Group Analysis

File: afni24_GroupAna.pdf

Gang Chen SSCC/NIMH/NIH/HHS

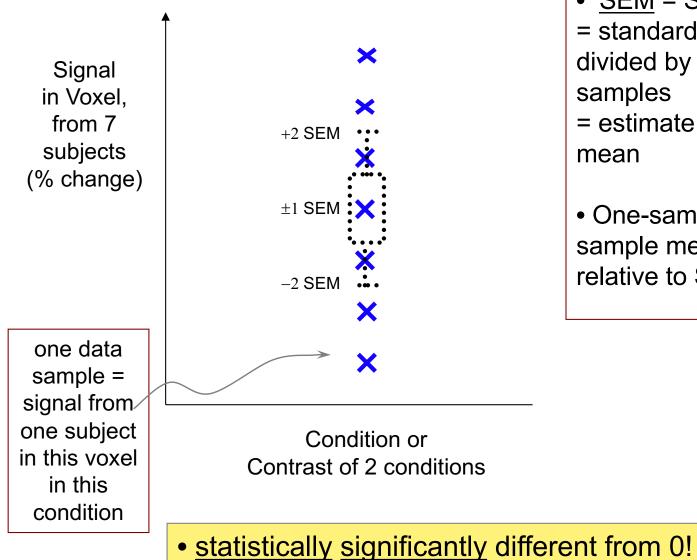
Preview

- Introduction: basic concepts and terminology
 - Why do we need to do group analysis?
 - Factor, quantitative covariates, main effect, interaction, ...
- Group analysis approaches
 - *t*-test: 3dttest++ (3dttest), 3dMEMA
 - Regression: 3dttest++, 3dMEMA, 3RegAna
 - ANOVA: 3dANOVAx, 3dMVM, GroupAna
 - ANCOVA or GLM: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - Impact & consequence of FSM, ASM, and ESM
- Miscellaneous
 - Centering for covariates
 - Intra-Class Correlation (ICC)
 - Nonparametric approach, fixed-effects analysis
 - Inter-Subject Correlation (ISC)

Why Group Analysis?

- Evolution of FMRI studies
 - Early days [1992-1994]: no need for group analysis
 - Seed-based correlation for one subject was revolutionary
 - Now: torture brain/data enough, and hope nature will confess!
 - Many ways to manipulate the brain (and data)
- Reproducibility and generalization
 - Science strives for generality: summarizing subject results
 - $_{\circ}\,$ Typically 10 or more subjects per group
 - Exceptions: pre-surgical planning, lie detection, ...
- Why not one analysis with a giant model for all subjects?
 - Computationally unmanageable and very hard to set up
 - Heterogeneity in data or experiment design across subjects
 - Model and data quality check at individual subject level

Simplest Group Analysis: One-Sample t-Test

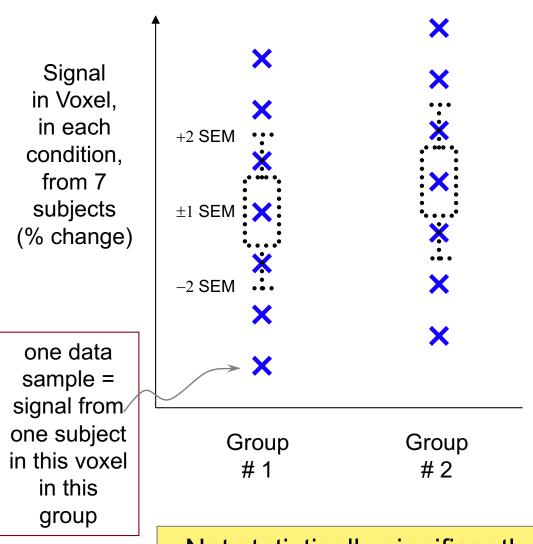


<u>SEM</u> = Standard Error of the Mean
 = standard deviation of sample,
 divided by square root of number of
 samples
 = estimate of uncertainty in sample

= estimate of uncertainty in sample mean

• One-sample *t*-test determines if sample mean is large enough relative to SEM

Simplest Group Analysis: Two-Sample t-Test



• <u>Group</u> = some way to categorize subjects (*e.g.*, sex, drug treatment, disease, ...)

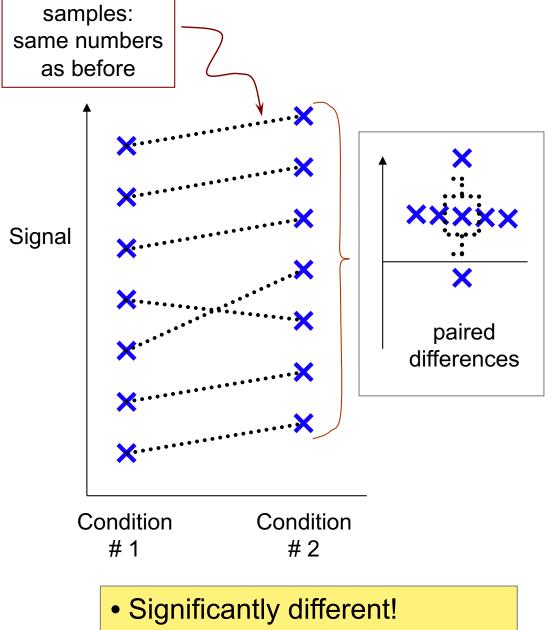
• <u>SEM</u> = Standard Error of the Mean = standard deviation of sample divided by square root of number of samples

= estimate of uncertainty in sample mean

• Two-sample *t*-test determines if sample means are "far apart" compared to size of SEM

Not statistically significantly different!

Simplest Group Analysis: Paired (~1-sample) t-Test



paired data

• Condition #2 > #1, per subject

• <u>Paired</u> means that samples in different conditions should be linked together (*e.g.*, from same subjects)

• Test determines if differences between conditions in each pair are "large" compared to SEM of the differences

• Paired test can detect systematic *intra*-subject differences that can be hidden in *inter*-subject variations

• <u>Lesson</u>: properly separating *inter*subject and *intra*-subject signal variations can be very important!

• Essentially equivalent to onesample *t*-test

Toy example of group analysis

- Responses from a group of subjects under one condition
 ..., β₁₀)=(1.13, 0.87, ..., 0.72) [% signal change]
- Centroid: average (β₁+β₂+...+β₁₀)/10 = 0.92 is not enough

 Variation / reliability measure: diversity, spread, deviation
 How different is 0.92 from 0 compared to its deviation?
- Model building
 - Subject *i*'s response = group average + deviation of subject *i*:
 simple model GLM (one-sample *t*-test)

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

If individual responses are consistent, ϵ_i should be small
How small (*p*-value)?

• *t*-test: significance measure = $\hat{b} / (\hat{\sigma} / n)$

• 2 measures: **b** (dimensional) and **t** (dimensionless)

Group Analysis Caveats

- Results: two components (in afni GUI: OLay + Thr)
 - Effect estimates: have unit and physical meaning
 - Their significance (response to house **significantly** > face)
 - Very unfortunately *p*-values solely focused in FMRI!
- Statistical significance (*p*-value) becomes obsession
 - Published papers: Big and tall parents (violent men, engineers) have more sons, beautiful parents (nurses) have more daughters
 - Statistical significance is not the same as practical importance
- Fallacy: binarized thinking -- an effect that fails to reach statistical significance is not necessarily nonexistent
 - Statistically insignificant effect might be real
 - Sample size, suboptimal model, poor alignment across subjects

Group Analysis Caveats

- Conventional: voxel-wise (brain) or node-wise (surface)
 - Prerequisite: reasonable alignment to some template
 - Limitations: alignment could be suboptimal or even poor
 - Different folding patterns across subjects: better alignment could help (perhaps to 5 mm accuracy?)
 - Different cytoarchitectonic (or functional) locations across subjects: structural alignment of images won't help!
 - Impact on conjunction vs. selectivity
- Alternative (won't discuss): ROI-based approach
 - Half data for functional localizers, and half for ROI analysis
 - Easier: whole brain reduced to a few numbers per subject
 - Model building and tuning possible
 - Most AFNI 3d analysis programs also handle ROI input (1D files)

Group Analysis in NeuroImaging: why big models?

\diamond Various group analysis approaches

- Student's *t*-test: one-, two-sample, and paired
- **ANOVA**: one or more categorical explanatory variables (factors)
- **GLM**: AN(C)OVA
- LME: linear mixed-effects modeling
- ♦ Easy to understand: *t*-tests not always practical or feasible
 - Tedious when layout (structure of data) is too complex
 - Main effects and interactions: desirable
 - Controlling for quantitative covariates
- ♦ Advantages of big models: AN(C)OVA, GLM, LME
 - All tests in one analysis (vs. piecemeal *t*-tests): omnibus *F*
 - Controlling for covariate effects
 - Power gain: combining subjects across groups for estimates of signal *and* noise parameters (*i.e.*, variances and correlations)

<u>Terminology</u>: Explanatory variables

- **Response/Outcome variable** (HDR): regression β coefficients
- Factor: categorical, qualitative, descriptive, nominal, or discrete
 - Categorization of conditions/tasks
 - Within-subject (repeated-measures) factor
 - Subject-grouping: group of subjects
 - Between-subjects factor
 - Gender, patients/controls, genotypes, handedness, ...
 - Subject: random factor measuring deviations
 - Of no interest, but served as random samples from a population
- **Quantitative** (numeric or continuous) **covariate**
 - Three usages of 'covariate'
 - Quantitative value (rather than strict separation into groups)
 - Variable of no interest: qualitative (scanner, sex, handedness) or quantitative
 - Explanatory variable (regressor, independent variable, or predictor)
 - Examples: age, IQ, reaction time, brain volume, ...

<u>Terminology</u>: Fixed effects

- Fixed-effects factor: categorical (qualitative or discrete) variable
 - Treated as a fixed variable (constant to be estimated) in the model
 - Categorization of conditions/tasks (modality: visual/auditory)
 Within-subject (repeated-measures) factor: 3 emotions
 - Subject-grouping: Group of subjects (gender, controls/patients)
 Between-subject factor
 - All factor levels are of interest: **not interchangeable/replaceable**
 - main effect, contrasts among levels
 - Fixed in the sense of statistical inferences
 - Apply only to the specific levels of the factor: : replacement test

 Categories: human, tool
 - Don't extend to other potential levels that might have been included (but were not)
 - Inferences from viewing human and tool categories can't be generated to animals or clouds or Martians
- Fixed-effects variable: quantitative covariate

Remember This Study?

Tool motion (TM)

Tool point motion (TP)

Human whole-body motion (HM)

Human point motion (HP)

From Figure 1 Beauchamp et al. 2003

2 Factors, each with 2 levels

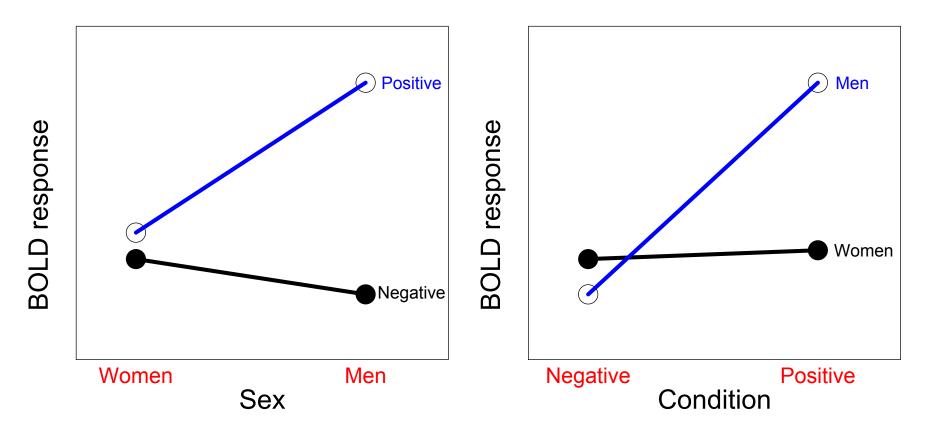
- Factor A = type of object being viewed
 - Levels = Human or Tool
- Factor B = type of display seen by subject
 - Levels = Whole or Points
- This is <u>repeated measures</u> (4 β s per subject), 2 × 2 <u>factorial</u>

Terminology: Random effects

- Random factor/effect
 - Random variable in the model: exclusively used for subject in FMRI
 - average + effects attributable to each subject: *e.g.* $N(\mu, \tau^2)$
 - Requires enough subjects to estimate properly
 - Each individual subject effect is of NO interest: replacement test
 - Group response = 0.92%, subject 7 = 1.13%, random effect = 0.21%
 - $_{\circ}\,$ Random in the sense
 - Subjects as random samples (representations) from a populationInferences can be generalized to a hypothetical population
- A generic group model: decomposing each subject's response \circ Fixed (population) effects: universal constants (immutable): β $y_i = X_i\beta + Z_ib_i + \epsilon_i$
 - Random effects: individual subject's deviation from the population (personality: durable for subject *i*): *b*_i
 - Residuals: noise (evanescent): *E_i*

<u>Terminology</u>: Omnibus tests - main effect and interaction

- Main effect: any difference across levels of a factor?
- Interactions: with ≥ 2 factors, interaction may exist
 - 2 × 2 design: *F*-test for interaction between A and B = *t*-test of (A1B1 - A1B2) - (A2B1 - A2B2) or (A1B1 - A2B1) - (A1B2 - A2B2)
 - *t* stastistic is better than F: a positive *t* shows A1B1 - A1B2 > A2B1 - A2B2 and A1B1 - A2B1 > A1B2 - A2B2

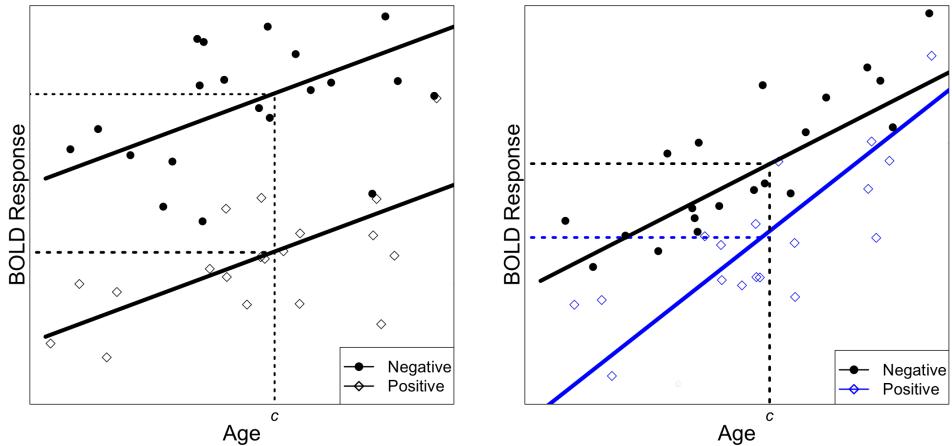


<u>Terminology</u>: Interaction

- Interactions: ≥ 2 factors
 - $_{\circ}$ May become very tedious to sort out or understand!
 - \geq 3 levels in a factor
 - \geq 3 factors
 - Solutions: reduction (in complexity)
 - Pairwise comparison
 - Plotting: ROI averages
 - Requires sophisticated modeling
 - AN(C)OVA: 3dANOVAx, 3dMVM, 3dLME
- Interactions: quantitative covariates
 - In addition to linear effects, may have nonlinearity: *y* might depend on products of covariates: $x_1^*x_2$, or x^2

<u>Terminology</u>: Interaction

• Interaction: between a factor and a quantitative covariate



- Using explanatory variable (Age) in a model as a nuisance regressor (additive effect) may not be enough
 - Model building/tuning: Potential interactions with other explanatory variables? (as in graph on the right)
 - Of scientific interest (*e.g.*, gender differences)

Models at Group Level

- Conventional approach: taking β (or linear combination of multiple βs) only for group analysis
 - Assumption: all subjects have same precision (reliability, standard error, confidence interval) about β
 - $_{\circ}\,$ All subjects are treated equally
 - Student *t*-test: paired, 1- and 2-sample: *not* random-effects models in strict sense (said to be random effects in Some other *PrograM*)
 AN(C)OVA, GLM, LME
- More precise method: taking both effect estimates and *t*-stats
 - *t*-statistic contains precision information about effect estimates
 - Each subject's β is weighted based on precision of effect estimate (more precise β s get more weight)
 - Currently only available for *t*-test types

Piecemeal *t*-tests: 2 × 3 Mixed ANCOVA example

♦ A relatively simple model, but challenging for neuroimaging

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- o[⊥] Factor S (Subject): 15 ASD children and 15 healthy controls
- Quantitative covariate: Age
- ♦ Using Multiple *t*-tests for this study
 - Group comparison + age effect
 - Pairwise comparisons among three conditions
 - Cannot control for age effect
 - Effects that cannot be analyzed as *t*-tests
 - Main effect of Condition (3 levels is beyond *t*-test method)
 - Interaction between Group and Condition (6 levels total)
 - Age effect across three conditions (just too complicated)

Classical ANOVA: 2 × 3 Mixed ANOVA

- Factor A (Group): 2 levels (patient and control)
- Factor B (Condition): 3 levels (pos, neg, neu)
- Factor S (Subject): 15 ASD children and 15 healthy controls
- Covariate (Age): cannot be modeled; no correction for sphericity violation

$$F_{(a-1,a(n-1))}(A) = \frac{MSA}{MSS(A)},$$

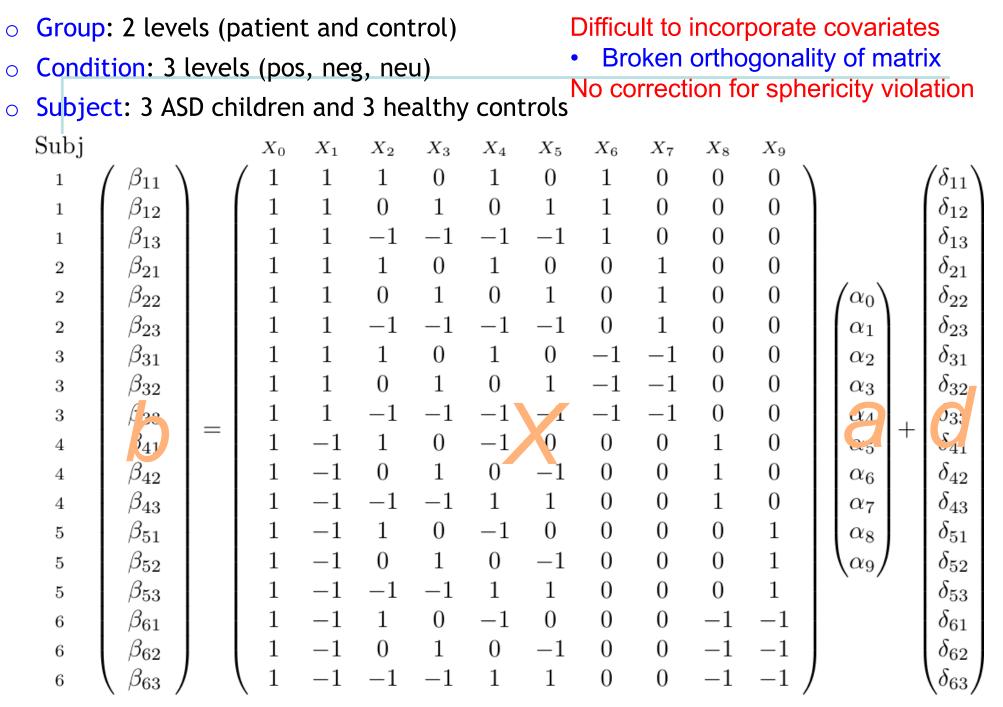
$$F_{(b-1,a(b-1)(n-1))}(B) = \frac{MSB}{MSE},$$

$$F_{((a-1)(b-1),a(b-1)(n-1))}(AB) = \frac{MSAB}{MSE}$$

where

$$\begin{split} MSA &= \frac{SSA}{a-1} = \frac{1}{a-1} (\frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{abn} Y_{...}^{2}), \\ MSB &= \frac{SSB}{b-1} = \frac{1}{b-1} (\frac{1}{an} \sum_{k=1}^{b} Y_{...k}^{2} - \frac{1}{abn} Y_{...}^{2}), \\ MSAB &= \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)} (\frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} - \frac{1}{an} \sum_{k=1}^{b} Y_{...k}^{2} + \frac{1}{abn} Y_{...}^{2}), \\ MSS(A) &= \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)} (\frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} - \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2}), \\ MSE &= \frac{1}{a(b-1)(n-1)} (\sum_{i=1}^{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{ijk}^{2} - \frac{1}{n} \sum_{j=1}^{a} \sum_{k=1}^{b} Y_{.jk} - \frac{1}{b} \sum_{i=1}^{n} \sum_{j=1}^{a} Y_{ij.}^{2} + \frac{1}{bn} \sum_{j=1}^{a} Y_{.j.}^{2} + \frac{1}{abn} Y_{...}^{2}) \end{split}$$

Univariate GLM: 2 x 3 mixed ANOVA

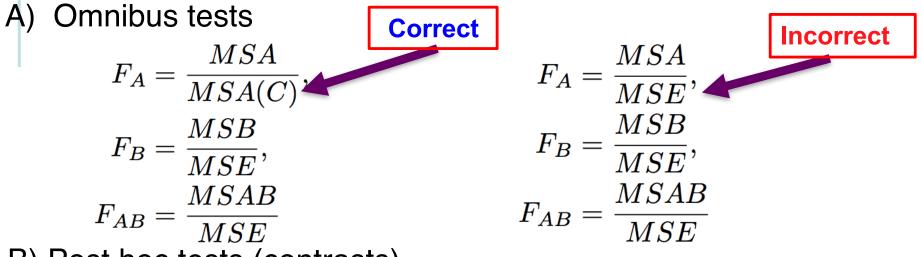


Univariate GLM: popular in neuroimaging

- Advantages: more *flexible* than the method of sums of squares
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates easily modeled *when* no within-subject factors present
- \diamond Disadvantages: costs paid for the flexibility
 - Intricate dummy coding (to allow for different factors and levels)
 - Tedious pairing for numerator and denominator of *F*-stat
 - Choosing proper denominator SS is not obvious (errors in some software)
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - **Cannot** handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- Problems: When overall residual SS is adopted for all tests
 - *F*-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate with this denominator

Univariate GLM: problematic implementations

Between-subjects Factor A (Group): 2 levels (patient, control)
 Within-subject Factor B (Condition): 3 levels (pos, neg, neu)

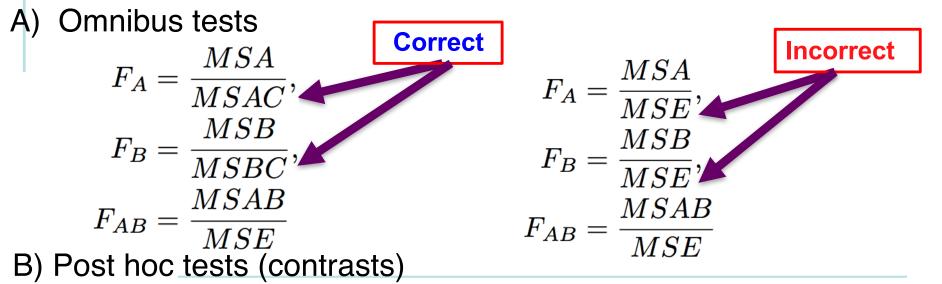


B) Post hoc tests (contrasts)

- (1) **Incorrect** *t*-tests for factor A due to incorrect denominator
- (2) **Incorrect** *t*-tests for factor B or interaction effect AB when weights do not add up to 0
- C) How to handle multiple β s per effect (e.g., multiple runs)?
 - -- Artificially inflated DOF and assumption violation when multiple β s are fed into program

Univariate GLM: problematic implementations

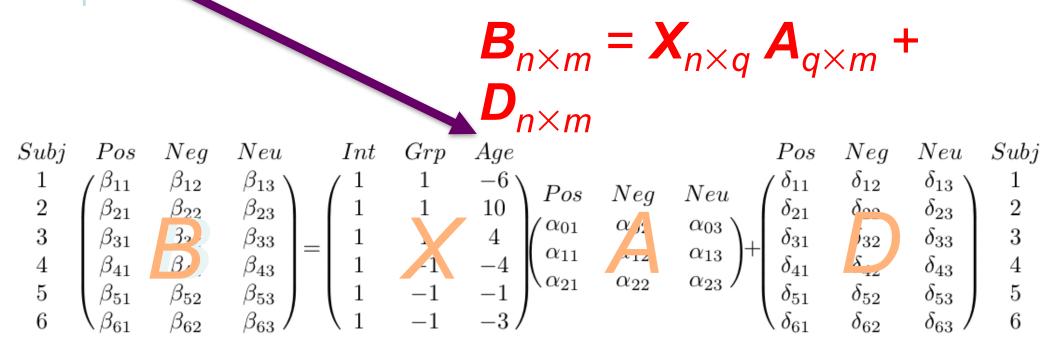
Within-subjects Factor A (Object): 2 levels (house, face)
 Within-subject Factor B (Condition): 3 levels (pos, neg, neu)



- (1) **Incorrect** *t*-tests for both factors A and B due to incorrect denominator
- (2) Incorrect *t*-tests for interaction effect AB if weights don't add up to 0
- C) How to handle multiple β s per effect (e.g., multiple runs)?
 - -- Artificially inflated DOF and assumption violation when multiple β s are fed into program

Better Approach: Multivariate GLM

- **Group: 2** levels (patient and control)
- Condition: 3 levels (pos, neg, neu)
- Subject: 3 ASD children and 3 healthy controls
- Age: quantitative covariate



Why use β , not *t*, values for group analysis?

 \diamond Why not use individual level statistics (*t*, *F*)?

- Dimensionless, no physical meaning
- Sensitive to sample size (number of trials) and to signal-to-noise ratio: may vary across subjects
 - Are *t*-values of 4 and 100 (or *p*-values of 0.05 and 10⁻⁸) really informative? The HDR of the latter is not necessarily 25 times larger than the former
- Distributional considerations not Gaussian
- $\Rightarrow \beta$ values
 - Have physical meaning: measure HDR magnitude = % signal change (*i.e.*, how much BOLD effect)
- \diamond Using β values <u>and</u> their *t*-statistics at the group level
 - More accurate approach: 3dMEMA
 - Mostly about the same as the conventional (β only) approach
 - Not always practical

Road Map: Choosing a program for Group Analysis?

\diamond Starting with HDR estimated via shape-fixed method (SFM)

- One β per condition per subject
- It might be significantly underpowered (more later)
- \diamond Two perspectives
 - Data structure
 - Ultimate goal: list **all** the tests you want to perform
 - Possible to avoid a big model this way
 - Use a piecemeal approach with 3dttest++ or 3dMEMA
 - Perform each test on your list separately
 - Difficulty: there can be *many* tests you *might* want
- Most analyses can be done with 3dMVM and 3dLME
 - Computationally inefficient
 - Last resort: not recommended if simpler alternatives (*e.g.*, *t*-tests) are available

Road Map: Student's t-tests

- ♦ 3dttest++ (new version of 3dttest) and 3dMEMA
- Not for F-tests except for ones with 1 DoF for numerator
 - All factors are of two levels (at most), e.g., 2 x 2, or 2 x 2 x 2
- \diamond Scenarios
 - One-, two-sample, paired
 - Univariate GLM
 - Multiple regression: 1 group + 1 or more quantitative variables
 - ANCOVA: two groups + one or more quantitative variables
 - ANOVA through dummy coding: all factors (between- or withinsubject) are of two levels
 - AN(C)OVA: multiple between-subjects factors + one or more quantitative variables:

https://afni.nimh.nih.gov/sscc/gangc/MEMA.html

- One group against a constant: 3dttest/3dttest++ -singletonA
 - The "constant" can depend on voxel, or be fixed

Road Map: between-subjects ANOVA

One-way between-subjects ANOVA

- o 3dANOVA
- 2 groups of subjects: 3dttest++, 3dMEMA (OK with > 2 groups too)
- - Equal #subjects across groups: **3dANOVA2** –type 1
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: 3dttest++, 3dMEMA (OK with > 2 groups too)
- Three-way between-subjects ANOVA
 - **3dANOVA3** –type 1
 - Unequal #subjects across groups: 3dMVM
 - \circ 2 x 2 design: **3dttest++**, **3dMEMA** (OK with > 2 groups too)
- ♦ N-way between-subjects ANOVA
 - **3dMVM**

Road Map: within-subject ANOVA

 \diamond Only one group of subjects

One-way within-subject ANOVA

o 3dANOVA2 –type 3

Two conditions: 3dttest++, 3dMEMA

- 3dANOVA3 type 4
 - (2 or more factors, 2 or more levels each)
- o 2 x 2 design: 3dttest++, 3dMEMA

♦ N-way within-subject ANOVA

• **3dMVM**

Road Map: Mixed-type ANOVA and others

- One between- and one within-subject factor
 - Equal #subjects across groups: 3dANOVA3 –type 5
 - Unequal #subjects across groups: 3dMVM
 - 2 x 2 design: **3dttest++, 3dMEMA**
- More complicated scenarios
 - Multi-way ANOVA: 3dMVM
 - Multi-way ANCOVA (between-subjects covariates only): 3dMVM
 - HDR estimated with multiple bases: 3dANOVA3, 3dLME, 3dMVM
 - Missing data: **3dLME**
 - Within-subject covariates: 3dLME
 - Subjects genetically related: **3dLME**
 - Trend analysis: **3dLME**

One-Sample Case

- One group of subjects ($n \ge 10$)
 - One condition (visual or auditory) effect
 - Linear combination of multiple effects (visual vs. auditory)
- Null hypothesis H_0 : average effect = 0
 - Rejecting H_0 is of interest!
- Results
 - Average effect at group level (OLay)
 - Significance: *t*-statistic (Thr Two-tailed by default in AFNI)
- Approaches
 - o uber_ttest.py (gen_group_command.py) graphical interface
 - 3dttest++
 - 3dMEMA

One-Sample Case: Example

Two-Sample Case

- Two groups of subjects (n ≥ 10 each): males and females
 One condition (e.g., visual or auditory) effect
 - Linear combination of multiple effects (e.g., visual minus auditory)
 - Example: Gender difference in emotional effect of stimulus?
- Null hypothesis H₀: Group1 = Group2
 Results
 - Group difference in average effect
 Significance: *t*-statistic Two-tailed by default in AFNI
- Approaches
 - o uber_ttest.py, 3dttest++, 3dMEMA
 - One-way between-subjects ANOVA
 - 3dANOVA: can also obtain individual group *t*-tests

Paired Case

- One groups of subjects (n ≥ 10)
 2 conditions (visual or auditory): no missing data allowed (3dLME)
- Null hypothesis H₀: Condition1 = Condition2
 Results
 - Average difference at group level
 - Significance: t-statistic (two-tailed by default)
- Approaches
 - o uber_ttest.py, gen_group_command.py, 3dttest++,
 3dMEMA
 - One-way within-subject (repeated-measures) ANOVA
 3dANOVA2 –type 3: can also get individual condition test
 Missing data (3dLME): only 10 of 20 subjects have both ßs
- Essentially same as one-sample case using contrast as input

Paired Case: Example

.

• **3dttest++**: comparing two conditions

3dttest++ -prefix Vis_Aud \
-mask mask+tlrc -paired -zskip
-setA 'FP+tlrc[Vrel#0_Coef]' \
'FR+tlrc[Vrel#0_Coef]' \

```
'GM+tlrc[Vrel#0_Coef]' \
-setB 'FP+tlrc[Arel#0_Coef]' \
'FR+tlrc[Arel#0_Coef]' \
```

'GM+tlrc[Arel#0_Coef]'

Paired Case: Example

- 3dMEMA: comparing two conditions using subject-level response magnitudes and estimates of error levels
 - Contrast should come from each subject

Instead of doing contrast inside 3dMEMA itself

3dMEMA -prefix Vis_Aud_MEMA

-mask mask+tlrc -missing_data 0

-setA Vis-Aud

.....

FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \

FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \

GM 'GM+tlrc[Vrel-Arel#0_Coef]''GM+tlrc[Vrel-Arel#0_Tstat]'

One-Way Between-Subjects ANOVA

• Two or more groups of subjects ($n \ge 10$)

 $_{\circ}$ One condition or linear combination of multiple conditions

- Example: visual, auditory, or visual vs. auditory
- Null hypothesis H_0 : Group1 = Group2

o Results

- Average group difference
- Significance: *t* and *F*-statistic (two-tailed by default)
- Approaches
 - **3dANOVA** (for more than 2 groups)
 - o > 2 groups: pair-group contrasts: 3dttest++, 3dMEMA
 - Dummy coding: 3dttest++, 3dMEMA (hard work)

o 3dMVM

Multiple-Way Between-Subjects ANOVA

- Two or more subject-grouping factors: factorial designs

 One condition or linear combination of multiple conditions
 Examples: gender, control/patient, genotype, handedness
- Testing main effects, interactions, single group, group comparisons
 - Significance: *t* (two-tailed by default) and *F*-statistic
- Approaches
 - Factorial design (imbalance not allowed): two-way
 (3dANOVA2 –type 1), three-way (3dANOVA3 –type 1)
 - 3dMVM: no limit on number of factors (imbalance OK)
 - All factors have two levels: 3dttest++, 3dMEMA
 - Using group coding (via covariates) with 3dttest++,
 3dMEMA: imbalance possible

One-Way Within-Subject ANOVA

- Also called **one-way repeated-measures**: one group of subjects ($n \ge 10$)
 - Two or more conditions: extension to paired *t*-test

• Example: happy, sad, neutral conditions

- Main effect, simple effects, contrasts, general linear tests,
 Significance: *t* (two-tailed by default) and F-statistic
- Approaches
 - 3dANOVA2 -type 3 (2-way ANOVA w/ 1 random factor)
 - With two conditions, equivalent to paired case with 3dttest++, 3dMEMA
 - With more than two conditions, can break into pairwise comparisons with 3dttest++, 3dMEMA
 - Univariate GLM: testing one condition is invalid

One-Way Within-Subject ANOVA

• Example: visual vs. auditory condition 3dANOVA2 -type 3 -alevels 2 -blevels 10 -prefix Vis Aud -mask mask+tlrc -amean 1 Vis -amean 2 Aud -adiff 1 2 V-A \setminus -dset 1 1 `FP+tlrc[Vrel#0 Coef]' -dset 1 2 `FR+tlrc[Vrel#0 Coef]' -dset 1 10 'GM+tlrc[Vrel#0 Coef]' -dset 2 1 \FP+tlrc[Arel#0 Coef]' -dset 2 2 `FR+tlrc[Arel#0 Coef]'

-dset 2 10 'GM+tlrc[Arel#0_Coef]'

.....

Two-Way Within-Subject ANOVA

- Factorial design; also known as two-way repeated-measures
 2 within-subject factors
 - Example: emotion (happy/sad) and category (visual/auditory)
- Testing main effects, interactions, simple effects, contrasts • Significance: *t*- (two-tailed by default) and F-statistic
- Approaches
 - **3dANOVA3 –type 4** (three-way ANOVA with one random factor)
 - All factors have 2 levels (2x2): 3dttest++, 3dMEMA
 - Missing data?
 - Break into *t*-tests: 3dttest++, 3dMEMA
 - 3dLME

Two-Way Mixed ANOVA

- Factorial design
 - One between-subjects and one within-subject factor
 - Example: between-subject factor = gender (male and female) and within-subject factor = emotion (happy, sad, neutral)
- Testing main effects, interactions, simple effects, contrasts • Significance: *t*- (two-tailed by default) and *F*-statistic
- Approaches
 - 3dANOVA3 –type 5 (three-way ANOVA with one random factor)
 - If all factors have 2 levels (2x2): **3dttest++**, **3dMEMA**
 - Missing data?
 - Unequal number of subjects across groups: 3dMVM, GroupAna
 - Break into *t*-tests: uber_ttest.py, 3dttest++, 3dMEMA
 - 3dLME

Univariate GLM: popular in neuroimaging

- Advantages: more *flexible* than the method of Sums of Squares (SS)
 - No limit on the the number of explanatory variables (in principle)
 - Easy to handle unbalanced designs
 - Covariates can be modeled when no within-subject factors present
- ♦ Disadvantages: costs paid for the flexibility
 - Intricate dummy coding using covariates to partition β s into subsets
 - Tedious pairing for numerator and denominator of *F*-stat
 - Can be hard to select proper denominator SS
 - Can't generalize (in practice) to any number of explanatory variables
 - Susceptible to invalid formulations and problematic post hoc tests
 - **Cannot** handle covariates in the presence of within-subject factors
 - No direct approach to correcting for sphericity violation
 - Unrealistic assumption: same variance-covariance structure
- Problematic: When residual SS is adopted for all tests
 - *F*-stat: valid only for highest order interaction of within-subject factors
 - Most post hoc tests are inappropriate/invalid

MVM Implementation in AFNI

- Program 3dMVM [written in R programming language]
 - No tedious and error-prone dummy coding needed!
 - Symbolic coding for variables and post hoc testing

		Varia	able type	S	Post hoc tests			
3dMVM	-prefix -bsVars	OutputFile 'Grp*Age'	-jobs 8 -wsVars	-SC 'Cond'	-qVars 'Age	,		
	-num_glt 4			oonu				
	-gltLabel 1 -gltLabel 2	Pat_Pos Ctl_Pos-Neg	-gltCode 1 -gltCode 2		-	$1^{*}Pat Cond : 1^{*}Pos' \land Cond : 1^{*}Pos - 1^{*}Neg' \land$		
	-gltLabel 3 GrpD_Pos-Neg -gltLabel 4 Pat_Age		-gltCode 3 -gltCode 4	'Grp :	: 1*Ctl -1*Pat Cond : 1*Pos -1*Neg' 'Grp : 1*Pat Age :'			
	-dataTable	5	0					
	Subj	Grp	Age	Cond	InputFile	١		
	S1	Ctl	23	Pos	S1_Pos.nii	\		
	S1	Ctl	23	Neg	S1_Neg.nii			
	S1	Ctl	23	Neu	S1_Neu.nii	Data layout		
	S50	Pat	19	Pos	S50_Pos.nii			
	S50	Pat	19	Neg	S50_Neg.nii	\		
	S50	Pat	19	Neu	S50_Neu.nii			

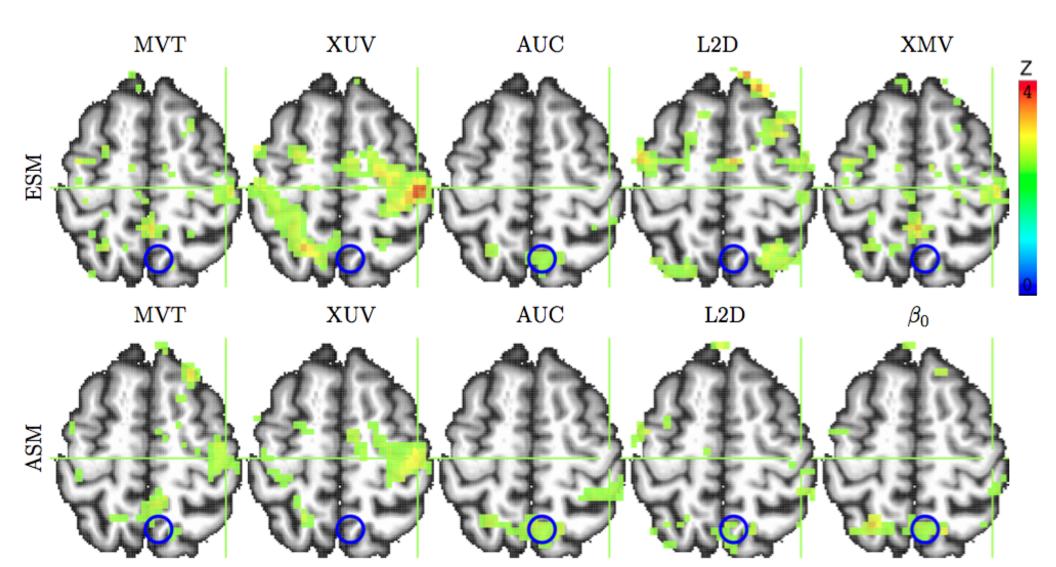
- Fixed-Shape method (**FSM**)
- Estimead-Shape method (**ESM**) via basis functions: TENTzero, TENT, CSPLINzero, CSPLIN
 - $_{\circ}$ Area under the curve (AUC) approach
 - Ignore shape differences between groups or conditions
 - Focus on the response **magnitude** measured by AUC
 - Potential issues: Shape information lost; Undershoot may cause trouble (canceling out some of the positive signal)
 - Better approach: maintaining shape information
 - Take individual β values to group analysis (MVM)
- Adjusted-Shape method (**ASM**) via SPMG2/3
 - $_{\circ}$ Only take the major component β to group level
 - *or*, Reconstruct HRF, and take the effect estimates (*e.g.*, ALIC)

- Analysis with effect estimates at consecutive time grids (from TENT or CSPLIN or reconstructed HRF)
 - Used to be considered very hard to set up (in GLM)
 - Extra variable in analysis: **Time** = $t_0, t_1, ..., t_k$
 - One group of subjects under one condition
 - Accurate null hypothesis is
 - *H*₀: $\beta_1=0$, $\beta_2=0$, ..., $\beta_k=0$ (**NOT** $\beta_1=\beta_2=...=\beta_k$)
 - Testing the centroid (multivariate testing)
 - 3dLME
 - **Approximate** hypothesis $H_0: \beta_1 = \beta_2 = ... = \beta_k$ (main effect)
 - 3dMVM
 - \circ Result: *F*-statistic for H_0 and *t*-statistic for each Time point

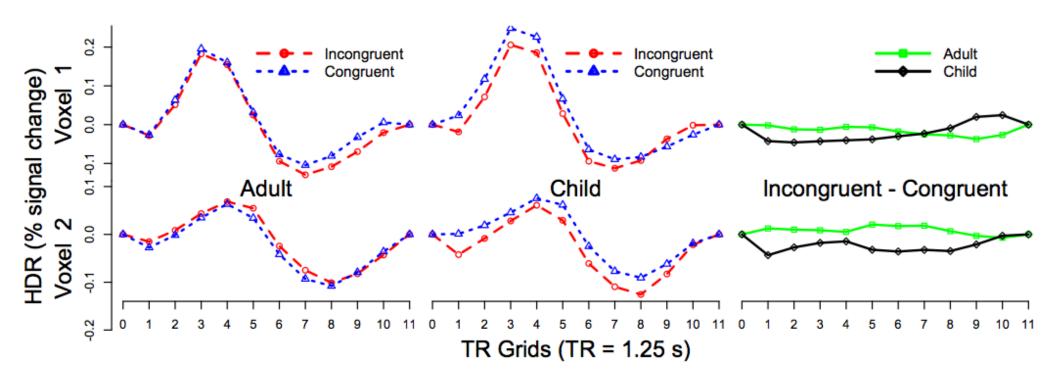
- Multiple groups (or conditions) under one condition (or group)
 - Accurate hypothesis: $\beta_1^{(1)} \beta_1^{(2)} = 0, \beta_2^{(1)} \beta_2^{(2)} = 0, ..., \beta_k^{(1)} \beta_k^{(2)} = 0$
 - 2 conditions: 3dLME
 - Approximate hypothesis: $\beta_1^{(1)} = \beta_1^{(2)}, \beta_2^{(1)} = \beta_2^{(2)}, ..., \beta_k^{(1)} = \beta_k^{(2)}$
 - Interaction
 - Multiple groups: 3dANOVA3 –type 5 (two-way mixed ANOVA: equal #subjects), or 3dMVM
 - Multiple conditions: 3dANOVA3 –type 4
 - o Focus: do these groups/conditions have different response shape?
 - *F*-statistic for the interaction between Time and Group/Condition
 - *F*-statistic for main effect of Group: group/condition difference of AUC
 - *F*-statistic for main effect of Time: HDR effect across groups/conditions
- Other scenarios: factor, quantitative variables

\circ 3dMVM

- 2 groups (children, adults), 2 conditions (congruent, incongruent), 1 quantitative covariate (age)
- 2 methods: HRF modeled by 10 (tents) and 3 (SPMG3) bases



- Advantages of ESM over FSM
 - More likely to detect HDR shape subtleties
 - Visual verification of HDR signature shape (vs. relying significance testing: *p*-values)
- Study: Adults/Children with Congruent/Incongruent stimuli (2×2)



Correlation analysis

• Correlation between brain response and behavioral measures

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_i + \epsilon_i$$

- o Difference between correlation and regression?
 - Essentially the same
 - When explanatory (x_i) and response variable (β_i) are standardized (variance=1), then regression coefficient = correlation coefficient
- Two approaches to get correlation from statistics software
 - Standardization
 - Convert *t*-statistic to *r* (or determination coefficient)

- $R^2 = t^2/(t^2 + DF)$ Programs: 3dttest++, 3dMEMA, 3dMVM, 3dRegAna
- Seed-based correlation for resting-state data

 $_{\circ}$ Fisher transform z has a variance of 1/(DoF - 2)

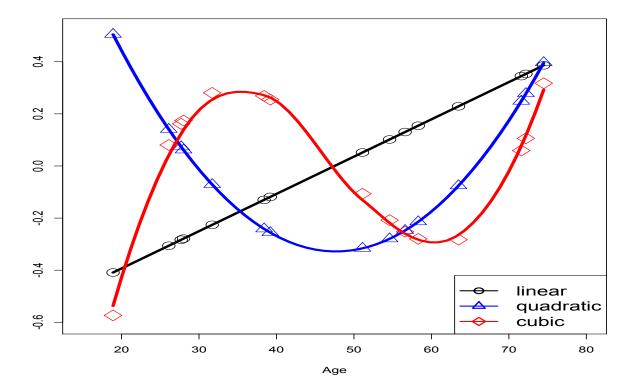
 \circ May consider further standardization by sqrt(DoF – 2)

Trend analysis

- Correlation between brain response and some gradation
 - Linear, quadratic, or higher-order effects
 - Habituation or attenuation effect across time (trials)
 - Between-subjects: Age, IQ
 - Fixed effect
 - Within-subject measures (covariates): morphed images
 - Random effects (trends in different subjects) : 3dLME
 - Modeling: weights based on gradation
 - Equally-spaced: coefficients from orthogonal polynomials
 - With 6 equally-spaced levels, *e.g.*, 0, 20, 40, 60, 80, 100%,
 - Linear: -5 -3 -1 1 3 5
 - Quadratic: 5 -1 -4 -4 -1 5
 - Cubic: -5 7 4 -4 -7 5

Trend analysis

- Correlation between brain response and some gradation
 Modeling: weights based on gradation
 - Not equally-spaced: constructed from, *e.g.*, poly() in R
 - Ages of 15 subjects: 31.7 38.4 51.1 72.2 27.7 71.6 74.5 56.6 54.6 18.9 28.0 26.1 58.3 39.2 63.5
 - https://afni.nimh.nih.gov/sscc/gangc/Trend.html



Trend analysis: summary

- **Cross-trials** trend: AM2 single subject analysis with weights
- Modeling with within-subject trend: **3** approaches
 - Set up GLT weights among factor levels at group level (not directly using covariate values) 3dANOVA2/3, 3dMVM, 3dLME: best with equally-spaced with even number of levels
 - $_{\circ}\,$ Set up the covariates as the values of a variable
 - Needs to account for deviation of each subject (random trends)

• 3dLME

- Run trend analysis at individual level (*i.e.*, -gltsym), and then take the trend effect coefficient estimates to group level
 - Simpler than the other two approaches of doing trend analysis at the group level

Group analysis with quantitative variables

- Covariate: 3 usages
 - Quantitative (vs. categorical) variable of interest
 - Age, IQ, behavioral measures, ...
 - Of no interest to the investigator (trying to remove variance)
 - Age, IQ, sex, handedness, scanner,...
 - Any explanatory variables in a model
- Variable selection
 - Infinite candidates for covariates: relying on prior information
 - Typical choices: age, IQ, RT (reaction time), ...
 - RT: individual vs. group level
 - Amplitude Modulation regression: cross-trial variability at individual level (*cf.* Advanced Regression talk)

Current la contra la iliter a angla a culais ata

Group analysis with quantitative variables

- Conventional framework
 - ANCOVA: one between-subjects factor (e.g., sex) + one quantitative variable (e.g., age)

• Extension to ANOVA: GLM

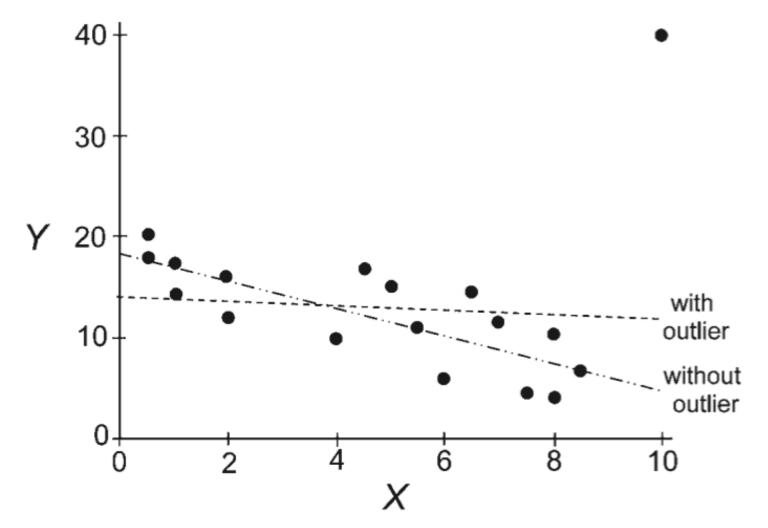
- Homogeneity of slopes
- Broader framework
 - Any modeling approaches involving quantitative variables
 Regression, GLM, MVM, LME

Trend analysis, correlation analysis

- Interpretations
 - Regress/covariate out *x*?
 - "Controlling *x* at ...", "holding *x* constant": centering

Caveats with covariate modeling

- Regression with few data points: sensitive to outliers
- Option -robust in 3dMVM



Caveats with covariate modeling

- Specification error: excluding a crucial explanatory variable may lead to incorrect or distorted interpretations (spuriousness)
 - Toddler's vocabulary ~ α * shoe size: α = .50
 - Toddler's vocabulary ~ α * shoe size + β * age: α = .04, β = .6
 - Explanatory variables (shoe size, age) are highly correlated: r = 0.8!
 - Excluding one may lead to overestimated effect for the other, but not *always* the case

• Suppression:

- y (# suicide attempts) ~ 0.49 * x_1 (depression)
- $y \sim 0.19 * x_2$ (amount of psychotherapy)
- $\circ \ \mathbf{y} \sim 0.70 * \mathbf{x}_1 0.30 * \mathbf{x}_2 \ (r_{12} = 0.7)$
- \circ Imagine that x_1 is head motion in FMRI!

Quantitative variables: subtleties

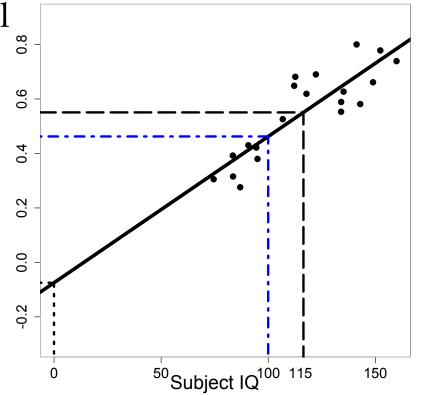
• Regression: one group of subjects + quantitative variables $\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$

• Interpretation of effects (results of regression)

 $\circ \alpha_1$ - slope (change rate, marginal effect): effect per unit of *x*

 $\circ \alpha_0$ – intercept: group effect when *x***=0**

- Not necessarily meaningful
- Linearity may not hold
- Solution: centering crucial for interpretability
- Mean centering? or Median centering?



Quantitative variables: subtleties + confusion

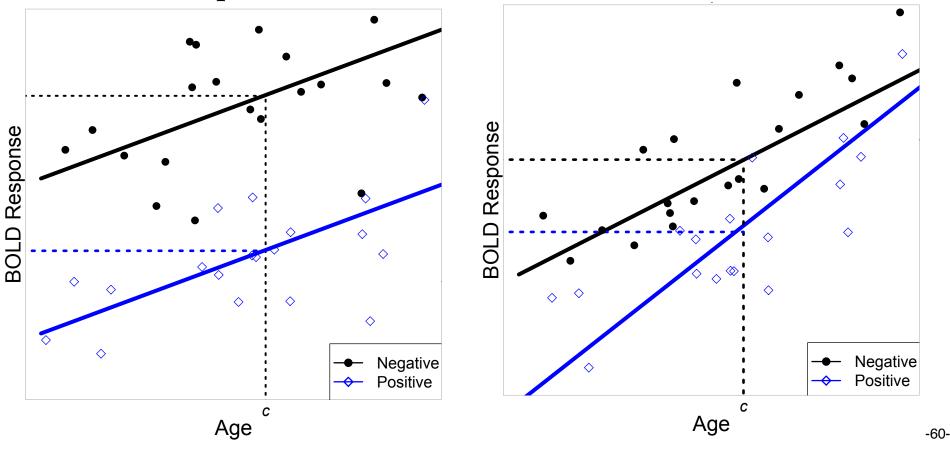
• Trickier scenarios with two or more groups

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$

 \circ Interpretation of effects

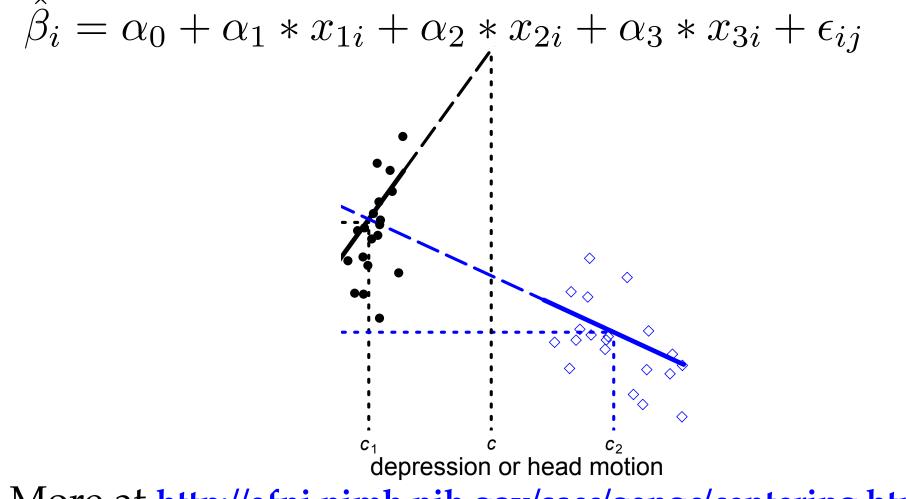
Slope: Interaction! Same or different slope?

 $\circ \alpha_0$ (intercept) – same or different center?



Quantitative variables: subtleties

• Trickiest scenario with two or more groups in addition to interaction



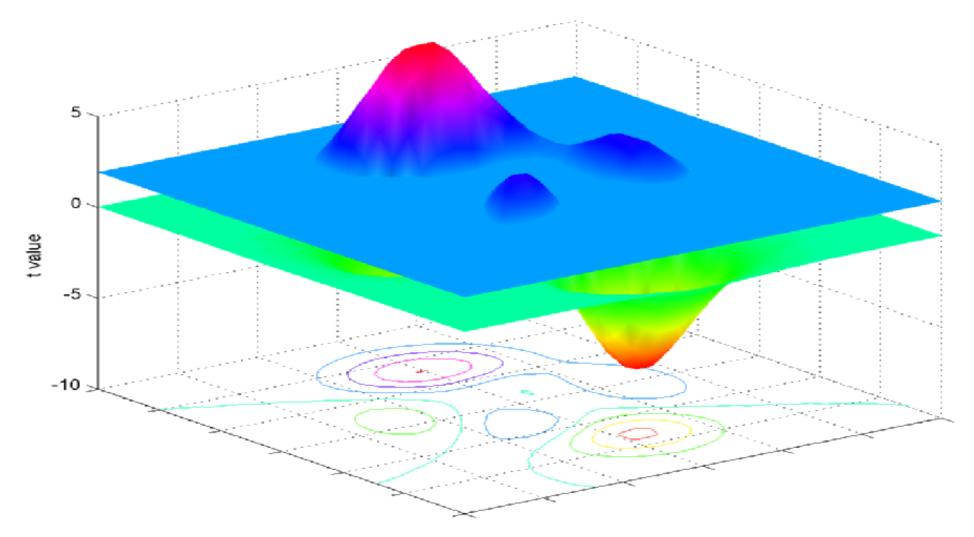
• More at http://afni.nimh.nih.gov/sscc/gangc/centering.html

Why should we report response magnitudes?

- **Unacceptable** in some fields to report only significance (peak *t* and smallest *p*)
- Neuroimaging is an exception currently!
- Obsession in FMRI about *p*-value!
 - Colored blobs of *t*-values
 - Peak voxel selected based on peak *t*-value
- Science is about reproducibility
 - Response amplitude should be of primacy focus
 - Statistics are only for thresholding
 - No physical dimension, and are a mix of response size and noise magnitude
 - Once surviving threshold, specific values are not informative

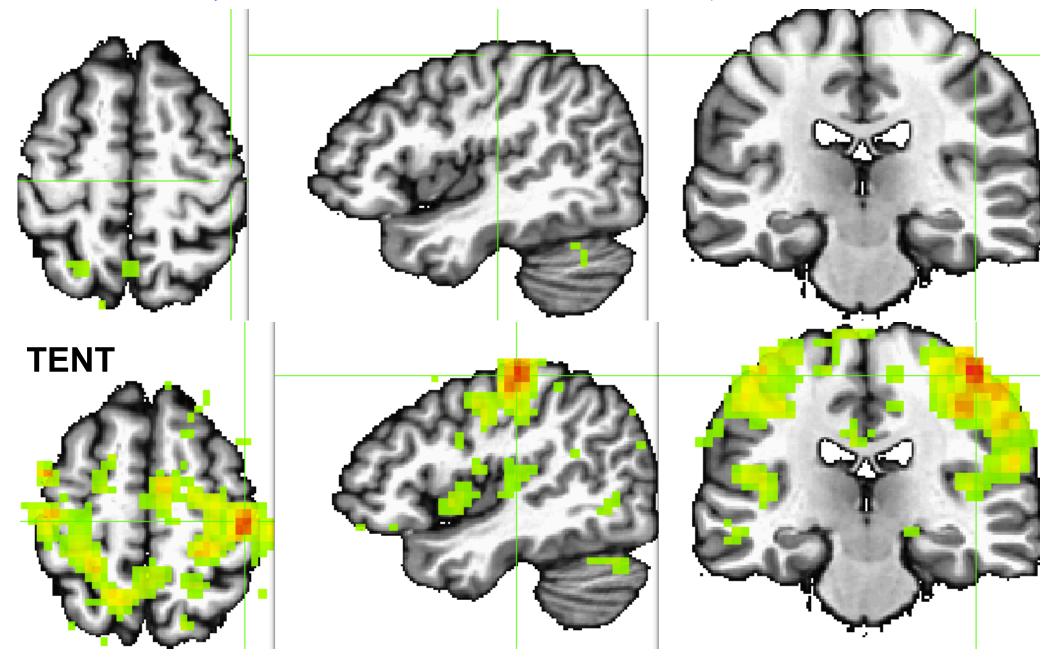
Basics: Null hypothesis significance testing (NHST)

Should science be based on a binary (Yes/No) inference?
 If a cluster fails to survive thresholding, it has no value?
 Small Volume Correction (SVC): Band-Aid solution

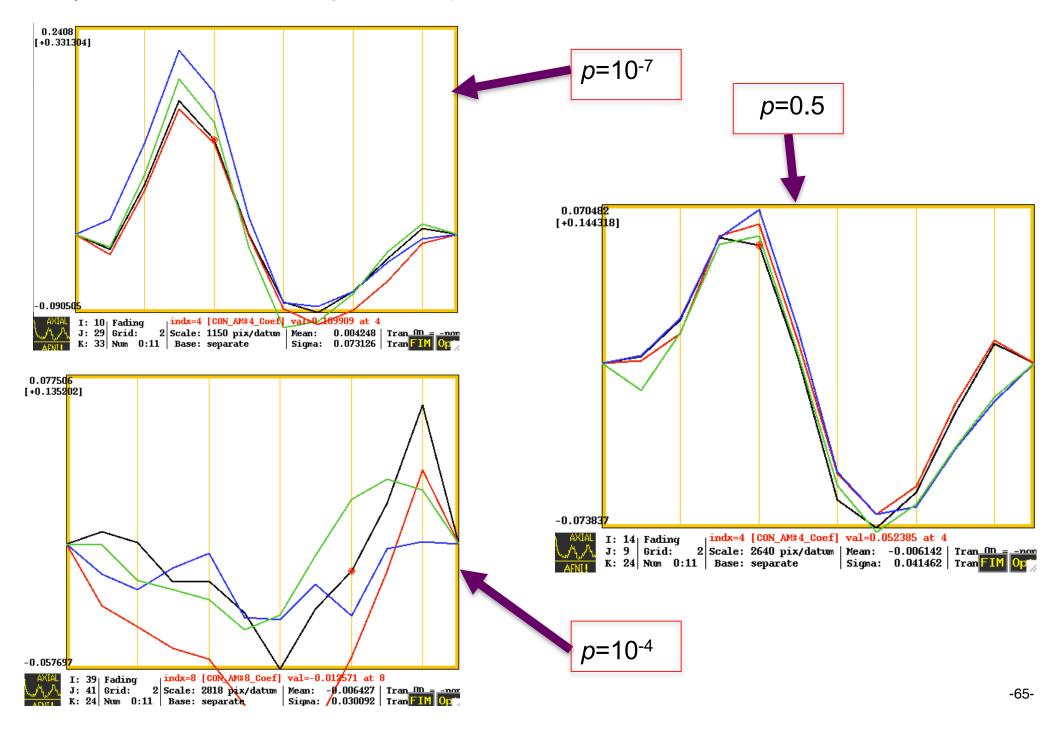


Modeling strategy & results: an example

SPMG3: 1st β (canonical HDR) [voxel-wise *p*=0.01]



Is *p*-value everything? An example



Advantages of ESM

- Multiple basis functions
 - TENTzero, TENT, CSPLINzero, CSPLIN
 - Similar to FIR in SPM, but FIR does not allow non-TRsynchronized modeling
- Higher statistical power than FSM and ASM
 More likely to identify activations
- Extra support for true positives (TP) with HRF signature shape

 Unavailable from FFM and ASM
- Crucial evidence if significance is marginal: false negatives (FP)
- Avoiding false positives (FP)
- Works best for event-related experiments
 - Useful for block designs if concerned about habituation, attenuation,...

How rigorous about corrections?

• Two types of correction

• Multiple testing correction n(MTC): **same** test across brain

• FWE, FDR, SVC(?)

People (esp. reviewers) worship this!

• Multiple comparisons correction (MCC): **different** tests

- o Happy vs. Sad, Happy vs. Neutral, Sad vs. Neutral
- Two one-sided *t*-tests: *p*-value is ½ of two-sided test!

o How far do you want to go?

 \circ Tests in one study

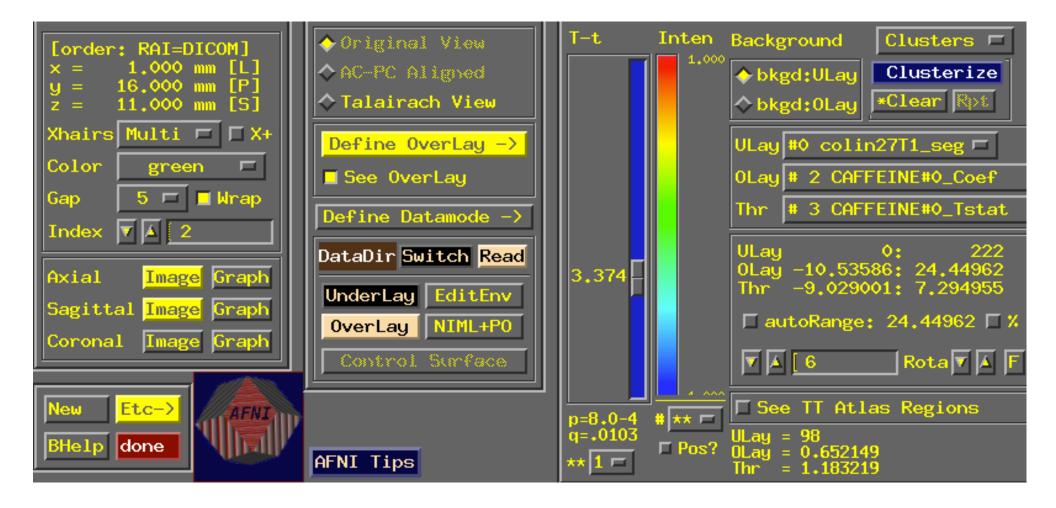
 $_{\odot}$ Tests in all FMRI or all scientific studies?

Nobody cares about this issue in FMRI (for unknown reasons)

• Many reasons for correction failure (loss of statistical significance)

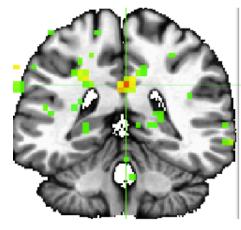
Region size, number of subjects, alignment quality, substantial cross-subject variability (anxiety disorder, depression, ...)

Presenting response magnitudes

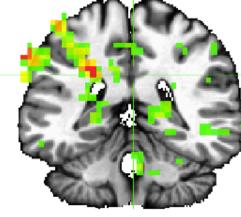


Presenting response magnitudes

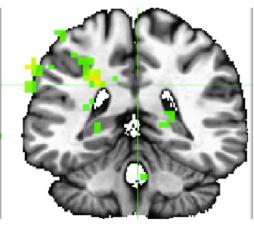
(A) Coronal view of interaction effect of Group:Condition:Time



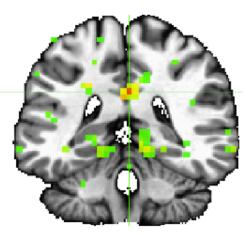
HT



UVT-UC



UVT-SC



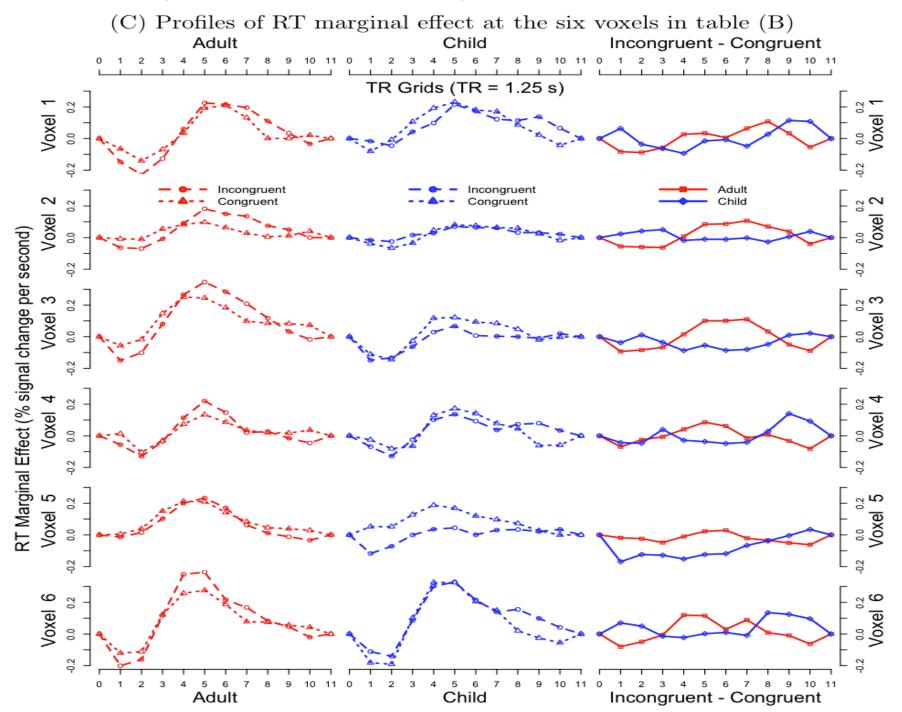
MVT-WS

(B)	Sphericity	scenarios	at	six	representative voxels	
-----	------------	-----------	---------------------	-----	-----------------------	--

Voxel		Sphericity			UVT-UC	UVT-SC	MVT-WS	HT
No.	coordinates	Mauchly <i>p</i> -value	ϵ_{GG}	ϵ_{HF}	p-value	<i>p</i> -value	<i>p</i> -value	taking
1	-2 36 27	0	0.32	0.35	0.28	0.31	0.00021	MVT-WS
2	-33 -5 42	0	0.42	0.46	$3.8 imes 10^{-6}$	$8.4 imes 10^{-4}$	$1.6 imes 10^{-4}$	MVT-WS
3	-50 - 16 24	0	0.45	0.50	$1.6 imes 10^{-4}$	0.0041	0.14	MVT-WS
4	-5 -20 23	8.7×10^{-6}	0.68	0.79	$1.8 imes 10^{-5}$	0.0001	0.008	UVT-SC
5	$37 \ 68 \ 20$	0	0.30	0.32	0.012	0.074	0.15	MVT-WS
6	-36 -16 7	0	0.53	0.60	$1.8 imes 10^{-5}$	$5.3 imes10^{-4}$	0.0019	UVT-SC

Ζ

Presenting response magnitudes



IntraClass Correlation (ICC)

- Reliability (consistency, agreement/reproducibility) across two or more measurements of the same condition/task (sessions, scanners, sites, studies, twins -- monozygous or dizygous): extent to which the levels of a factor are related to each other
 - Example: 20 subjects scanned in two scanners (effect estimate of a condition/task, contrast between 2 conditions/tasks, functionality measure, etc.)
 - Classic example in Shrout and Fleiss (1979): *n* targets are rated by *k* raters/judges
 - Relationship with Pearson correlation:
 - ICC is the Pearson correlation between any two measurements
 - Difference with Pearson correlation
 - Pearson correlation can be for any two different types of measure: e.g., BOLD response vs. RT
 - ICC is for the same measurement with the same assumption $G(\mu, \sigma^2)$

IntraClass Correlation (ICC)

Three different definitions

• One-way random-effects ANOVA

$$x_{ij} = \mu + r_i + w_{ij}$$

where $i = 1, ..., n$ and $j = 1, ..., k$.

- $_{\circ}$ Assumptions: subject $r_i \sim G(0,\,\sigma_r^{\ 2}),\,w_{ij} \sim G(0,\,\sigma_w^{\ 2})$
- Order cannot be assigned across multiple measurements
 - *e.g.*, twins: fixed or random effect of twins (index *j*) not considered
- **ICC(1,1)** in Shrout & Fleis (1979)

$$\frac{\sigma_r^2}{\sigma_r^2 + \sigma_w^2}$$

Conceptualized as an LME model

- Three different definitions
 - Two-way random-effects ANOVA

$$x_{ij} = \mu + r_i + c_j + e_{ij}$$

where i = 1, ..., n and j = 1, ..., k.

- \circ Assumptions: subject $r_i \sim G(0,\,\sigma_r^{\ 2}),$ session $c_j \sim G(0,\,\sigma_c^{\ 2}),\,w_{ij} \sim G(0,\,\sigma_w^{\ 2})$
- $_{\circ}$ Order can be assigned across multiple measurements
 - *e.g.*, session: random effect (index *j*) no systematic difference across sessions
- ICC(2,1) in Shrout & Fleis (1979)

$$\frac{\sigma_r^2}{\sigma_r^2 + \sigma_c^2 + \sigma_e^2}$$

Conceptualized as an LME model

Three different definitions

• Two-way mixed-effects ANOVA

$$x_{ij} = \mu + r_i + c_j + e_{ij}$$

where i = 1, ..., n and j = 1, ..., k.

 $_{\circ}$ Assumptions: subject $r_i \sim G(0,\,\sigma_r^{\ 2}),\,w_{ij} \sim G(0,\,\sigma_e^{\ 2})$

- Order can be assigned across multiple measurements
 - *e.g.*, scanner: fixed effect (index *j*) systematic difference across scanners
- ICC(3,1) in Shrout & Fleis (1979)

$$\frac{\sigma_r}{\sigma_r^2 + \sigma_e^2}$$

Conceptualized as an LME model

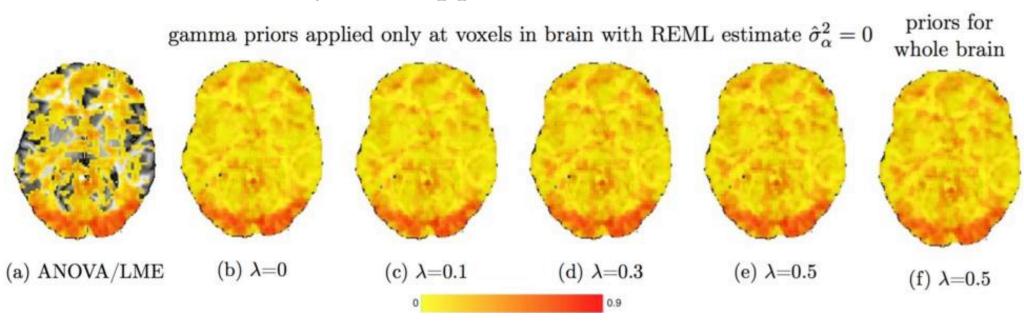
- Three different definitions
 - \circ Pearson correlation
 - Proportion of total variance that can be accounted for acrosssubject variance
 - ICC(1,1) and ICC(2,1): agreement/reproducibility;
 ICC(3,1): consistency
- Implemented in **3dLME –ICC** in AFNI
 - The 3 types of ICC can be specified through options –model and –ranEff
 - ICC of interest: cross-subjects ICC (labeled with subject)
- Will be migrated to **3dICC**

- Three different definitions
- Implemented in **3dLME –ICC** in AFNI
- What is the advantage of LME over ANOVA?
 - ANOVA may render negative ICC values: not interpretable nor meaningful
 - \circ LME places a boundary at 0, so all ICC estimates are ≥0
 - Huge flexibility of LME: easy to incorporate fixed- and random-effects in the model (e.g., age, RT, etc.)
- Problem with zero ICC
 - Stuck at a numerical bounardy
 - Not practical meaningful
- Bayesian approach: a tiny nudge by a weak prior
 Implemented in 3dLME –ICCb in AFNI (recommended)

- Three different definitions
- Implemented in **3dLME –ICCb** in AFNI (**recommended**)
- Prior: Gamma density function

$$\begin{split} h(\sigma;\theta,\lambda) &= \frac{\lambda^{\theta}}{\Gamma(\theta)} \sigma^{\theta-1} e^{-\lambda\sigma} \\ \theta &> 0, \lambda > 0 \end{split}$$

• Performance of Bayesian approach



- Three different definitions
- Implemented in **3dLME –ICCb** in AFNI (**recommended**)
- Future developments?
 - A standalone program **3dICC**
 - Significance testing for ICC
 - Incorporation of effect estimate reliability into the model

Group Analysis: Non-Parametric Approach

- Parametric approach
 - When have enough number subjects: n > 10
 - Random effects of subjects: usually Gaussian distribution
 - Individual and group analyses: separate
- Non-parametric approach
 - ∘ Moderate number of subjects: 4 < n < 10
 - No assumption of data distribution (e.g., normality)
 - Statistics based on ranking or permutation
 - Individual and group analyses: separate

Non-Parametric Analysis

- Ranking-based: roughly equivalent to permutation tests
 o 3dWilcoxon (~ paired *t*-test)
 - 3dFriedman (~ one-way within-subject with 3dANOVA2)
 - o 3dMannWhitney (~ two-sample *t*-test)
 - o 3dKruskalWallis (~ between-subjects with 3dANOVA)
- Pros: Less sensitive to outliers (more robust)
- Cons
 - Multiple testing correction limited to FDR (3dFDR)
 - > Less flexible than parametric tests
 - Can't handle complicated designs with more than one fixedeffects factor
 - Can't handle covariates
- Direct permutation approach?

Group Analysis: Fixed-Effects Analysis (very old)

- When to consider?
 - $_{\circ}$ LME approach
 - Group level: a few subjects: n < 6
 - Individual level: combining multiple runs/sessions
- Case study: difficult to generalize to whole population
- Model β_i = b+ε_i, ε_i ~ N(0, σ_i²), σ_i²: within-subject variability
 Fixed in the sense that cross-subject variability is not considered
- Direct fixed-effects analysis (3dDeconvolve/3dREMLfit)
 Combine data from all subjects and then run regression
- Fixed-effects meta-analysis (**3dcalc**) : weighted least squares

•
$$\boldsymbol{\beta} = \sum w_i \boldsymbol{\beta}_i / \sum w_i, w_i = t_i / \boldsymbol{\beta}_i$$
 = weight for *i*th subject
• $t = \boldsymbol{\beta} \sqrt{\sum w_i}$

Group Analysis Program List

- **3dttest++** (<u>one-sample</u>, <u>two-sample</u> and <u>paired</u> *t*) + covariates (voxel-wise is allowed, *e.g.*, GM fraction)
- **3dMEMA** (R package for mixed-effects analysis, *t*-tests plus covariates)
- **3ddot** (correlation between two datasets)
- **3dANOVA** (one-way between-subject)
- **3dANOVA2** (<u>one-way within-subject</u>, 2-way between-subjects)
- **3dANOVA3** (<u>2-way within-subject</u> and <u>mixed</u>, 3-way betweensubjects)
- **3dMVM** (AN(C)OVA, and within-subject MAN(C)OVA)
- **3dLME** (R package for sophisticated cases)
- **3dttest** (obsolete: <u>one-sample</u>, <u>two-sample</u> and <u>paired</u> *t*)
- **3dRegAna** (obsolete: regression/correlation, covariates)
- **GroupAna** (mostly obsolete: Matlab package for up to four-way ANOVA)

FMRI Group Analysis Comparison

		AFNI	SPM	FSL		
<i>t</i> -test (one-, two-sample, paired)		3dttest++, 3dMEMA	Yes	FLAME1, FLAME1+2		
One categorical variable: one-way ANOVA		3dANOVA/2/3, GroupAna	Only one WS factor: full and flexible factorial design	Only one within- subject factor: GLM in FEAT		
Multi-way AN(C)OVA		3dANOVA2/3, GroupAna, 3dMVM				
Between-subject covariate		3dttest++, 3dMEMA, 3dMVM	Partially	Partially		
	Covariate + within-subject factor					
Sophisticated situations	Subject adjustment in trend analysis	3dLME				
	Basis functions					
Missing data				-8		

ISC: Overview

- Naturalistic FMRI
 - A middle point between task-related and resting-state scanning
 - A special case of task-related FMRI: task from beginning to end
 - Resting-state data: an asymptotic case of naturalistic canning
- Challenges of analyzing naturalistic scanning data
- Survey of previous approaches
- Exploration of new nonparametric methods
- Flexibility of linear mixed-effects (LME) modeling (program publicly available)
- Potential application to resting-state data
 - Focus on whole brain instead of one seed

Two popular types of FMRI scanning

- Task-related experiments
 - Meticulously designed, well controlled
 - Event-related or block design
 - Effect of interest: regional responses to a task or a contrast
 - Models: responses estimated through time series regression
 - Potential issues
 - Artificial tasks: absence of distinctive textures of real life events
 - Artificial or discrete intervals between trials
 - Poor understanding/modeling, low sensitivity (underpowered)
- Resting state
 - No explicit tasks
 - Spontaneous, intrinsic fluctuations
 - Effect of interest: regional correlation, networks
 - Models: seed-based correlation, data-driven methods, etc.
 - Caveats: difficult to separate physiological confounds, arbitrary in data manipulations/interpretations

Naturalistic scanning

- o Subjects view a natural scene during scanning
 - Visuoauditory movie clip (e.g., http://studyforrest.org/)
 - Neural responses shared across languages
 - Music, speech, games, ...
- Duration: lasting for a few minutes or more
- Close to naturalistic settings: minimally manipulated; naturalistically, continuously, and dynamically evolving
- Effect of interest
 - Extent of synchronization/entrainment, similarity, or shared processing at the same brain regions across subjects in shared memory, communication and understanding through a common ground
- Hasson et al., 2004. Intersubject synchronization of cortical activity during natural vision. Science 303:1634-1640.

Inter-Subject Correlation (ISC)

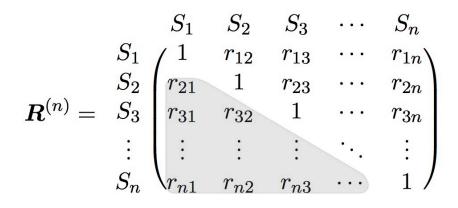
- Modeling with task-related regressors won't work
 - One regressor for the whole task: BOLD can't be separated from baseline and drift effects
 - Feature extractions: too rich or complicated to be practical
- Inter-subject correlation (ISC)
 - Proper preprocessing
 - Nonlinear alignment to template space
 - Removing physiological confounds (e.g., regressing out signal in the white matter and principal components from the CSF signal)
 - Censoring out time points when significant motion occurred

Inter-Subject Correlation (ISC)

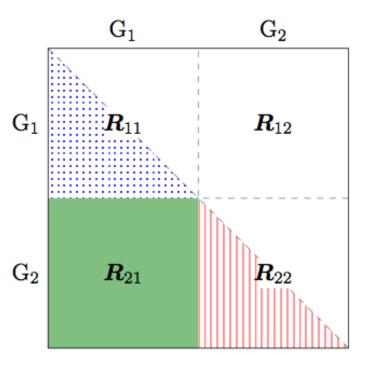
- Inter-subject correlation (ISC)
 - Correlation of time series between two subjects at the same voxel
 - No presumption of HDR
 - Measuring synchronization/similarity/entrainment
 - Avoiding the arbitrariness of seed selection
- Voxel-wise ISC between any subject pair
 - n = 3 subjects (A, B, C): 3 ISC values (AB, AC, BC)
 - n = 4 subjects: 6 ISCs
 - n = 5 subjects: 10 ISCs
 - n subjects: n(n-1)/2 ISCs
- ISC group analysis
 - Summarization at the group level
 - Investigate differences across groups in synchronization (ISC)
 - Difficulty: some of ISC values are correlated
 n independent samples correspond to *n(n-1)/2* ISCs

ISC group analysis

- Voxel-wise ISC matrix (usually Fisher-transformed)
 - One group



- Two groups
 - Within-group ISC: R11, R22
 - Inter-group ISC: R21
 - 3 group comparisons: R11 vs R22, R11 vs R21, R22 vs R21



Correlation pattern of ISC values

- 2 ISC values associated with a common subject are correlated with each other: 5 subjects, 10 ISC values
- $\rho \neq 0$ characterizes non-independent relationship

	Z_{21}	Z_{31}	Z_{41}	Z_{51}	Z_{32}	Z_{42}	Z_{52}	Z_{43}	Z_{53}	Z_{54}
Z_{21}	(1	ρ	ρ	ρ	ρ	ρ	ρ	0	0	0)
Z_{31}	ρ	1	ρ	ρ	ρ	0	0	ρ	ρ	0
Z_{41}	ρ	ρ	1	ρ	0	ρ	0	ρ	0	ρ
Z_{51}	ρ	ρ	ρ	1	0	0	ρ	0	ρ	ρ
Z_{32}	ρ	ρ	0	0	1	ρ	ρ	ρ	ρ	0
Z_{42}	ρ	0	ρ	0	ρ	1	ρ	ρ	0	ρ
Z_{52}	ρ	0	0	ρ	ρ	ρ	1	0	ρ	ρ
Z_{43}	0	ρ	ρ	0	ρ	ρ	0	1	ρ	ρ
Z_{53}	0	ρ	0	ρ	ρ	0	ρ	ρ	1	ρ
Z_{54}	0	0	ρ	ρ	0	ρ	ρ	ρ	ρ	1)

• **Challenge**: how to handle this irregular correlation matrix?

ISC group analysis: previous methods

- Student's *t*-test
 - Independence violation acknowledged but not accounted for
 - Justification via observations that "null data" (generated by ISC values with randomly shifted time series) followed *t*(*N*-1)
- Various nonparametric methods
 - Permutations: null distribution via randomization across space (voxels) and time (e.g., circularly shifting each subject's time series by a random lag)
 - Matlab package: **ISC Toolbox** (Kauppi et al, 2014)
 - Leave one out (LOO): Kauppi et al, 2010
 - Compute ISC of a subject between a voxel's BOLD time course in the subject and the average of that voxel's time course in the remaining subjects
 - Perform Student *t*-test on the LOO ISC values

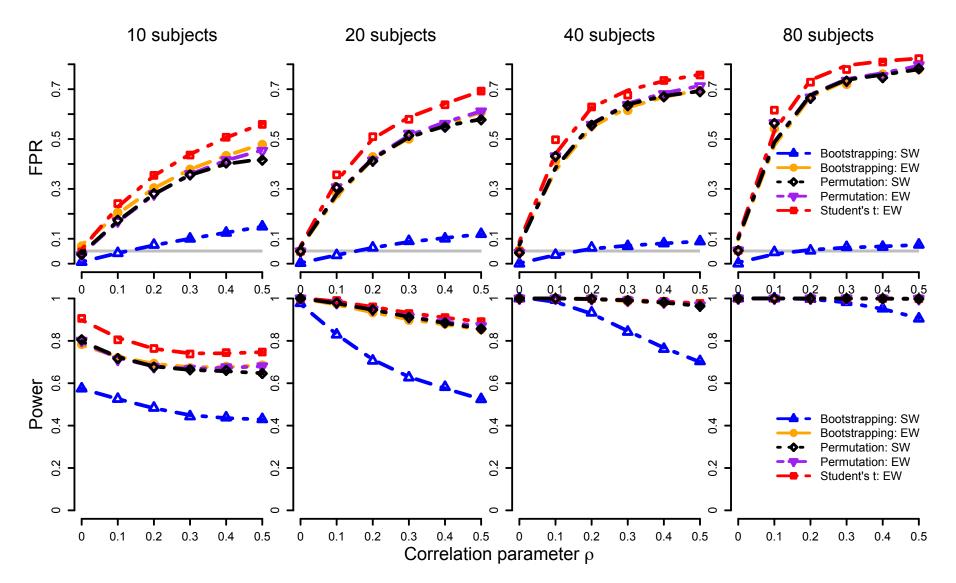
• All these methods have poor FPR controllability

ISC group analysis: exploration with new nonparametric approaches

• Schematic demo of how different methods work

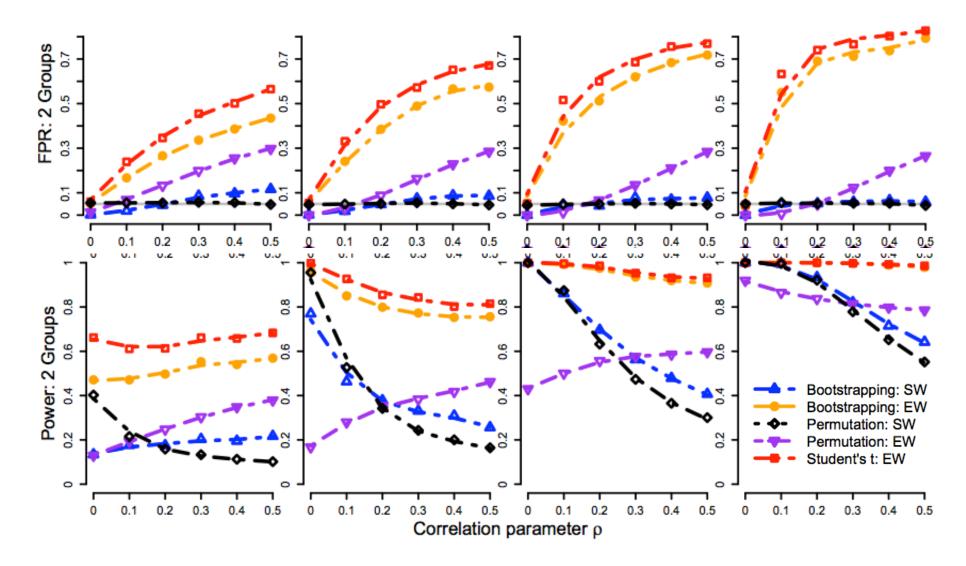
	One Group	Two Groups				
$R^{(6)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
EWP	$ \begin{array}{c c} \text{Flipped sign: } r_{21}, r_{51}, r_{61}, r_{32}, r_{62}, r_{63}, r_{54} \\ S_1 & S_2 & S_3 & S_4 & S_5 & S_6 \\ \end{array} \\ \begin{array}{c} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_5 \\ S_6 \end{array} \begin{pmatrix} -r_{21} & & & \\ -r_{21} & & & \\ r_{31} & -r_{32} & & \\ r_{41} & r_{42} & r_{43} & & \\ -r_{51} & r_{52} & r_{53} & -r_{54} & & \\ -r_{61} & -r_{62} & -r_{63} & r_{64} & r_{65} \\ \end{array} \end{pmatrix} $	Reassigned correlation coefficients G1: r_{21}, r_{54}, r_{64} ; G2: r_{31}, r_{32}, r_{64}				
SWP	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
EWB	Sampled correlation coefficients: $r_{21}, r_{21}, r_{32}, r_{41}, r_{43}, r_{43}, r_{52}, r_{53}, r_{53}, r_{55}, r_{61}, r_{63}, r_{64}, r_{64}$	Sampled correlation coefficients: G1: r_{21}, r_{32}, r_{32} ; G2: r_{54}, r_{64}, r_{64}				
SWB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

New nonparametric approaches: simulations



Conclusion: SWB acceptable for one group

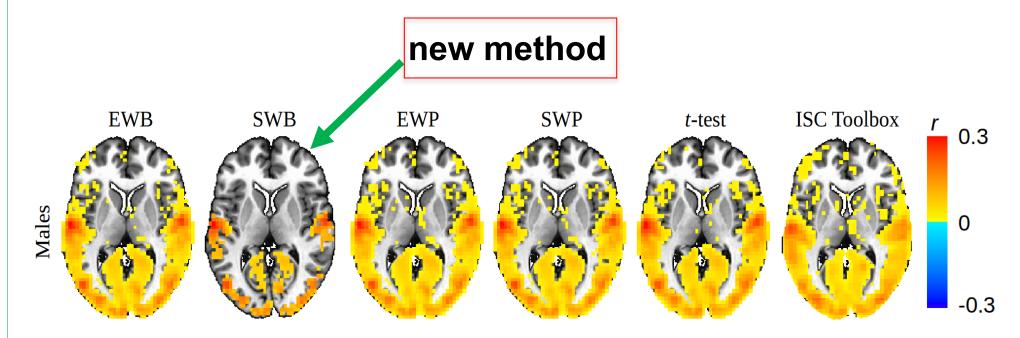
New nonparametric approaches: simulations



Conclusion: SWP ideal for group comparisons

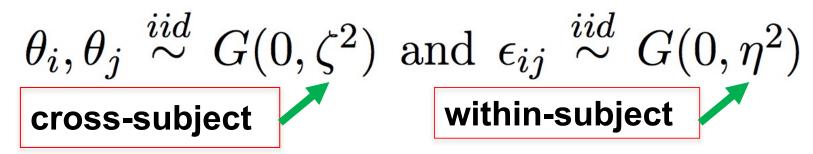
New nonparametric approaches: real data

- One group: 24 male subjects
- 6 movie clips, 406 time points



- Similar results for group comparisons with **SWP**
- o Results with real data are consistent with simulation results

Linear mixed-effects modeling (LME) • Modeling via effect partitioning: crossed random-effects LME $z_{ij} = b_0 + \theta_i + \theta_j + \epsilon_{ij}, \quad i \neq j$



• Charactering the relatedness among ISCs via LME

$$o = Corr(z_{ij}, z_{jl}) = \frac{Cov(z_{ij}, z_{jl})}{\sqrt{Var(z_{ij})Var(z_{jl})}} = \frac{\zeta^2}{2\zeta^2 + \eta^2}$$
$$0 \le \rho = \frac{\zeta^2}{2\zeta^2 + \eta^2} = \frac{\zeta^2}{\sigma^2} \le 0.5$$

Chen et al, 2016b. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage (in press).

Linear mixed-effects modeling (LME)

• Formulation: crossed random-effects LME

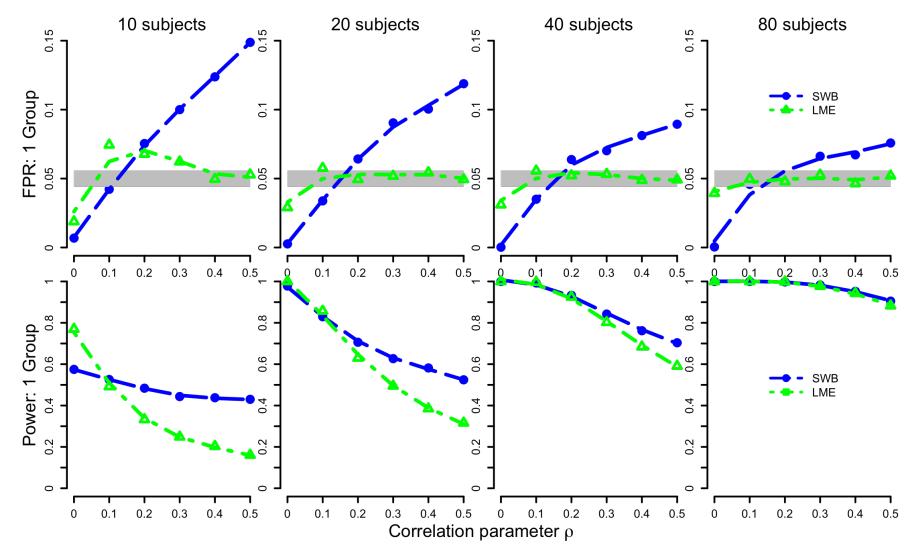
$$egin{aligned} &z_{ij} = b_0 + heta_i + heta_j + \epsilon_{ij}, & i
eq j \ & heta_i, heta_j & \stackrel{iid}{\sim} G(0, \zeta^2) ext{ and } \epsilon_{ij} & \stackrel{iid}{\sim} G(0, \eta^2) \end{aligned}$$

- Extendibility/flexibility of LME
 - Easy to incorporate explanatory variables: between- and withinsubject factors (or quantitative covariates) similar to extension of *t*-test to GLM
- Data characterization and model quality: unavailable for nonparametric approaches
 - Cross-subject variance ζ^2
 - Cross-subject variance ζ^2 Within-subject variance η^2 $0 \le \rho = \frac{\zeta^2}{2\zeta^2 + \eta^2} = \frac{\zeta^2}{\sigma^2} \le 0.5$ •
 - Relatedness of ISCs ρ

Chen et al, 2016b. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage (in press).

-97-

LME: simulations

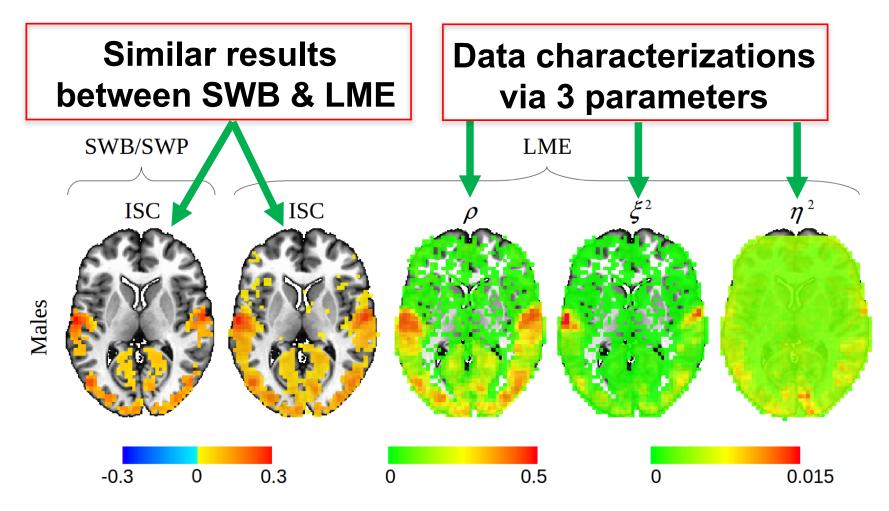


LME: better FPR controllability than SWB for one group, and similar to SWP for group comparisons

Chen et al, 2016b. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage (in press).

LME: real experiment data

- 48 subjects (24 males, 24 females)
- o 6 movie clips, 406 time points



Chen et al, 2016b. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling. Neuroimage (in press). Benefits of naturalistic paradigm • Similar to resting-state FMRI

- Extendable to other modalities
 - EEG, MEG, ECoG, fNIRS...
- No presumption about HDR function
- More controlled and engaging (especially for children)
- Practical benefit: subject less likely to fall asleep
- Analysis benefits
 - Less vulnerable to head motion effects
 - Statistically more powerful
 - Not dependent on seed selection (in seed-based approach)
 - Not dependent on dimension reduction and component selection
 - Well-fit by powerful LME with crossed random effects paradigm

Overview

- Basic concepts
 - Why do we need to do group analysis?
 - Factor, quantitative covariates, main effect, interaction, ...
- Various group analysis approaches
 - Regression (*t*-test): 3dttest++, 3dMEMA, 3dttest, 3RegAna
 - 。 AN(C)OVA: 3dANOVAx, 3dMVM, GroupAna
 - Quantitative covariates: 3dttest++, 3dMEMA, 3dMVM, 3dLME
 - Impact & consequence of SFM, SAM, and SEM
- Miscellaneous
 - Issues regarding result reporting
 - Intra-Class Correlation (ICC)
 - Inter-Subject Correlation (ISC)
 - Nonparametric approach and fixed-effects analysis
- No routine statistical questions, only questionable routines!