overlay to set up functional coloring
 - Olay \rightarrow Allstim[0] Coef (sets coloring to be from model fit β)
 - Thr→Allstim[0] t-s (sets threshold to be model fit *t*-statistic)
 - See Overlay (otherwise won't see the function!)
 - Play with threshold slider to get a meaningful activation map (e.g., t=4 is a decent threshold)

Textual Output of the epi_r1_decon script

• <u>3dvolreg output</u>

-39-

++ Program 3dvolreg: AFNI version=AFNI_2005_12_30_0934 [32-bit] ++ Authored by: RW Cox ++ Reading input dataset ./epi_r1+orig.BRIK ++ Edging: x=3 y=3 z=1 ++ Initializing alignment base ++ Starting final pass on 110 sub-bricks: 0..1..2..3.. *** ..106..107..108..109.. ++ CPU time for realignment=8.82 s [=0.0802 s/sub-brick] ++ Min : roll=-0.086 pitch=-0.995 yaw=-0.325 dS=-0.310 dL=-0.010 dP=-0.680 ++ Mean: roll=-0.019 pitch=-0.020 yaw=-0.182 dS=+0.106 dL=+0.085 dP=-0.314 ++ Max : roll=+0.107 pitch=+0.090 yaw=+0.000 dS=+0.172 dL=+0.204 dP=+0.079 ++ Wrote dataset to disk in ./epi_r1 reg+orig.BRIK

<u>3dDeconvolve output</u>

++ Program 3dDeconvolve: AFNI version=AFNI_2005_12_30_0934 [32-bit] ++ Authored by: B. Douglas Ward, et al. ++ (108x3) Matrix condition [X]: 2.43095 ++ Matrix inverse average error = 1.3332e-14 } Quality Control: Good values ++ Matrix setup time = 0.00 s ++ Calculations starting; elapsed time=0.502 ++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.} Progress meter ++ Calculations finished; elapsed time=3.114 ++ Wrote bucket dataset into ./epi_r1_func+orig.BRIK ++ Wrote 3D+time dataset into ./epi_r1_fitts+orig.BRIK } Output indicators ++ #Flops=4.18043e+08 Average Dot Product=4.56798

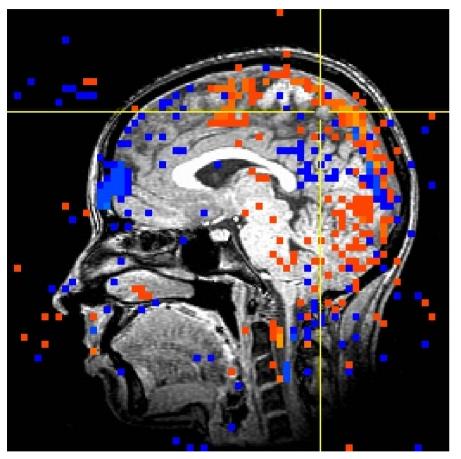
• If a program crashes, we'll need to see this textual output!

More Viewing the Results

-40-

- Graph viewer: Opt→Tran 1D→Dataset #N to plot the model fit dataset output by 3dDeconvolve
 - Will open the control panel for the Dataset #N plugin
 - Click first Input on ; then choose Dataset epi_r1_fitts+orig
 - Also choose Color dk-blue to get a pleasing plot
 - Then click on **Set+Close** (to close the plugin panel)
 - Should now see fitted time series in the graph viewer instead of data time series
 - Graph viewer: click Opt→Double Plot→Overlay on to make the fitted time series appear as an overlay curve
 - This tool lets you visualize the quality of the data fit
- Can also now overlay function on MP-RAGE anatomical by using Switch Underlay to anat+orig dataset
 - Probably won't want to graph the **anat+orig** dataset!

Stimulus Correlated Movement?



3dvolreg saved the motion parameters estimates into file
epi_r1_mot.1D
For fup: 1dplot epi_r1_mot 11

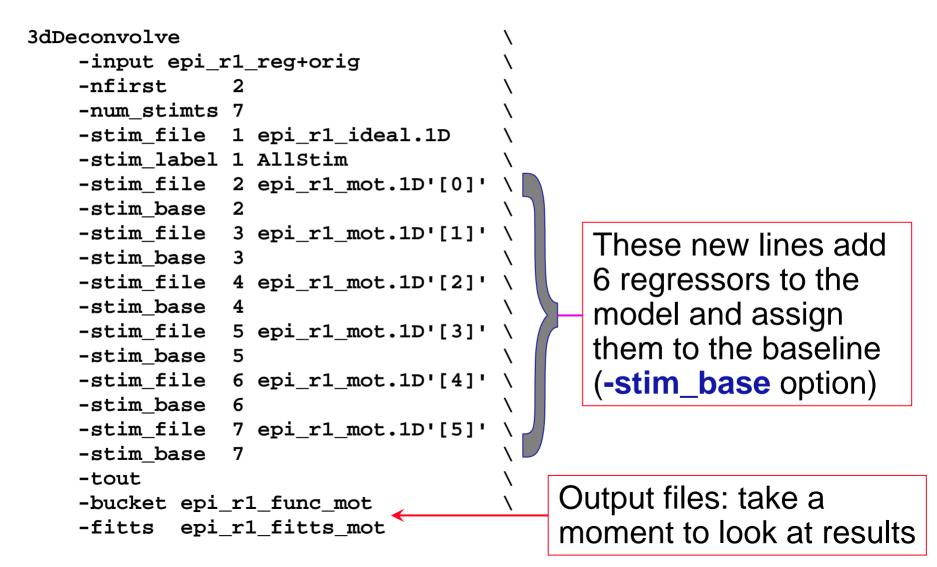
• For fun: 1dplot epi_r1_mot.1D

- Extensive "activation" (i.e., correlation of data time series with model time series) along the top of the brain is an indicator of stimulus correlated motion artifact
- Can remain even after registration, due to errors in registration, magnetic field inhomogeneities, etc.

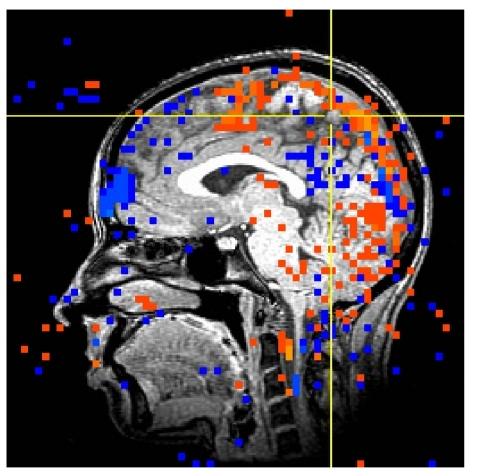
• Can be partially removed by using the estimated movement history (from **3dvolreg**) as additional baseline model functions

Removing Residual Motion Artifacts

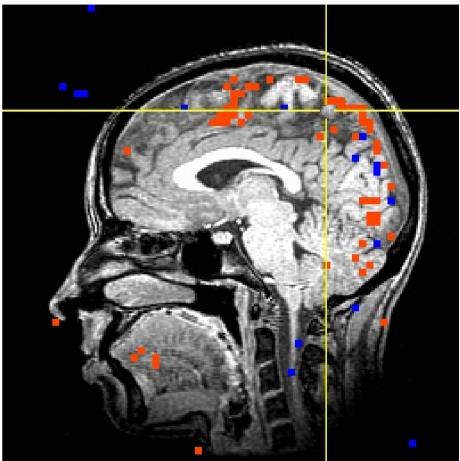
• Last part of script **epi_r1_decon**:



Some Results: Before and After



-43-



Before: movement parameters are not in baseline model After: movement parameters are in baseline model

t-statistic threshold set to a *p*-value of 10⁻⁴ in both images

Multiple Stimulus Classes

- The experiment analyzed here in fact is more complicated
 P There are 4 related visual stimulus types
 - One goal is to find areas that are differentially activated between these different types of stimuli
 - We have 4 imaging runs, 108 useful time points each (skipping first 2 in each run) that we will analyze together
 - Already registered and put together into dataset rall_vr+orig
 - Stimulus timing files are in subdirectory stim_files/
 - Script file waver_ht2 will create HRF models for regression: cd stim_files

waver -dt 2.5 -GAM -input scanlto4a.1D > scanlto4a_hrf.1D
waver -dt 2.5 -GAM -input scanlto4t.1D > scanlto4t_hrf.1D
waver -dt 2.5 -GAM -input scanlto4h.1D > scanlto4h_hrf.1D
waver -dt 2.5 -GAM -input scanlto41.1D > scanlto41_hrf.1D
cd ..

Type source waver_ht2 to run this script

• Might also use **1dplot** to check if input .1D files are reasonable

Regression with Multiple Model Files

• Script file **decon_ht2** does the job:

3dDeconvolve -xout -input rall_vr+orig

-num_stimts 4

-stim_file 1 stim_files/scan1to4a_hrf.1	1D -stim_label 1 Actions
-stim_file 2 stim_files/scan1to4t_hrf.1	1D -stim_label 2 Tool
-stim_file 3 stim_files/scan1to4h_hrf.1	1D -stim_label 3 HighC
-stim_file 4 stim_files/scan1to41_hrf.1	1D -stim_label 4 LowC
-concat contrasts/runs.1D	
-glt 1 contrasts/contr_AvsT.txt -glt_	_label 1 AvsT
-glt 1 contrasts/contr HvsL.txt -glt	label 2 HvsL

-glt 1 contrasts/contr_ATvsHL.txt -glt_label 3 ATvsHL

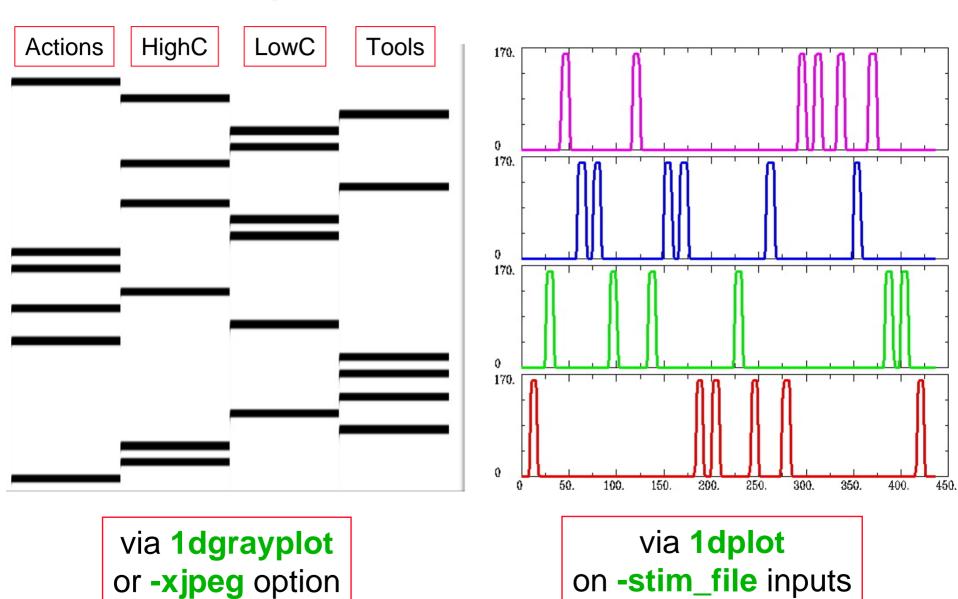
-full_first -fout -tout

-bucket func_ht2

• Run this script by typing source decon_ht2 (takes a few minutes)

- Stim #1 = visual presentation of active movements
- Stim #2 = visual presentation of simple (tool-like) movements
- Stims #3 and #4 = high and low contrast gratings

Regressors for This Script



-46-

- -concat contrasts/runs.1D = file that indicates where new imaging runs start 324
- -full_first = put full model statistic first in output file, not last -fout -tout = output both F- and
 - = output both *F* and *t*-statistics
- The full model statistic is an *F*-statistic that shows how well the sum of all 4 input model time series fits voxel time series data
- The individual models also will get individual *F* and *t*-statistics indicating the significance of their individual contributions to the time series fit
 - i.e., F_{Actions} tells if model (Actions+HighC+LowC+Tools+baseline)
 explains more of the data variability than model
 (HighC+LowC+Tools+baseline) with Actions omitted

- -glt 1 contrasts/contr_AvsT.txt -glt_label 1 AvsT
- -glt 1 contrasts/contr_HvsL.txt -glt_label 2 HvsL
- -glt 1 contrasts/contr_ATvsHL.txt -glt_label 3 ATvsHL
- **<u>GLT</u>s are General Linear Tests**

-48-

- 3dDeconvolve provides tests for each regressor separately, but if you want to test combinations or contrasts of the β weights in each voxel, you need the -glt option
- File contrasts/contr_AvsT.txt = 000000001-100 (one line with 12 numbers) 8 zeros: could also write 8@0
- Goal is to test a linear combination of the β weights
 - In this data, we have 12 ß weights: 8 baseline parameters (2 per imaging run), which are first in the ß vector, and 4 regressor magnitudes, which are from -stim_file options
 - \sim This particular test contrasts the Actions and Tool β s
 - tests if $\beta_{\text{Actions}} \beta_{\text{Tool}} \neq 0$

- File contrasts/contr_HvsL.txt = 0000000001-1
 - Goal is to test if $\beta_{\text{HighC}} \beta_{\text{LowC}} \neq 0$

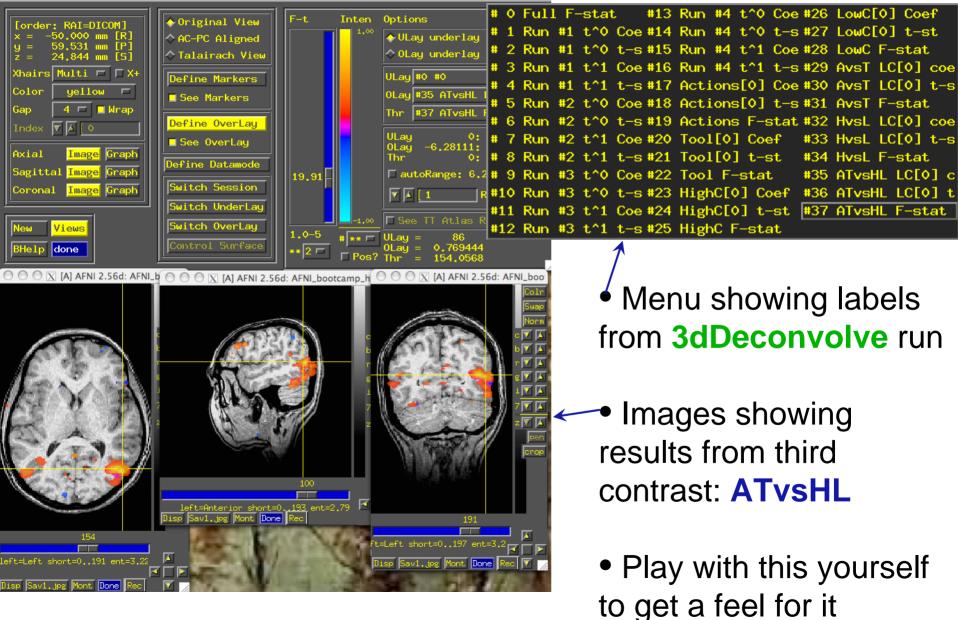
-49-

- File contrasts/contr_ATvsHL.txt = 0000000011-1-1
 - Goal is to test if $(\beta_{\text{Actions}} + \beta_{\text{Tool}}) (\beta_{\text{HighC}} + \beta_{\text{LowC}}) \neq 0$
 - Regions where this statistic is significant will have had different amounts of BOLD signal change in the activity viewing tasks versus the grating viewing tasks
 - This is a way to factor out primary visual cortex
- -glt_label 3 ATvsHL option is used to attach a meaningful label to the resulting statistics sub-bricks

Results of decon_ht2 Script

🖯 🔘 🛛 📉 [A] AFNI 2.56d: AFNI_bootcamp_home/AFNI_data1/afni/anat+orig & func_ht2+orig

-50-



Statistics from 3dDeconvolve

- An *F*-statistic measures significance of how much a model component reduced the variance of the time series data
- Full *F* measures how much the signal regressors reduced the variance over just the baseline regressors (**sub-brick #0 below**)
- Individual partial-model *F*s measures how much each individual signal regressor reduced data variance over the full model with that regressor excluded (**sub-bricks #19, #22, #25, and #28 below**)

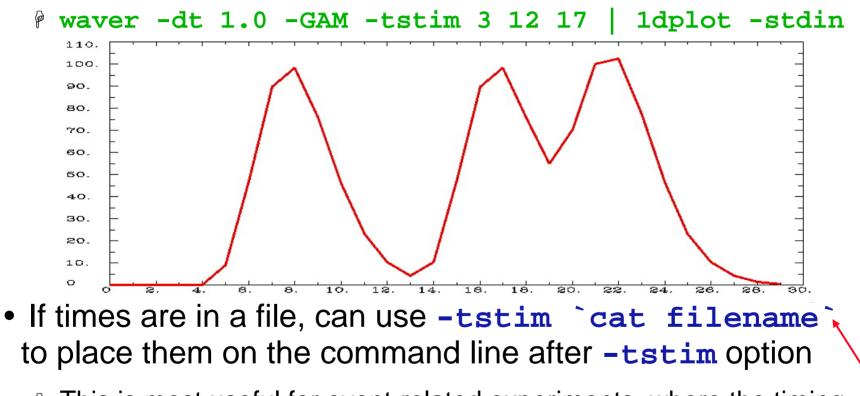
 The Coer sub-bricks are the β weights (e.g., #17, 	# O	Full	. F -	-stat		#13	Run	#4	t^0	Coe	#26	LowC	[0]	Coef	
	# 1	Run	#1	t^0	Coe	#14	Run	#4	t^0	t-s	#27	LowC	0]	t-st	
	# 2	Run	#1	t^0	t-s	#15	Run	#4	t^1	Coe	#2 8	LowC	F-s	tat	
	# 3	Run	#1	t^1	Coe	#16	Run	#4	t^1	t-s	#2 9	AvsT	LC	0] co	be
	# 4	Run	#1	t^1	t-s	#17	Acti	ions	s[0]	Coe	#30	AvsT	LC	0] t-	-s
	# 5	Run	#2	t^0	Coe	#1 8	Acti	ions	s[0]	t-s	#31	AvsT	F-s	tat	
	# 6	Run	#2	t^0	t-s	#19	Acti	ions	s F-s	stat	#32	HvsL	LC	0] co	be
	# 7	Run	#2	t^1	Coe	#20	Tool	L[O]	Coe	∍f	#33	HvsL	LC	0] t-	-5
measure	# 8	Run	#2	t^1	t-s	#21	Tool	L[O]] t-s	st	#34	HvsL	F-s	tat	
impact of one	# 9	Run	#3	t^0	Coe	#22	Tool	L F-	-stai	t.	#35	ATvsF	iL L	[0] 0.	С
	#10	Run	#3	t^0	t-s	#23	High	nC[()] Co	bef	#36	ATvsF	iL L	[0] 0.	t
	#11	Run	#3	t^1	Coe	#24	High	nC[C)] t-	-st	#37	ATvsl	il F	-stat	Ł.
	#12	Run	#3	t^1	t-s	#25	High	nC F	-sta	at					

Alternative Way to Run waver

Instead of giving stimulus timing on TR-grid as set of 0s and 1s

 Can give the actual stimulus times (in seconds) using the -tstim option

-52-



This is most useful for event-related experiments, where the timing of stimuli is usually given explicitly
Note backward single guotes

Alternative Way to Run 3dDeconvolve

-53-

Instead of giving stimulus timing to waver

- Can give the actual stimulus times (in seconds) directly to <u>3dDeconvolve</u> using the <u>-stim_times</u> option (instead of <u>-stim_file</u> as before)
- The program will do the equivalent of waver inside itself to generate the necessary column(s) in the **R** matrix
- More information in the latter part of this presentation
 - Is coupled with the ideas needed for "deconvolution"
 - Besides input file with stimulus times, must also specify the HRF model to be used with those times
 - That is, which shape(s) are to be placed down at each stimulus time to model the ideal response

Deconvolution Signal Models

• <u>Simple or Fixed-shape regression</u> (previous):

-54-

- We fixed the shape of the HRF amplitude varies
- Used waver to generate the signal model from the stimulus timing (or could use 3dDeconvolve directly)
- Found the amplitude of the signal model in each voxel solution to the set linear equations = β weights
- Deconvolution or Variable-shape regression (next):
 - We allow the shape of the HRF to vary in each voxel, for each stimulus class
 - Appropriate when you don't want to over-constrain the solution by assuming an HRF shape
 - Caveat: need to have enough time points during the HRF in order to resolve its shape

Deconvolution: Pros and Cons

-55-

- + Letting HRF shape varies allows for subject and regional variability in hemodynamics
- + Can test HRF estimate for different shapes; e.g., are later time points more "active" than earlier?
- Need to estimate more parameters for each stimulus class than a fixed-shape model (e.g., 4-15 vs. 1 parameter=amplitude of HRF)
- Which means you need more data to get the same statistical power (assuming that the fixedshape model you would otherwise use was in fact "correct")
- Freedom to get any shape in HRF results can give weird shapes that are difficult to interpret

Expressing HRF via Regression Unknowns

 The tool for expressing an unknown function as a finite set of numbers that can be fit via linear regression is an <u>expansion in basis functions</u>

 $h(t) = \beta_0 \psi_0(t) + \beta_1 \psi_1(t) + \beta_2 \psi_2(t) + \bigotimes = \sum_{q=0}^{1} \beta_q \psi_q(t)$

- $_{\mathbb{P}}$ The basis functions $\psi_q(t)$ are known, as is the expansion order p
- P The unknowns to be found (in each voxel) comprises the set of weights β_a for each $\psi_a(t)$
- Since
 β weights appear only by multiplying known values, and HRF only appears in final signal model by linear convolution, resulting signal model is still solvable by linear regression

Basis Function: "Sticks"

- The set of basis functions you use determines the range of possible HRFs that you can compute
- "Stick" (or Dirac delta) functions are very flexible
 - But they come with a strict limitation

-57-

- $\delta(t)$ is 1 at t=0 and is 0 at all other values of t
- $\psi_q(t) = \delta(t-q \cdot TR)$ for q=0,1,2,...,p $\Rightarrow h(0) = \beta_0$ $\Rightarrow h(TR) = \beta_1$ $\Rightarrow h(2 \cdot TR) = \beta_2$ $\Rightarrow h(3 \cdot TR) = \beta_3$ $\Rightarrow et cetera$ $\Rightarrow h(t) = 0$ for any t not on the TR grid

Sticks: Good Points

- Can represent arbitrary shapes of the HRF, up and down, with ease
- Meaning of each β_q is completely obvious
 Value of HRF at time lag q·TR after activation

-58-

- **3dDeconvolve** is set up to deal with stick functions for representing HRF, so using them is very easy
 - What is called *p* here is given by command line option -stim_maxlag in the program
 - When choosing *p*, rule is to estimate longest duration of neural activation after stimulus onset, then add 10-12 seconds to allow for slowness of hemodynamic response

Sticks and TR-locked Stimuli

- This limitation means that, using stick functions as our basis set, we can only model stimuli that are "locked" to the TR grid
 - That is, stimuli/activations don't occur at fully general times, but only occur at integer multiples of TR
- For example, suppose an activation is at t=1.7·TR

-59-

- We need to model the response at later times, such as 2.TR, 3.TR, etc., so need to model h(t) at times such as t=(2.1.7).TR=0.3.TR, t=1.3.TR, etc., after the stimulus
- But the stick function model doesn't allow for such intermediate times
 - **or**, can allow Δt for sticks to be a fraction of TR for data
 - e.g., $\Delta t = TR/2$, which implies twice as many β_q parameters to cover the same time interval (time interval needed is set by hemodynamics)
 - then would allow stimuli that occur on TR-grid or halfway in-between

-60-Deconvolution and Collinearity Regular stimulus timing can lead to collinearity! Equations $\beta_0 \beta_1 \beta_2 \beta_3$ at each time $+\beta_4+\beta_5$ $+\beta_4+\beta_5$ point: Cannot tell β_0 from β_4 , or β_1 from β_5 β_0 β_1 β_1 β_2 β_3 β_4 β_0 β_5 HRF from β_2 β_3 β_4 β_1 β_5 β_0 stim #1 $\beta_1 \beta_2 \beta_3 \beta_4$ β_0 β_5

stim #1

time

Tail of HRF

head of HRF from #2, etc

from #1 overlaps

3dDeconvolve with Stick Functions

- Instead of inputting a signal model time series (e.g., created with waver and stimulus timing), you input the stimulus timing directly
 - Format: a text file with 0s and 1s, 0 at TR-grid times with no stimulus, 1 at time with stimulus
- Must specify the maximum lag (in units of TR) that we expect HRF to last after each stimulus
 - This requires you to make a judgment about the activation brief or long?
- **3dDeconvolve** returns estimated values for each β_q , for each stimulus class
 - Usually then use a GLT to test the HRF (or pieces of it) for significance

- -stim_maxlag k p = option to set the maximum lag to p for stimulus timing file #k for k=0,1,2,...
 - Stimulus timing file input using command line option
 -stim_file k filename as before

-62-

- Can also use -stim_minlag k m option to set the minimum lag if you want a value m different from 0
- P In which case there are **p-m+1** parameters in this HRF
- $-stim_nptr k r = option$ to specify that there are r stimulus subintervals per TR, rather than just 1
 - P This feature can be used to get a finer grained HRF, at the cost of adding more parameters that need to be estimated
 - Need to make sure that the input stimulus timing file (from -stim_file) has r entries per TR
 - TR for -stim_file and for output HRF is data TR ÷ r

Script for Deconvolution - The Data

• cd AFNI_data2

-63-

- ø data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
- Script in file @s1.analyze_ht05 (in AFNI_data2 directory)
 - o stimuli timing and GLT contrast files in misc_files/
- ø start script <u>now</u> by typing source @s1.analyze_ht05

Formerly LBC/NIMH

Now UT Houston

- o will discuss details of script while it runs (20+ min?)
- Event-related study from Mike Beauchamp
 - 10 runs with four classes of stimuli (short videos)
 - Tools moving (e.g., a hammer pounding) TM
 - People moving (e.g., jumping jacks) <u>HM</u>
 - Points outlining tools moving (no objects, just points) TP
 - Points outlining people moving <u>HP</u>
 - Goal is to find if there is an area that distinguishes natural motions (HM and HP) from simpler rigid motions (TM and TP)

Script for Deconvolution - Outline

- Examine each imaging run for outliers: 3dToutcount
- Time shift each run's slices to a common origin: 3dTshift
- Registration of each imaging run: 3dvolreg
- Smooth each volume in space (136 sub-bricks per run): 3dmerge
- Create a brain mask: 3dAutomask and 3dcalc
- Rescale each voxel time series in each imaging run so that its average through time is 100: 3dTstat and 3dcalc
 - ${}^{_{P}}$ If baseline is 100, then a $\beta_q\,$ of 5 (say) indicates a 5% signal change in that voxel at time laq $\#q\,$ after stimulus
- Catenate all imaging runs together into one big dataset (1360 time points): 3dTcat
- Compute HRFs and statistics: 3dDeconvolve
 - Each HRF will have 15 time points (lags from 0 to 14) with TR=1.0 s, since input data has TR=2.0 s and we use -stim_nptr k r option with r=2
- Average together all points of each separate HRF to get average % change in each voxel over 14 s interval: 3dTstat

```
#!/bin/tcsh
if ( $#argv > 0 ) then
    set subjects = ( $argv )
else
    set subjects = ED
```

This script is designed to run analyses on a lot of subjects at once. We will only analyze the ED data here. The other subjects will be included in the Group Analysis presentation.

foreach subj (\$subjects)

Loop over all subjects (next 2 slides)

cd \$subj

First step is to change to the directory that has this subject's data

-65-

endif

Script for Deconvolution - 2 # time shift, volume register and spatially blur our datasets, # and remove the first two time points from each run _____ set runs = (`count -digits 2 1 10` Loop over imaging runs 1..10 foreach run (\$runs (loop continues on next slide) Shorthand for dataset set dset = \${subj}_r\${run}+orig.HEAD Outlier check: By itself, 3dToutcount 3dToutcount -automask \${dset} doesn't change data! > toutcount r\$run.1D To plot "outliernesss": 1dplot toutc r1.1D 3dTshift -tzero 0 -heptic Interpolate each voxel's time series to start at the \${dset} time of slice #0

-66-

```
3dvolreg -verbose
                                                      Image registration
             -base ${subj}_r01_ts+orig'[2]'
                                                      of each run to its
             -prefix ${subj}_r${run}_vr
                                                      #2 sub-brick
             -1Dfile dfile.r$run.1D
             ${subj}_r${run}_ts+orig'[2..137]'
                                                 Lightly blur each 3D
   3dmerge -1blur fwhm 4
                                                 volume in each dataset
            -doall
                                                 to reduce noise and
            -prefix ${subj}_r${run}_vr_bl
                                                 increase functional
            ${subj}_r${run}_vr+orig
                                                 overlap among runs
                                                 and among subjects
   3dAutomask -dilate 1
                                               Make an "inside-the-brain"
               -prefix mask r${run}
                                               mask for this dataset
               ${subj}_r${run}_vr_bl+orig
         End of loop over imaging runs.
end
         At this point, dataset ${subj}_r${run}_vr_bl
         contains the data for subject ${subj} and imaging
         run \{run\}, which has been time-shifted, realigned,
         and blurred; also, a brain-only mask has been made
```

region — this makes a brain mask

3dcalc program = voxel-wise "calculator" for datasets. Input is 10 individual run dataset masks (1 in brain, 0 outside). Output is mask which is

• 1 wherever any individual mask is 1,

-68-

0 wherever all individual masks are 0

```
foreach run ( $runs )
```

```
3dTstat -prefix mean_r${run}
${subj}_r${run}_vr_bl+orig
```

```
Mean of the run<sup>th</sup> dataset,
through time: run=1..10
```

```
3dcalc -a ${subj}_r${run}_vr_bl+orig
  -b mean_r${run}+orig
  -c full_mask+orig
  -expr "(a/b * 100) * c"
  -prefix scaled_r${run}
```

```
rm -f mean_r${run}+orig*
```

Divide each voxel value ('a') by its temporal mean ('b') and multiply by 100
Result will have temporal mean of 100
Voxels not in the mask will be set to 0 (by 'c')

-69-

"Gluing" the runs together, since 3dDeconvolve only operates on one input dataset at a time

cat dfile.r??.1D > dfile.all.1D

3dTcat -prefix \${subj}_all_runs \

scaled r??+orig.HEAD

Also "glue" together the movement parameters output from 3dvolreg

mkdir runs_orig runs_temp

mv \${subj}_r*_vr* \${subj}_r*_ts* scaled* \
 dfile.r??.1D toutcount* runs_temp

mv \${subj}_r* runs_orig

Gets this stuff out of the way so that we don't see it when we run AFNI later

3dDeconvolve -polort 2 -input \${subj}_all_runs+orig -num_stimts 10 Input dataset -concat ../misc files/runs.1D -stim_file 1 ../misc_files/all_stims.1D'[0]' 0-1 stim file #1 -stim label 1 ToolMovie -stim minlag 1 0 -stim maxlag 1 14 -stim nptr 1 2 -stim_file 2 ../misc_files/all_stims.1D'[1]' 0-1 stim file #2 -stim_label 2 HumanMovie -stim_minlag 2 0 -stim_maxlag 2 14 -stim_nptr 2 2 -stim_file 3 ../misc_files/all_stims.1D'[2]' 0-1 stim file #3 -stim label 3 ToolPoint -stim minlag 3 0 -stim maxlag 3 14 -stim nptr 3 2 -stim_file 4 ../misc_files/all_stims.1D'[3]' 0-1 stim file #4 -stim label 4 HumanPoint -stim_minlag 4 0 -stim_maxlag 4 14 -stim_nptr 4 2

• 4 time series models: one for each the 4 different classes of events

• All stimuli time series in 1 file with 4 columns: .../misc_files/all_stims.1D

• Selectors like '[2]' pick out a particular column

-71-

- Each stimulus input and HRF output is sampled at TR/2 = 1.0 s
 - Due to the use of -stim_nptr k 2 for each k

• Lag from 0 to 14 s is about right for HRF to a brief stimulus

• -stim_label option: names used in AFNI and below in -gltsym options

-stim_file 6 -stim_file 7 -stim_file 8	<pre>dfile.all.1D'[0]' dfile.all.1D'[1]' dfile.all.1D'[2]' dfile.all.1D'[3]' dfile.all.1D'[4]'</pre>	-stim_base 6 -stim_base 7 -stim_base 8	Movement regressors- of-no-interest: output from 3dvolreg					
-stim_file 10	dfile.all.1D'[5]'	-stim_base 10						
-iresp 1 TMirf -iresp 2 HMirf -iresp 3 TPirf -iresp 4 HPirf -full_first -fout -tout -nobout -xjpeg Xmat -bucket \${subj} func								

• Output HRF (-iresp) 3D+time dataset for each stimulus class

- Each of these 4 datasets will have TR=1.0 s and have 15 time points (R) weights for large 0, 14)
- (β weights for lags 0..14)
- Can plot these HRF datasets atop each other using Dataset#N plugin
- Useful for visual inspection of regions that GLTs tell you have different responses for different classes of stimuli
- -nobout = don't output statistics of baseline parameters
- -bucket = save statistics into dataset with this prefix
- -xjpeg = save an image of the R matrix into file Xmat.jpg

Script for Deconvolution - 9

-gltsym/misc_files/contrast1.1D	-glt_label	1	FullF	١
-gltsym/misc_files/contrast2.1D	-glt_label	2	HvsT	\
-gltsym/misc_files/contrast3.1D	-glt_label	3	MvsP	\
-gltsym/misc_files/contrast4.1D	-glt_label	4	HMvsHP	١
-gltsym/misc_files/contrast5.1D	-glt_label	5	TMvsTP	١
-gltsym/misc_files/contrast6.1D	-glt_label	6	HPvsTP	\
-gltsym/misc_files/contrast7.1D	-glt_label	7	HMvsTM	

Run many GLTs to contrast various pairs and quads of cases
New feature: -gltsym = specify β weights to contrast using -stim_label names given earlier on the command "line"

• Simpler than counting 0s and ±1s to fill out GLT matrix numerically

• Example: file contrast2.1D is the single line below:

-ToolMovie +HumanMovie -ToolPoint +HumanPoint

which means to put "-1" in the matrix for all 15 lags for stimuli #1 and #3 and "+1" in the matrix for all 15 lags for stimuli #2 and #4

- This is the "Human vs Tools" contrast (labeled HvsT via -glt_label)
- Sum of the 30 "Tool" β weights subtracted from Sum of the 30 "Human"
 β weights
- Testing: % signal change for Human stimuli different than Tool stimuli?

Script for Deconvolution - 10

3dbucket -prefix \${subj}_func_slim -fbuc \${subj}_func+orig'[0,125..151]'

foreach cond (TM HM TP HP)

3dTstat -prefix \${subj}_\${cond}_irf_mean \
 \${cond}irf+orig

```
adwarp -apar ${subj}spgr+tlrc -dxyz 3 \
    -dpar ${subj}_${cond}_irf_mean+orig
```

Extract a subset of interesting statistics subbricks into a "slimmeddown" functional dataset

\

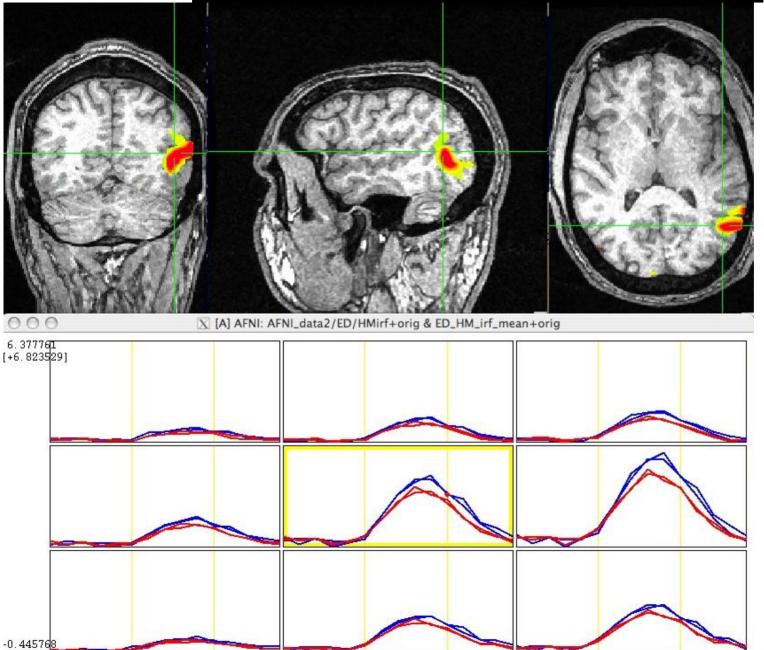
Compute HRF means across all lags 0..14 for each of the 4 stimuli types

Transform this individual's mean % signal results into Talairach coordinates for group analyses

end

cd .. End of loop over subjects; go back to upper directory whence we started

Results: Humans vs. Tools



Color
 overlay
 is HvsT
 contrast

• Blue (upper) curves: Human HRFs

• **Red** (lower) curves: Tool HRFs

-75-

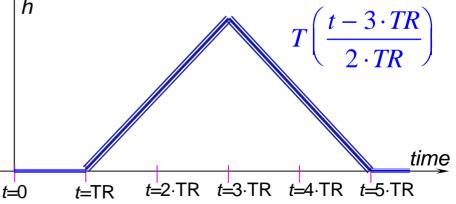
Yet More Fun 3dDeconvolve Options

- -mask = used to turn off processing for some voxels
 - speed up the program by not processing non-brain voxels
- -input1D = used to process a single time series, rather than a dataset full of time series
 - rest out a stimulus timing sequence
 - -nodata option can be used to check for collinearity
- -censor = used to turn off processing for some time points
 - for time points that are "bad" (e.g., too much movement)
- -sresp = output standard deviation of HRF estimates
 - can plot error bands around HRF in AFNI graph viewer
- -errts = output residuals (i.e., difference between fitted model and data)
 - for statistical analysis of time series noise
- -jobs N = run with multiple CPUS N of them
 - extra speed, if you have a dual-CPU system (or more)!

3dDeconvolve with Free Timing

- The fixed-TR stick function approach doesn't work well with arbitrary timing of stimuli
 - When subject actions/reactions are self-initiated, timing of activations cannot be controlled
- If you want to do deconvolution (vs. fixed-shape analysis), then must adopt a different basis function expansion approach
 - One that has a finite number of parameters but also allows for calculation of h(t) at any arbitrary point in time
- Simplest set of such functions are closely related to stick functions: <u>tent functions</u> h

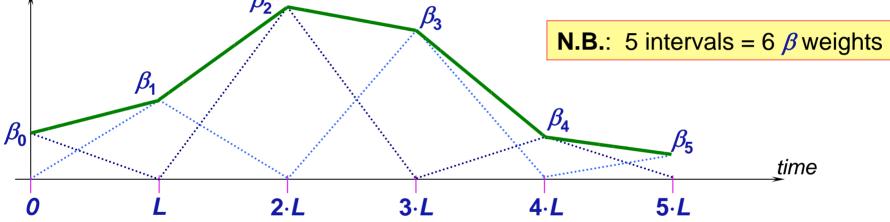
$$T(x) = \begin{cases} 1 - |x| & \text{for } -1 < x < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$



Tent Functions = Linear Interpolation

• Expansion in a set of spaced-apart tent functions is the same as linear interpolation

$$\beta_0 \cdot T\left(\frac{t}{L}\right) + \beta_1 \cdot T\left(\frac{t-L}{L}\right) + \beta_2 \cdot T\left(\frac{t-2 \cdot L}{L}\right) + \beta_3 \cdot T\left(\frac{t-3 \cdot L}{L}\right) + \textcircled{S}$$



- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing *L* and time grid spacing TR (usually would choose *L* ≥ TR)
- Fancy name for tent functions: piecewise linear B-splines

Tent Functions: Average Signal Change

- For input to group analysis, usually want to compute average signal change
 - Over entire duration of HRF (usual)
 - Over a sub-interval of the HRF duration (sometimes)
- In previous slide, with 6 β weights, average signal change is $1/2 \beta_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + 1/2 \beta_5$
- First and last *b* weights are scaled by half since they only affect half as much of the duration
- In practice, may want to use 0·β₀ since immediate poststimulus response is not hemodynamically correct
- *B* weights are output into the "bucket" dataset produced by
 <u>3dDeconvolve</u>
- Can then be combined into a single number using 3dcalc

3dDeconvolve -stim_times

- Direct input of stimulus timing, plus a response model
- Specifies stimuli, instead of using -stim_file
- -stim_times k tname rtype
 - k = stimulus index (from 1 to -num_stimts value)
- **tname** = name of .1D file containing stimulus times (seconds)
 - **N.B.**: TR stored in dataset header must be correct!
- rtype = name of response model to use for each stimulus time read from tname file
 - GAM = gamma variate function from waver (fixed-shaped analysis)
 - **TENT (b, c, n)** = tent function deconvolution, ranging from time s+b to s+c after each stimulus time s, with n basis functions (divided evenly over c-b seconds, into n-1 intervals)
 - several other rtype options available (experimental)
- Can mix -stim_file and -stim_times as needed
 - e.g., movement parameter regressors at each TR

Two Possible Formats of Timing File

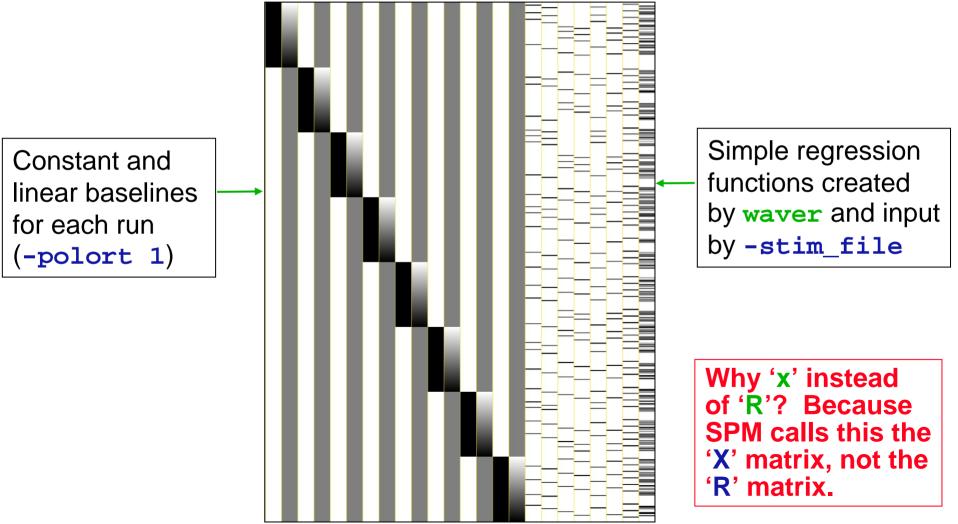
- A single column of numbers
 - One stimulus time per row
 - Times are relative to first image in dataset being at t=0
 - May not be simplest to use if multiple runs are catenated
- One row for each run within a catenated dataset
 - P Each time in j^{th} row is relative to start of run #j being t=0
 - If some run has NO stimuli in the given class, just put a single "*" in that row as a filler
 4.7 9.6 11.8 19.4
 - Different numbers of stim per run are OK
 - At least one row must have more than 1 time
 (so that this type of timing file can be told from the other)
- Two methods are available because of users' diverse needs
 - N.B.: if you chop first few images off the start of each run, the inputs to -stim_times must be adjusted accordingly

4.7 9.6 11.8 19.4

Other Recent-ish Upgrades

- See <u>http://afni.nimh.nih.gov/doc/misc/3dDeconvolveSummer2004/</u>
- Equation solver: Gaussian elimination to compute **R** matrix pseudo-inverse was replaced by SVD (like principal components)
 - Advantage: smaller sensitivity to computational errors
 - Condition number" and "inverse error" values are printed at program startup, as measures of accuracy of pseudo-inverse
 - Condition number < 1000 is good</p>
 - Inverse error < 1.0e-10 is good</p>
- **3dDeconvolve_f** program can be used to compute in single precision (7 decimal places) rather than double precision (16)
 - For better speed, but with lower numerical accuracy
 - Best to do at least one run **both** ways to check if results differ significantly (SVD solver *should* be safe)

• New -xjpeg xxx.jpg option will save a JPEG image file of the columns of the **R** matrix into file xxx.jpg (and an image of the pseudo-inverse of **R** into file xxx_psinv.jpg)



- Matrix inputs for -glt option can now indicate lots of zero entries using a notation like <u>30@0 1 -1 0 0</u> to indicate that 30 zeros precede the rest of the input line
 - Fixed Example: 10 imaging runs and -polort 2 for baseline
 - Can put comments into matrix and .1D files, using lines that start with '#' or '//'
 - Can use '\' at end of line to specify continuation
- Matrix input for GLTs can also be expressed symbolically, using the names given with the -stim_label options:
 - -stim_label 1 Ear -stim_maxlag 1 4
 - -stim_label 2 Wax -stim_maxlag 2 4
 - Old style GLT might be {zeros for baseline} 0 0 1 1 1 0 0 -1 -1 -1
 - New style (via -gltsym option) is

Ear[2..4] -Wax[2..4]

-84-

- New -xsave option saves the R matrix (and other info) into a file that can be used later with the -xrestore option to calculate some extra GLTs, without re-doing the entire analysis (goal: save some time by not recomputing)
- -input option now allows multiple 3D+time datasets to be specified to automatically catenate individual runs into one file 'on the fly'
 - Avoids having to use program 3dTcat

-85-

- User must still supply full-length .1D files for the various
 input time series (e.g., -stim_file, -stim_times)
- -concat option will be ignored if this option is used
 - Break points between runs will be taken as the break points between the various -input datasets
- -polort option now uses Legendre polynomials instead of simple 1, *t*, *t*², *t*³, ... basis functions (more numerical accuracy)

- 3dDeconvolve now checks for duplicate -stim_file names and for duplicate matrix columns, and prints warnings
 - These are not fatal errors

-86-

- If the same regressor is given twice, each copy will only get half the amplitude (the "beta weight") in the solution
- All-zero regressors are now allowed
 - Will get zero weight in the solution
 - A warning message will be printed to the terminal
 - Example: task where subject makes a choice for each stimulus (e.g., male or female face?)
 - You want to analyze correct and incorrect trials a separate cases
 - o What if a subject makes no mistakes? Hmmm...

- Recall: -iresp option outputs the HRF model for one stimulus
 - When used with -stim_times, values are usually output using the dataset TR time spacing
 - Can changes to a different grid via new -TR_times dt option, which sets the output grid spacing for -iresp to dt for HRF models computed via -stim_times
 - $_{\rm 0}\,$ Is useful for producing nice smooth pictures of HRF
 - Also works with -sresp option (= std.dev. of HRF)
- **<u>Difficulty</u>**: using GLTs with results from -stim_times
 - GLTs operate on regression coefficients
 - For advanced (experimental) rtype models, regression coefficients don't correspond directly to HRF amplitudes
 - Exceptions: GAM, TENT, BLOCK

<u>Upgrades – Planned or Dreamed of</u>

- Automatic baseline normalization of input time series
- Automatic mask generation (à la 3dAutomask program)
- Spatial blur (à la 3dmerge -1blur)

-88-

- Time shift input before analysis (à la 3dTshift program)
- Negative lags for -stim_file method of deconvolution
 - for pre-stimulus cognition/anticipation
 - -stim_times already allows pre-stimulus response
- 'Area under curve' addition to -gltsym to allow testing of pieces of HRF models from -stim_times
- Slice- and/or voxel-dependent regressors
 - For physiological noise cancellation, etc.
- Floating point output format
 - Currently is shorts + scale factor

Advanced Topics in Regression

- Can have activations with multiple phases that are not always in the same time relationship to each other; e.g.:
 - a) subject gets cue #1

-89-

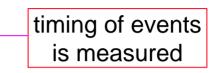
- b) variable waiting time ("hold")
- c) subject gets cue #2, emits response
 - u which depends on both cue #1 and #2

timing of events is known

- Cannot treat this as one event with one HRF, since the different waiting times will result in different overlaps in separate responses from cue #1 and cue #2
- Solution is multiple HRFs: separate HRF (fixed shape or deconvolution) for cue #1 times and for cue #2 times
 - Must have significant variability in inter-cue waiting times, or will get a nearly-collinear model
 - How much variability is "significant"? Good question.

Even More Complicated Case

- Solving a visually presented puzzle:
 - a) subject sees puzzle
 - b) subject cogitates a while
 - subject responds with solution



- The problem is that we expect some voxels to be significant in phase (b) as well as phases (a) and/or (c)
- Variable length of phase (b) means that shape for its response varies between trials
 - Which is contrary to the whole idea of averaging trials together to get decent statistics (which is basically what linear regression amounts to, in a fancy sort of way)
- Could assume response *amplitude* in phase (b) is constant across trials, and response *duration* varies directly with time between phases (a) and (c)
 - Need three HRFs; phase (b)'s is a little tricky to generate using waver, but it could be done

Noise Issues

- "Noise" in FMRI is caused by several factors, not completely characterized
 - MR thermal noise (well understood, unremovable)
 - Cardiac and respiratory cycles (partly understood)
 - In principle, could measure these sources of noise separately and then try to regress them out
 - ∠ RETROICOR program underway (R Birn & M Smith of FIM/NIMH)
 - Scanner fluctuations (e.g., thermal drift of hardware)
 - Small subject head movements (10-100 Om)
 - Very low frequency fluctuations (periods longer than 100 s)
- Data analysis should try to remove what can be removed and allow for the statistical effects of what can't be removed
 - Serial correlation in the noise time series affects the t- and F-statistics calculated by 3dDeconvolve
 - At present, nothing is done to correct for this effect (by us)

Nonlinear Regression

- Linear models aren't everything
 - P e.g., could try to fit HRF of the form $h(t) = a \cdot t^b \cdot e^{-t/c}$
 - Unknowns b and c appear nonlinearly in this formula
- Program 3dNLfim can do nonlinear regression (including nonlinear deconvolution)
 - User must provide a C function that computes the model time series, given a set of parameters (e.g., a, b, c)
 - Program then drives this C function repeatedly, searching for the set of parameters that best fit each voxel
 - Has been used to fit pharmacological wash-in/wash-out models (difference of two exponentials) to FMRI data acquired during pharmacological challenges
 - e.g., injection of nicotine, cocaine, etc.
 - o these are tricky experiments, at best